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4.1 Introduction

It is frequently the case when an experiment
is performed that we are mainly interested in
some function of the outcome as opposed to the
actual outcome itself.

e In tossing dice, we are often interested in
the sum of the two dice and are not really

concerned about the separate values of each
die.

e We may be interested in knowing that the
sum 1s 7 and not be concerned over whether
the actual outcome was (1,6) or (2,5) or

(3,4) or (4,3) or (5,2) or (6,1).

e In coin flipping, we may be interested in
the total number of heads that occur and
not care at all about the actual head-tail
sequence that results.

e These quantities of interest, or more for-
mally, these real-valued functions defined on
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the sample space, are known as random
variables.

Example 4.1a. Suppose that our experi-
ment consists of tossing 3 fair coins. If we let
Y denote the number of heads appearing, then
Y is a random variable taking on one of the
values 0, 1, 2, 3 with respective probabilities

o P(Y =0)=P(T,T,T)=1
P(Y =1) = P{(T,T,H),(T,H,T),(H,T,T)}

2)=P{(T,H,H),(H,T,H),(H,H,T)}

Co | W

PY

Co | W

o P(Y=3)=PH HH) =
e We must have
3 3
1:P(,u {Y:z’}) _ { Py =4}
1=0 1=0

Example 4.1b. Three balls are to be ran-
domly selected without replacement from an
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urn containing 20 balls numbered 1 through
20. If we bet that at least one of the drawn
balls has a number as large as or larger than
17, what is the probability that we win the bet?

e X: The largest number selected.

1—1
eP{x—=iy=L32) i—3 2
(3)
e From above:
o )3
P{X =20} = ) = 50 150
o (o) 8L
P{X =19} = ) = 380 134
e (o) 34
P{X =18} = ) = 255 119
16
P{X =17} = (22>:2~ 105
(3) 19

o P(X >17) &~ 105+ .119 + .134 + .150 =
508
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Example 4.1c. Independent trials, consist-
ing of the flipping of a coin having probability p
of coming up heads, are continually performed
until either a head occurs or a total of n flips
1s made.

e X: The number of times the coin is flipped.
P{X =1} = P{H} =
P{X =2} = P{(T,H)} =(1—-p)p
P{X =3} = P{(T\T,H)} = (1-p)’p

P{X=n-1} _ P{(T.T,...,T,H)}
= (1—p)”_;p
P{X =n} = P{(T,1,...,T,T),(T.T,...,T, H)}

-

n—1 n—1

= (1-p"!
e As a check:
P(Gix =) = £rix=y
n—1 .

= £ pll—p) "+ (1 —p""

1 - (1 T p>n—1] n—1
]_ _

{1—ﬂ—p>'+< P)



Probability I- Chap. 4: Random Variables 5

Example 4.1d. Three balls are randomly
chosen from an urn containing 3 white, 3 red,
and 5 black balls. Suppose that we win $1 for
each white ball selected and lose $1 for each
red selected.

e X: Total winnings from the experiment.

e P{X =0} = (§)+((?121§i’)(?) _ 15_655

e P{X=1}=P{X=-1} = DR+ _

65

o P{X =2} =P{X =-2}= @)S):f%
e P{X =3} = P{X = -3} = (il)): i
oZP{X—Z}—l— le{X_ i}

" 55+39+15+1+39+15+1 |

165
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e The probability that we win money is

3 b5 1

> P{X=it=-—-=-

i=1 { j 165 3
Example 4.1e. Suppose that there are N
distinct types of coupons and each time one
obtains a coupon it is, independent of prior se-

lections, equally likely to be any one of the NV
types.

e 7. The number of coupons that needs to be
collected until one obtains a complete set of
at least one of each type.

e A;: The event that no type j coupon is
contained among the first n,5 =1,..., N.

