Probability I- Chap. 2: Axioms of Probability 1

2.1 Introduction

e Introduce the concept ot the probability of
an event and then show how these probabil-
1tles can be computed in certain situations.

e Need the concept of the sample space and
the events of an experiment.

2.2 Sample space and events

Sample space All possible outcomes of an
experiment.

Some examples:

1. The sex of a newborn child: S = {g, b}

2. The order of finish in a race among 7 horses
having post positions 1, 2, 3, 4, 5, 6, 7:

S = {all 7! permutations of (1, 2, 3,4, 5,6, 7)}

3. The outcomes of flipping two coins:

S = {<H7 H>7 (Ha T>7 (Tv H>7 (TvT)}
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4. The outcomes of tossing two coins:
S={(i,7): 4,5=1,2,3,4,5,6}
5. The lifetime of a transistor:
S={zr: 0<z < o0}

Event Any subset of the sample space.

Previous examples:

. E={g}
2. E = {all outcomes in S starting with a 3}

3. E={(H,H),(H,T)}
4. E=1{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}
5. E={x: 0<z <5}

Operations on events

Union FEUF': All points are either in £ or
i F or in both & and F'.

Intersection FEnF (EF): All points are
in both £ and F.
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Mutually exclusive If EnF = ().

Union of infinite events UlE All

points are in FEj, for at least one value of
n=12....

Intersection of infinite events Oé) E,:
_2

All points are in all events of Ej,,, n =1

Complement FE° All points in the sample
space S are not in F.

SC=1

Contained E C F

Venn diagram A graphical representation
is very useful for illustrating logical relations
among events.

Rules of logical operations on events
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Commutative EFEUF=FUEFE EF=FFE
Associative  (FUF)UG = FEU(FUG) (EF)G = E(FQG)
Distributive (FUF)G=FGUFG FEFUG=(FUG)(FUQG)

DeMorgan’s laws:

n ¢ n
(.U E%) = M Egj
1=1 —1

n ¢ n
(.ﬂ E%) = U Egj
1=1 1=1

2.3 Axioms of probability

For each event E of the sample space S, we
define n(F) to be the number of time in the
first n repetitions of the experiment that the
event £ occurs.

. n(k)
P(E) = Jin, "
Axiom 1
0<PF)<1
Axiom 2
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Axiom 3 For any sequence of mutually exclu-

sive events Fp, Eo, ... (that is, events for
which EZE] — (Z) when 7 7§ ]),
P (fi? EZ) - ¥ P(E)
1=1 1=1
We refer to P(F) as the probability of the
event F.

For any finite sequence of mutually exclusive
events L1, Eo, ..., Ly,

P (ﬁ EZ) - & P(E)
1 1=1
Example 2.3a. If our experiment consists
of tossing a coin and if we assume that a head
1s as likely to appear as a tail, then we would
have

P({H}) = PUT}) = ,

e If the coin were biased and we felt that a
head were twice as likely to appear as a tail,
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then we would have
PUHY) = PUTY) =

Example 2.3b. If adieisrolled and we sup-
pose that all six sides are equally likely to ap-

pear, then we would have P({1}) = P({2}) =
P({3}) = P({4}) = P({5}) = P({6}) = §

From Axiom 3 it would thus follow that the
probability of rolling an even number would

equal

P({2,4,6}) = P({2}) + P({4}) + P({6}) =

The assumption of the existence of a set
function P, defined on the event of a sam-
ple space S, and satisfying Axioms 1, 2, and
3, constitutes the modern mathematical ap-
proach to probability theory.

2.4 Some simple propositions

o1 =P(S)= P(EUE®) = P(E) + P(E°)
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Propositions 4.1

P(ES) =1 — P(E)

Propositions 4.2

If ECF, then P(E) < P(F).

e Since ¥ C F',then F = F'U E°F.

e From Axiom 3, P(F') = P(F) + P(E°F),
which proves the result, since P(E°F) > 0.

Proposition 4.3
P(EUF)=P(F)+ P(F)— P(EF)

e From Axiom 3,
P(EUF)= P(EUE‘F)
= P(F)+ P(E°F)
e Since ' = EFUECF, we again obtain from
Axiom 3 that

P(F) = P(EF) + P(E°F)
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thus completing the proof.

Example 2.4a. Suppose that we toss two
coins and suppose that each of the four points
1in the sample space

S = {<H7 H)v (Hv T)v (Tv H)v (Tv T)}
1s equally likely and hence has probability i

e Let £ = {(H,H),(H,T) and F = {(H, H),(T, H)}.

P(EUF) = P(E)+ P(F) — P(EF)
I 1
=55 P({H, H})
_ -1
4
3
4

Probability of any one of the three events E
or F' or G occurs: P(EUFUG) = P(E) +
P(F)+P(G)— P(EF)— P(EG)— P(FG)+
P(EFG)
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Proposition 4.4

P(E\UE,U---UE,) = Y. P(E)— ¥ P(E,E,)+

1= 11 <19

—_

+ (=) Y P(E,E,---E;)

1 <9< <lyp

+ o+ (=1)""'P(E\E,--- E))
Thesummation ¥~  P(E; E;,---E; )
N<19<-<1lp
1s taken over all of the (?) possible subsets of
size  the set {1,2,...,n}.

2.5 Sample space having equally likely
outcomes

e S={1,2,...,N}

e P({i}) = &

_ number of points in £
* P(E) = number of points in S

Example 2.5a. If two dice are rolled, what
is the probability that the sum of the upturned
faces will equal 77

o S={(i,7)4,7=12,...,6}
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e (G possible outcomes:
(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)

e The desired probability is % = %

Example 2.5b. If 3 balls are "randomly
drawn” from a bowl containing 6 white and

5 black balls, what 1s the probability that one
of the drawn balls is white and the other two

black?

e Regard the outcome of the experiment as
the ordered set of drawn balls:

— Sample space contains 11 - 10 - 9 = 990
outcomes.

— There are 6 - 5 -4 = 120 outcomes in
which the first ball selected is white and
the other two black.

—5-6-4 = 120 outcomes in which the first
18 black, the second white and the third
black.
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—5-4-6 = 120 outcomes in which the first
two are black, and the third two white.

— The desired probability is 120+é§8+120 —
4
H.

e Regard the outcome of the experiment as
the unordered set of drawn balls:

_ (131) — 165 outcomes in S.

_ ® ® = 4 desired outcomes.
QB4

(3)
Example 2.5c. A committee of 5 is to be
selected from a group of 6 men and 9 women.
If the selection is made randomly, what is the

probability that the committee of 3 men and 2
women?

6\ (9
e The desired probability is % = %

(5)

Example 2.5d. An urn contains n balls, of
which one is special. If £ of these balls are
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withdrawn one at a time, with each selection
being equally likely to be any of the balls that
remain at the time, what is the probability that
the special ball is chosen?

1\ /n—1
e P{special ball is selected} = (1)((71;:)—1) _
k

S [&

e Alternative:

— A; : The special ball is the ¢th ball to be
chosen,2=1,... k.

Example 2.5e. Suppose that n+m balls, of
which n are red and m are blue, are arranged
in a linear order in such a way that all (n +
m)! possible orderings are equally likely. If we
record the result of this experiment by only list-
ing the colors of the successive balls, show that
all the possible results remain equally likely.
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e [very ordering of the colors has probability

n!m/! '
(n+m) of occurring.

e 2 red balls: r1,7r9; 2 blue balls: b1y, bo.

e The following orderings result in the succes-
sive balls alternating in color with a red ball
first:

7“1,[)1,7’2,[)2 7“1,[)2,7’2,[)1 7“2,[)1,7’1,[)2 7“2,[)2,7’1,[)1

e Fach of the possible orderings of the colors
1

has probability 2% =z
Example 2.5f. A poker hand consists of 5
cards. If the cards have distinct consecutive
value and are not all of the same suit, we say
that the hand is a straight. For instance, a
hand consisting of the five of spades, six of
spades, seven of spades, eight of spades, and
nine of hearts is a straight. What is the prob-
ability that one is dealt a straight?