)

P{T>n} = P (j@l Aj)

_ ZP(A-) — XY (A A +

()Y o P(A gy Ay -
+(=D)NTIP(AAy - - Ay)

=5

i) = (°x2)

_|_

°
e,
N
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o P(AjAjy- Ajy) =
e We see that for n > 0,

P{T > n} = N(E)n— (N

T
N
S

) o
o P{T'=n}=P{T >n—1} — P{T > n}

e D),: The number of distinct types of coupons
that contained in the first n selections.

e A: each is one of these k types.
e B: each of these k types is represented.
e We see that

(3]
P(B|A)=1-"% k (k . ) (1)
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e There are (]]X ) possible choices for the set of
k types.

P{D, =k} = (N )P(AB)

J(3) -5 () () o

Remark.

e Since one must collect at least NV coupons to
obtain a compete set, it follows that P{T >
n}=1ifn<N.

e From Eq. (1.2):

N—-1(N ) (N — 1

D
i=1 N

| )n (—1)it =

N—1(N (N—i
o > ,
=0 | 2 N

eSet ) =N — 1,

)n (—1)i+ =
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4.2 Distribution functions

e The cumulative distribution function (c.d.f.)
of the random variable X:

F(b) = P{X <b} —00 < b<
e Some properties of the c.d.f. F’:

1. F' is a nondecreasing function; that is, if
a < b, then F(a) < F(b).

2. lim F(b) =1.
b— 00

3. lim F(b)=0.
b——00

4. F' is right continuous. That is, for any b
and any decreasing sequence by, n > 1,
that converges to b, lim_F(bp) = F (D).

Example 4.2a. The distribution function
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of the random variable X is given by

0 <0
T
— <<l

Flx)=1- 1<x<?2

%12< 3
19 ST <

1 3<z

A graph of F(x) is presented in Fig. 4.1.

(2)

' 1

P{X<3}=limP X <3—-—

n \ n

1 11

= lmF|3——|=—
n n

12
(b)

P{X =1} = P{X <1} — P{X < 1}
:F(l)—li%pF(l—:L
2

1
3 2

1
6
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(c)g{x > ;} _ 1—P{X < ;} _ 1_F® _

4
(d) P{2 < X <4} = F(4) — F(2) :112

4.3 Discrete random variable

For a discrete random variable X, we define
the probability mass function p(a) of X
by

pla) = P{X = a}

e X must assume one of the values x1, xo, . ..
ep(x;) >0 i=1,2,...

e p(x) =0 all other values of z

. Elp(ﬂﬁz) =1

e If the probability mass function of X is

1 1 1

p(0) = 4 p(1) = 9 p(2) = 4
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we can represent this graphically as shown
in Fig. 4.2.

e A graph of the probability mass function of
the random variable representing the sum
when two dice are rolled looks like the one
shown in Fig. 4.3.

Example 4.3a. The probability mass func-
tion of a random variable X is given by p(7) =
cA'/il, i =0,1,2,... where \ is some positive
value. Find (a) P{X = 0} and (b) P{X > 2}.

(a) Since ,OZOOp(i) = 1, we have that
1=
)\i
C OZO — = ce = 1
i=0 1!
®C— e_)‘

o P{X =0} =e /0l = A
e X has a Poisson(\) distribution.

(b)
P{X >2} =1-P{X <2}
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=1-P{X=0}-—P{X =1}
—P{X =2}

A )\26_)\
2

l—e A= e

e The cumulative distribution function F':

F(a)= T p(z)
r<a
o If X is a discrete random variable whose
possible values are x1, 9, r3, ..., where r1 <
r9 < r3 < ---, then its distribution func-
tion is a step function.

e If the probability mass function of X is

1 1 1

p(l) = 4 p(2) = 9 p(3) = g p(4) =

1
8
then its cumulative distribution function is

F(a) =

= O0] | GO b
N
AN
Q
A
o
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4.4 Expected value

Expected value:

BX]= £ apla)
z:p(x)>0
BIX] = £ zpla)

e The expected value of X is a weighted av-
erage of the possible values that X can take
on, each value being weighted by the prob-
ability that X assumes it.