. (552> possible poker hands.

e 42 hands leading to exactly one ace, two,
three, four, and five.
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e 49 — 4 hands make up a straight of the form
ace, two, three, four, and five.

e 10(4° — 4) hands are straight.
10(4°—4)
()
Example 2.5g. A 5-card poker hand is said
to be a full house if it consist of 3 cards of the
same denomination and 2 cards of the same

denomination. What 1s the probability that
one is dealt a full house?

e The desired probability: ~ .0039.

e There are (552> possible hands.

e There are (g) (g) different combinations of,
say 2 tens and 3 jacks.

e There are 13 different choices for the kind ot
pair and, after a pair has been chosen, there
are 12 other choices for the denomination of
the remaining 3 cards.
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e The probability of a tull house
4\ 4
13- 12 [5)(3)
(5)
D
Example 2.5h. In the game of bridge the

entire deck of 52 cards is dealt out to 4 players.
What is the probability that

~ .0014

(a) one of the players receives all 13 spades;

— There are (13 135 213 13> possible divisions of

the cards among the 4 distinct players.

— There are (13 ?g 13) possible divisions of

the cards leading to a fixed player having
all 13 spades.

a3
— The desired probability is <13’5123’13) ~
(1313.13,13)

6.3 x 1012,

(b) each player receives 1 ace?

— There are (12 151812 12) possible divisions of

the other 48 cards when each player is to
receive 12.
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— There are 4! ways of dividing the 4 aces

so that each player receives.

4!(12,151,812,12) -

— The desired probability is
105.

(13,1??,213,13) -

Example 2.5i. It n people are present in a
room, what is the probability that no two of
them celebrate their birthday on the same day
of the year? How large need n be so that this
probability 1s less than %?

e There are 365" possible outcomes.
e The desired probability is
prn = (365)(364) - - - (365 —n + 1)/(365)"
e When n > 23, p,, < %
e When n =50, 1 — p,, = .970.

_ _ 3% 100
e When n =100, 1 — p,, > 5 10541

Example 2.5j. A deck of 52 playing cards
1s shufled and the cards turned up one at a
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time until the first ace appears. Is the next
card—that is, the card following the first ace—
more likely to be the ace of spades or the two

of clubs?

e There are 51! orderings of the ace of spades
immediately following the first ace.

e There are 51! orderings of the two of clubs
immediately following the first ace.

e P{the ace of spades follows the first ace} =

P{the two of club follows the first ace} =
(51! 1

(52)] — 52

Example 2.5k. A football team consists of
20 offensive and 20 defensive players. The player
are to be paired in groups of 2 for the pur-
pose of determining roommates. If the pair-
ing 1s done at random, what is the probabil-
ity that there are no offensive-defensive room-
mate pairs? What is the probability that there
are 21 offensive-defensive roommate pairs, 1 =
1,2,...,107
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4 40)! .
. (2,27.0“72> = <<2!>%0 ways of dividing the 40

players into 20 ordered pairs of two each.

2. = NRE
@8) (22)! {2182—%(1%2'@)!]
(40)!

220(20)!

i=01,...,10

e Hence the probability of no offensive-detensive
roommate pairs call it Fp, 1s given by

20)!

) e

2§i%gﬂ ~ [(10)12(40)!

1.3403 x 1079
345861
7.6068 x 107F

Py =

Pr
Py

& & &

Next three examples illustrate the usetulness of
Proposition 4.4.

Example 2.51. A total of 36 members of a
club play tennis, 28 play squash, and 18 play
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badminton. Furthermore, 22 of the members
play both tennis and squash, 12 play both ten-
nis and badminton, 9 play both squash and
badminton. and 4 play all three sports. How
many members of this club play at least one of
these sports?

o P(C) = number of r]r{fembers in C

N: The number of members of the club.

e 7" The set of members that plays tennis.
S: The set of members that plays squash.
B: The set of members that plays bad-
minton.

P(TUSUB) = P(T)+ P(S) + P(B) — P(TS)
—P(TB) — P(SB) + P(TSB)
36+ 28+ 18 —22 — 12 — 9+ 4

N

43
N

Example 2.5m. The matching problem.

Suppose that each of NV men at a party throws
his hat into the center of the room. The hates
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are first mixed up, and then each man ran-
domly selects a hat. What is the probability
that

(a) none of the men selects his own hat;

;. tth man selects his own hat.
N N
—P(UB)= S0y P By

k=1 11 <tg<-<i
N 11
—1—P@&E)_1—1+m—gﬁ— +
(-1
N

(b) exactly k of the men select their own hats?

— None of N — k men selectsj\lpisk own hat:
YN

U A N

— (]]X ) possible selections of a group of k

mern.
N—Ek
(V) (N—F)! {1 T = +<(1) o

Nl

— o
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o1
Nk

Example 2.5n. If 10 married couples are
seated at random at a round table, compute
the probability that no next to her husband.

e [;: ith couple sit next to each other.

e The desired probability is 1 — P (81 EZ)
1=

) = 27(19—n)!
= 19)!
e The probability that at least one married

couple sit's together equals '
18)! 17 16)!
<110>2121§' <10>222 g' n ( )232193!

— (19210 ~ 6605

e The desired probability is approximately .3395.

o P(E; E;, - E;

in

*Example 2.50. Runs Consider an ath-
letic team that had just finished its season with
a final record of n wins and m losses. By ex-
amining the sequence of wins and losses, we
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are hoping to determine whether the team had
stretches of games in which it was more likely
to win than at other times. One way to gain in-
sight into this question is to count the number
of runs of wins and then see how likely that re-
sult would when all (n4+m)!/n!m! orderings of
the n wins and m losses are assumed equally
likely. By a run of wins we mean a consec-
utive sequence of wins. For instance, if n =
10, m = 6 and the sequence of outcomes was
WWWLLWWW LW LLLWWWW:  then there
would be 4 runs of wins-the first run being of
size 2, the second of size 3, the third of size 1,
and the fourth of size 4.

e There are (nj;m> orderings are equally likely.
e Assume r runs of wins.

e z;: The size of ¢th run.

e+ - +ITpr=mn x; >0

e yy;: The number of losses between (i — 1)th
runs of wins and ¢th runs of wins.



Probability I- Chap. 2: Axioms of Probability 23

oy + -+ yYrr1=m Y, Yr+1 > 0,y; >0
ey =+ 1Lyr1=yrp1+ 1,9 =y

e+ -+ Yp1=m+2 g >0

m—+1
r

n—1
r—1

e There are ( ) such outcomes.

) such outcomes for a;s.

e P({r runs of wins}) = m{%&%%)

o[fn = 87, m = 6, then the probability of 7

e I
=1 /429,

e Hence, it the outcome was
W LW LW LW LWW LW LW then we might
suspect that the team’s win probability was
changing over time.

e There are (

e On the other extreme, if the outcome were
WWWWWWWW LLLLLLL, then there
would have been only 1 run, 1t would thus
again seem unlikely that the team’s win prob-
ability remained unchanged over its 14 games.
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*2.6 Probability as a continuous set
function

If {Fy,n > 1} is an increasing (decreasing)
sequence of event, then we define a new event.

denoted by nlgnoo Ey, by

¥ E; (%) EZ)
=1 1=1

nlgnoo En =

[/

Proposition 2.6.1 If {F,,n > 1} is ei-
ther an increasing or a decreasing sequence of
events, then

nlgnoo P(Ln) = P(nlgnoo Ep)

e Suppose {Ep,n > 1} is an increasing se-
quence and define the events Fj,,n > 1 by

o [1 =FEj

n—1 =
an:En( EZ) — E,EC ; n>1

1=1

—1
e Used nful E;,=E,_
1=
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oSouF_uEand UF—UE