o If p(0) = p(1) = &, then E[X] = 0(3) +

DO —

o If p(0) = 1 p(1) = 2, then F[X] = 0(}) +
1(3) =3

e If an infinite sequence of independent repli-
cations of an experiment is performed, then

for any event, the proportion of time that £
occurs will be P(FE).

e Consider a random variable that must take



Probability I- Chap. 4: Random Variables 15

on one of the values X — 1, z9, ..., x, with
respective probabilities p(z1), p(x9), . .., p(an);
and think of X as representing our winnings
in a single game of chance.

e Now by the frequency interpretation, it fol-
lows that if we continually play this game,
then the proportion of time that we win z;
will be p(x;).

e The average winnings per game will be

n
R rip(z;) = B[ X]

Example 4.4a. Find E|X] where X is the
outcome when we roll a fair die.

ep(i)==% 1=1,2,...,0.
ElX] = 1( ) + 2<g)+3< 5 +4() +5(5) +
6<%> 5

Example 4.4b. We say that [ is an indica-
tor variable for the event A if

CDI»—k
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1 if A occurs

I'= 0 if A€ occurs

Find E[]].

o p(1) = P(A),p(0) =1 - P(A).
e We have that F[I| = P(A).

Example 4.4c. A contestant on a quiz show
15 presented with two questions, questions 1
and 2, which he is to attempt to answer in
some order chosen by him. If he decides to
try question ¢, then he will be allowed to go
on to question j, 7 # ¢ only if his answer to
v 1s correct. If his initial answer is incorrect,
he 1s not allowed to answer the other question.
The contestant is to receive V; dollars if he an-
swers question ¢ correctly, ¢ = 1,2. Thus, for
instance, he will receive V| + V5 dollars if both
questions are correctly answered. If the proba-
bility that he knows the answer to question ¢ is
P;, 1 =1,2, which question should he attempt
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first so as to maximize his expected winnings?
Assume that the events E;, ¢ = 1,2, that he
knows the answer to question ¢, are indepen-
dent events.

o If he attempts question 1 first, then he will
win

0 with probability 1 — Py
Vi with probability Pj(1 — P)
V1 4+ V5 with probability PP

e His expected winnings in this case will be

ViPI(1—-P)+ (V1 + V)P Py

e If he attempts question 2 first, his expected
winnings will be

VoPy(1 — P1) + (Vi + Vo) PL P
e [t is better to try question 1 first if
VIPI(1 = P) > VaP(1 — Pp)

V1P < Vo)
1 — P — 1—P2.

equivalently, if
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e If he is 60 percent certain of answering ques-
tion 1, worth $200, correctly and he is 80
percent certain of answering question 2, worth
$100, correctly, then he should attempt ques-

tion 2 first because
(100)(.8)  (200)(.6)

400 = > > Y 300
Example 4.4d. A school class of 120 stu-
dents are driven in 3 buses to a symphonic per-
formance. There are 36 students in one of the
buses, 40 in another, and 44 in the third bus.
When the buses arrive, one of the 120 students
1s randomly chosen. Let X denote the number

of students on the bus of that randomly chosen
student, and find F [X J.

o B[X] = 36(m) - 40(%) +44(Lh) = 1208 =
40.2667
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e The average number of students on a bus is
120/3 = 40.

e The more students there are on a bus, then
more likely a randomly chosen student would
have been on that bus.

e Buses with many students are given more
weight than those with fewer students.

The concept of expectation is analogous to the
physical concept of the center of gravity of a
distribution of mass (Fig. 4.5).

4.5 Expectation of a function of a ran-
dom variable

Elg(X)]

Example 4.5a. Let X denote a random vari-
able that takes on any of the values —1,0,1
with respective probabilities

P{X=-1}=2 P{X=0}=5
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P{X =1}=.3
Compute E[X?).

e Letting ¥ = X2,

e P{Y =1}=P{X=-1}+P{X =1} =
5

e P{Y =0} =P{X =0}=.5
e B[XY=E[Y]=1(5)4+0(5) =5

Proposition 5.1: If X isa discrete random
variable that takes on one of the values x;,
i > 1, with respective probabilities p(x;), then
for any real-valued function g

Elg(X)] = 3 g(zi)p(z;)

Example 4.5b. A product, sold seasonally,
yields a net profit of b dollars for each unit sold
and a net loss of ¢ dollars for each unit left
unsold when the season ends. The number of
units of the product that are ordered at a spe-
cific department store during any season is a
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random variable having probability mass func-
tion p(z), ¢« > 0. If the store must stock this
product in advance, determine the number of
units the store should stock so as to maximize
its expected profit.

e X: The number of units ordered.

e If s units are stocked, then the profit

WX —(s—X)if X <s
Pls) = sb if X > s

e The expected profit equals

S

E[P(s)] = Y.[bi — (s —i)lJp(i) + > sbp(i)

i=0 1=5+1
= (b+0) ,_ioip(i) — st ,_iop(i) +sb [1 - ._iop(i)]

= (b0 X ip(i) = (b-+ 0)s X pli) + sb

= sb+ (b+0) X (1 — s)p(7)

1=0

e To determine the optimal value of s

E[P(s+1)] = b(s+ 1)+ (b+0) g(z — s —1)p(i)
= b(s+ 1)+ (b+0) éo(i — s —1)p(i)
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o B[P(s+1)] = E[P(s)] = b= (b+0) £ p(i)

e Stocking s + 1 units will be better than
stocking s units whenever
s . b
ZP0) <y
e Stocking s*+1 items will lead to a maximum

expected profit where s* is the largest value
of s satisfying the above inequality.

E[P(0)] < --- < E[P(s")] < E[P(s*+1)] > E[P(s'4+2)] > - --

Corollary 5.1: If ¢ and b constants, then
FlaX + bl =aFE|X]+

Mean: The weighted average of the possible
values of X.

nth moment:

EXn — n
X1 ™0
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4.6 Variance

W = 0 with probability 1

- —1 with probability L
Y = . g
| +1 with probability 5
7 _ | —100 with probability L
| +100 with probability 5

e All have the same expectation, O.

e There 1s much greater spread in possible
value of Y than in those of W and in the
possible values of Z than in those of Y.

e A reasonable way of measuring the possi-
ble variation of X would be to look at how
far apart X would be from its mean on the
average.

e Candidate F[| X —ul is inconvenient to deal
with.
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Definition: If X is a random variable with
mean j, then the variance of X, denoted by
Var(X), is defined by

Var(X) = E[(X — p)°] = B[X?] — °

Example 4.6a. Calculate Var(X) if X rep-
resents the outcome when a fair die is rolled.

DNl ~J

e Shown in Example 4.4a that F|X]| =

- o))
o

o Var(X) =1 — @2 — 3

Proposition: For any constants a and b,

Var(aX + b) = a*Var(X)

In the terminology of mechanics, the variance
variance represents the moment of inertia.
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Standard deviation
SD(X) = Var(X)

4.7 The Bernoulli and Binomial ran-
dom variables

Bernoulli random variable:

p(0)=P(X =0)=1-p
p(l)=P(X =1) =p

Binomial random variable:
n

.

p(i) = P(X =1) =

[/

p1—p)" i=0,1,|..