1=1 1=1 =1 1=1
°
P e = P(TA
= %OP F)) (by Axiom 3)
.on
angn§ P(F;)
, n
:nlgnoop %Fz)
, n
:nlgnoop %EZ)
= it P(En)

which proves the result when {E,,n > 1}
1S Increasing.

e The proof for decreasing events is similar.

Example 2.6a. Probability and a paradox.

Suppose that we posses an infinitely large urn
and an infinite collection of balls labeled ball
number 1, number 2, number 3, and so on.
Consider an experiment performed as follows.
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At 1 minute to 12 P.M., balls numbered 1 through
10 are placed in the urn, and ball number 10
is withdrawn. At % minute to 12 P.M., balls
numbered 11 through 20 are placed in the urn,
and ball number 20 is withdrawn. At % minute
to 12 P.M., balls numbered 21 through 30 are
placed in the urn, and ball number 30 is with-
drawn. At % minute to 12 P.M., and so on.

The question of interest is, how many balls are
in the urn at 12 P.M.”

e There is an infinite number of balls in the
urn at 12 P.M.

e Let us change the experiment and suppose
that at 1 minute to 12 P.M. balls numbered
1 through 10 are placed in the urn, and
ball number 1 is withdrawn. At % minute
to 12 P.M., balls numbered 11 through 20
are placed in the urn, and ball number 2 is
withdrawn. At % minute to 12 P.M., balls
numbered 21 through 30 are placed in the
urn, and ball number 3 is withdrawn. At %
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minute to 12 P.M., and so on.
— The urn is empty at 12 P.M.

e Let us now suppose that whenever a ball
1s to be withdrawn that ball 1s randomly
selected from among those present.

— We shall show that, with probability 1,
the urn is empty at 12 P.M.

— F,,: The event the event that ball num-
ber 1 is still in the urn after the first n

withdrawals have been made.

_9:18:27---(9n)
- P(Ep) = 10-19-28---(9n+1)

— P{ball number 1 is still in the urn at 12 P.M.}
n o [ In
P Enl = lim P(E,) =
(zgl ”) i P (En) i (9n + 1)
In + 1 00 ( 1 )
— 1I =1 |1+ —| =00
=1\ 9n i=1 In
— Hence, let F; denote the event that ball
number ¢ 1s in the urn at 12 P.M., we can
show similarly P(F;) = 0.

0.9

2.7 Probability as a measure of belief
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Example 2.7a. Suppose that in a 7-horse
race you feel that each of the first 2 horses has
a 20 percent chance of winning, horses 3 and 4
each has a 15 percent chance, and the remain-
ing 3 horses, a 10 percent chance each. Would
it be better for you to wager at even money,
that the winner will be one of the first three
horses, or to wager, again at even money, that
the winner will be one of the horses 1,5,6,77

e The probability of winning the first bet is
24+ .24 .15 =.55

oltis. 2+ .14+ .1+ .1 = .5 for the second.

e Hence the first wager is more attractive.
Summary

e Sample space S: The set of all possible out-
comes of a an experiment.
o (JL A;: All outcomes that are in at least one

1=1
of the events.
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o .%1 A;: All outcomes that are in all of the
events.

e A% All outcomes that are not in A.
e (): The null set.
e Mutually exclusive: AB = ()
e Axiom of probability:
(o< PA4) <1
(i) P(S) = 1
(iii) For mutually exclusive sets a;
P (G’ AZ-) - ¥ p(ay)
1=1 1=1
e P(A°)=1— P(A)
e P(AuB)= P(A)+ P(B) — P(AB)

e If S is finite and each one point set is as-
sumed to have equal probability, then

_ 4]

P =15