Example 4.7a. Five fair coins are flipped.
If the outcomes are assumed independent, find
the probability mass function of the number of
heads obtained.

e Let X equal the number of heads (successes)
that appear, then X is a binomial random
variable with parameters (n = 5,p = %)
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Example 4.7b. It is known that screws pro-
duced by a certain company will be defective
with probability .01 independently of each other.
The company sells the screws in packages of
10 and offers a money-back guarantee that at
most 1 of the 10 screws is defective. What
proportion of package sold must the company
replace”
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e X: The number of defective screws in a
package

e Then X is a binomial random variable with
parameters (10, .01).

e The probability that a package will have to
be replaced 1s
1—-P{X =0} P{X =1}

10 10
=1—({y)(.01)°(.99)1Y — ()(.01)}(.99)?
~ .004

Example 4.7c. The following gambling game,
known as the wheel of fortune (or chuck-a-luck),
1s quite popular at many carnivals and gam-
bling casinos: A player bets on one of the num-
bers 1 through 6. Three dice are then rolled,
and if the number bet by the player appears ¢
times, ¢ = 1, 2, 3, then the player wins ¢ units;
on the other hand, if the number bet by the
player does not appear on any of the dice, then
the player loses 1 unit. Is this game fair to
the player? (Actually, the game is played by
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spinning a wheel that comes to rest on a slot
labeled by three of the numbers 1 through 6,
but it 1s mathematically equivalent to the dice
version. )

e Assume that the dice are fair and act inde-
pendently of each other, then the number
of times that the number bet appears is a
binomial random variable with parameters
(3, 5)

e X: The player’s winnings in the game, we
have

3 0 5 3195
P{X = 1} = ) ) _ 1
0 6 216
3) (1) (5\2 75
P{X =1} — ( ( _
1]16) 6 216
3\ (1\2 (5\! 15
P{X =9} = ( ( _ b
21\6) \6 216
3) (1) (5\Y 1
pix-a - [Q - L
3/16) \6 216
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° E[X] _ —1254754+304+3 __ —167

o 216 21

In the next example we consider the simplest

form of the theory of inheritance as developed
by G. Mendel (1822-1884).

Example 4.7d. Suppose that a particular
trait (such as eye color or left handedness) of
a person is classified on the basis of one pair
of genes and suppose that d represents a dom-
inant gene and r a recessive gene. Thus a per-
son with dd genes is pure dominant, one with
rr 1s pure recessive, and one with rd is hybrid.
The pure dominant and the hybrid are alike in
appearance. Children receive 1 gene from each
parent. If, with respect to a particular trait, 2
hybrid parents have a total of 4 children, what
is the probability that 3 of the 4 children have
the outward appearance of the dominant gene?

e Assume that each child is equally likely to
inherit either of 2 genes from each parent,
the probabilities that the child of 2 hybrid
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parents will have dd, rr, or rd pairs of genes
are, respectively, 1/4,1/4,1/2.

e An offspring will have the outward appear-
ance of the dominant gene if its gene pair is

either dd or rd.
e The number of such children is B(4,3/4).

e The desired probability is

4 (3)3(1)1 27

3)\4) \4) 64

Example 4.7e. Consider a jury trial in which
it takes 8 of the 12 jurors to convict; that is,

in order for the defendant to be convicted, at

least 8 of the jurors must vote him guilty. If

we assume that jurors act independently and

each makes the right decision with probability

6, what is the probability that the jury renders
a correct decision’

e If he is guilty, the probability of a correct
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decision is
12
)

P>

(92'(1 B 6,)12—i
1=8

e [f the defendant is innocent, the probability
of the jury’s rendering a correct decision is

12
(

>

| (92(1 . 6,)12—i
1=5

e [f o represents the probability that the de-
fendant is guilty, then, by conditioning on
whether or not he is guilty, we obtain that
the probability that the jury renders a cor-
rect decision is

12

?

12
(

0(1—0) 2" (1—a) & | |0i(1-0)12

1=9

AD>
1=

8

Example 4.7f. A communication system con-
sists of n components, each of which will, in-
dependently, function with probability p. The
total system will be able to operate eftfectively
if at least one-half of its components function.
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(a) For what values of p is a 5-component sys-
tem more likely to operate effectively than
a 3-component system?

(b) In general, when is a (2k + 1)-component
system better than a (2k — 1)-component
system?

(a) e Asthe number of functioning components
1S a binomial random variable with pa-
rameters (1, p).

e The probability that a 5-component sys-
tem will be effective is

= [t a7

e The corresponding probability for a 3-
component system 1s

@pz(l —p)+p°

e The 5-component system is better if

10p(1—p)?+5p*(1—p)+p° > 3p*(1—p)+p°
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which reduces to
3(p—1)%(2p—1) >0

or
L1
b=y

(b) e1In general, a system with 2k + 1 compo-
nents will be better than one with 2k — 1
components if and only if p > 1/2.

e X: The number of the first 2k — 1 that
function.

o P 1 (effective)
=P{X>k+1}+P{X=Fk}1—-(1-
p?) + PLX = k= 1}
which follows since the (2k+1)-component
system will be effective if either

(i) X > k+1;
(ii) X = k and at least one of the remain-
ing 2 components function; or

(iii) X = k& — 1 and both of the next 2
functions.
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Py (effective) = P{X > k}

= P{X=k}+P{X>k+1

Py, 1 (effective) — Py (effective)
= P{X =k—1}p"—(1—p)’P{X =k}

— (%f:f)pk_l(1—p)kp2—(1—p)2<2k]€_1>pk(1—

k—1

p)
= (7t = p)Flp — (1 = p)] since

o) =5
>0 & p>

4.7.1 Properties of binomial random
variable

BlxY = ¥ ik(ﬁ)pz-(l -
)
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= npE[(Y +1)"1]

where Y 1s a binomial random variable with
parameters (n — 1, p).

ok=1 FEX]|=np
ok =2
E[X?] = npE[Y + 1]
= np[(n —L)p +1]

Var(X) = E[X?] — (B[X])?
npl(n — p + 1] — (np)?
= np(1l — p)

Proposition: If X is a binomial random
variable with parameters n and p, then

E|X] = np
Var(X) = np(1 —p)
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Proposition 7.1: If X is a binomial ran-
dom variable with parameters (n,p), where
0 < p < 1, then as k£ goes from 0 to
n, P{X = k} first increases monotonically
and then decreases monotonically, reaching its
largest value when k is the largest integer less
than or equal to (n + 1)p.

Example 4.7g.

e In a U.S. presidential election the candidate
who gains the maximum number of votes in
a state is awarded the total number of elec-
toral college votes allocated to that state.

e The number of electoral college votes of a
oiven state is roughly proportional to the
population of that state — that us, a state of
population size n has roughly nc electoral
votes.

e Let us determine the average power in a
close presidential election of a citizen in a
state of size n, where by average power in
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a close election, we mean the following:

e A vote in a state of size n = 2k 4+ 1 will
be decisive if the other n — 1 voters split
their votes split their votes evenly between
the two candidates.

e P {voter in state of size 2k + 1 makes a
difference }

2k ke o (2R)!
- <k>(§) <§) — LIE192k

e Make use of Stirling’s approximation, which
says that for £ large,

k!~ kR 20—k, o0

where we say that a;. ~ bz when the ratio
ai./by. approaches 1 as k approaches oo.

e P {voter in state of size 2k + 1 makes a

difference }
(2]{)2/@4—1/26—2/@\/% o

T R2kH1e=2k(2m)22k T\

e Average power = ncP{makes a difference}
nc

nm /2
= ¢/2n/m.

Y
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4.7.2 Computing the binomial distri-
bution function

e Suppose that X is B(n,p).

e The key to computing its distribution func-
tion

n k n—k .
PiX < = 1 — =0.1
{X <i} = X Okp( D) i =0,1,
p n—=k
{ +1} l—pk+1 { )
Example 4.7h.
e X ~ B(6,.4).
P{X:O}—(6) ~ .0467
46
P{le}———P{X—O}N 1866
45
44
P{XzS}———P{X—Z}N 2765
43
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42
P{X =5} = _P{X =4} ~ 0360

41
PAX =6} = - _P{X =5} ~ 0041

Example 4.7i. If X is a B(100,.75), find
P{X =70} and P{X < 70}.

o P{X =70} ~ .04575381
o P{X < 70} a .14954105

4.8 The Poisson random variable

Poisson probability distribution:
. LN
p(i)=P{X =i} =¢e - ©=0,1,2,...
2!

e The Poisson random variable has a tremen-
dous range of applications in diverse areas
because 1t may be used as an approximation
for a B(n,p) when n is large and p is small
enough so that np is a moderate size.
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o If X is B(n,p) and let A = np. Then

PIX =i} = o1 p)

" (n iL!z')!z'!(%)i(l N %)H
_ n(n—1)---(n—i—|—1)/\_i(1—/\/n)”
n' il (1= X/n)

e For n large and A moderate,

A
(1— ~ e
n
nn—1)---(n—i+1) _
n' ~ 1
)\i
(1—) ~ 1
n .
)\Z
P{X =i} m e "
7!

Examples of Poisson random variable:

1. The number of misprints on a page (or a
group of pages) of a book.

2. The number of people in a community living
to 100 years of age.
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3.

The number of wrong telephone numbers
that are dialed in a day.

. The number of packages of dog biscuits sold

1n a particular store each day:.

. The number of customers entering a post

office on a given day.

. The number of vacancies occurring during a

year in the Supreme Court.

. The number of a-particles discharged in a

fixed period of time from some radioactive
material.

Example 4.8a. Suppose that the number
of typographical errors on a single page of this
book has a Poison distribution with parameter
A= % Calculate the probability that there is
at least one error on this page.

e X: Denote the number of errors on this

page.
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e P{X>1}=1-P{X =0}=1-¢12x
393

Example 4.8b. Suppose that the probabil-
1ty that an item produced by a certain machine
will be defective is .1. Find the probability that
a sample of 10 items will contain at most 1 de-
fective item.

e The desired probability is

(100)(1)0('9)10 * (110](°1)1(-9)9 — 7361

e The Poisson approximation yields the value
el +e !~ 7358

Example 4.8c. Consider an experiment that
consists of counting the number of a-particles
given off in a 1-second interval by 1 gram of ra-
dioactive material. If we know from past expe-
rience that, on the average, 3.2 such a-particles
are given off, what is a good approximation to
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the probability that no more than 2 a-particles
will appear?

e X ~ Poisson(3.2)
e The desired probability is

2
P{X <2} = e 3243232 + <322> e 32
~ .3799

Before computing the expected value and vari-
ance of the Poisson random variable with pa-
rameter A, recall that this random variable ap-
proximates a B(n, p) when n is large, p is small,
and A = np.

®nNp = A\
enp(l—p)~ A

Recursive relation for moments:

E[XM = E[(X + 1) 1]
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44

Mean:

EX] = ¥

Second moment:

:) —)\)\i
Bxy =5 "°

|
>
(]
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Variance: Var(X) = E[X?]—(E[X])? =\

Proposition: The expected value and vari-
ance of a Poisson random variable are both
equal to its parameter .

Another use of the Poisson probability distri-
bution arises in situations where “events” occur
at certain points in time.

A Poisson random variable is usually a good
approximation for diverse phenomena:

1. The number of earthquakes during some fixed
time span.

2. The number of people enters a particular
establishment (bank, post office, gas station,
and so on).

3. The number of wars per year.

4. The number of electrons emitted from a heated

cathode during a fixed time period.

5. The number of deaths in a given period of
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time of the policyholders of a life insurance
company.

Assume that for some positive constant A the
following assumptions hold true:

1. The probability that exactly 1 event occurs
in a given interval of length A is equal to
Ah + o(h), where o(h) stands for any func-
tion f(h) that is such that limy,_,q f(h)/h =
0.

2. The probability that 2 or more events occur
in an interval of length h is equal to o(h).

3. For any integers n, 91, 99, ..., Jn, and any
set of n nonoverlapping intervals, if we de-
fine E; to be the event that exactly j; of the
events under consideration occur in the 2th
of these intervals, then events F7, Fo, ..., Ej,
are independent.

N(t) ~ P(X): The number of events occurs in
(0, £].
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Example 4.8d. Suppose that earthquakes
occur in the western portion of the United States
in accordance with assumptions 1, 2, and 3
with A = 2 and with 1 week as the unit of time.
(That is, earthquakes occur in accordance with
the three assumptions at a rate of 2 per week.)

(a) Find the probability that at least 3 earth-
quakes occur during the next 2 weeks.

(b) Find the probability distribution of the time,
staring from now, until the next earthquake.

(2)

P{N(©2) >3} = 1— P{N(2) =0} — P{N(2) = 1}

—P{N(2) =2}
42
— 1 —e 44t = 56_4
= 1—13¢*

(b) — X: Denote the amount of time (in weeks)
until the next earthquake.

—P{X >t} = P{N(t) =0} = e M
—F() Af{x<7¢}_1—P{X>t}_
Il —e =1
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4.8.1 Computing the Poisson distribu-
tion function

e X is Poisson with parameter A,
P{X=i+1} e XNF/G+1)0 A

P{X =i} e /il i+l
P{X =0} =

P{X =1} = AP{X =0}

P{X =2} = ;P{X — 1}

A
1+ 1

P{X:z’+1}-: P{X =i}

Example 4.8e.

(a) Determine P{X < 100} when X is Poisson
with mean 90.

(b) Determine P{Y < 1075} when Y is Pois-
son with mean 1000.

e [From the text diskette we obtain the solu-
tion
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(a) P{X < 100} ~ .1714;
(b) P{Y < 1075} ~ .9894.

4.9 Other discrete probability distri-
butions

4.9.1 The geometric random variable

Geometric distribution: G(p)
P{X=n}=(1 _p)n—lp n=12...

e Suppose that independent trials, each hav-
ing a probability p, 0 < p < 1, of being
a success, are performed until a success oc-
Ccurs.

e X ~ (G(p): Number of trials required.

Example 4.9a. An urn contains N white
and M black balls. Balls are randomly se-
lected, one at a time, until a block one is ob-
tained. If we assume that each selected ball is
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replaced before the next one is drawn, what is
the probability that

(a) exactly n draws are needed;

(b) at least k£ draws are needed?

e et X denote the number of draws needed

to select a black ball, p = MLJFN

n—1 n—1
) PLX = = ()" il =

(b)
M oo(N)

B M ( N )’“‘1/{1 N
M+ N
N k—1

Example 4.9b. Find the expected value of
a geometric random variable.
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°eq=1-p,
EX] = % ng" 'p

Example 4.9c. Find the variance of a geo-
metric random variable.
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d( q
Cil ( qE[X])
d—[ q(1—q)77]
2(1 —

p{ TR P)]

_ 21

D

e Since K| X|=1/p,
Var(X) = 1p_2p

4.9.2 The negative binomial random
variable

e Suppose that independent trials, each hav-
ing probability p, 0 < p < 1, of being a
success are performed until a total of r suc-
cesses 1s accumulated.

e X: Number of trials required, then
n—1

P{X:n}:(r_l

)pr(l—p)nr n=rr+l,...
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X 18 said to be a negative binomial random
variable with parameter (r, p).

e Y1: The number of trials required for the
first success.

e Y5: The number of additional trials after
the first success until the second success.

o X =Y+ Yy + -+ 4+ Y, where Y;’s are
independently and 1dentically distributed as
G(p).

Example 4.9d. If independent trials, each
resulting in a success with probability p, are
performed, what is the probability of r suc-
cesses occurring before m failures?

e The solution will be arrived at by noting
that r successes will occur before m failures
if and only if the rth successes occurs no
later than the r +m — 1 trial.
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e The desired probability is

r+m—1 r 7
i p(1-p)

n—1

r—1

Example 4.9e. The Banach match prob-
lem. A pipe-smoking mathematician carries,
at all times, 2 matchboxes, 1 in his left-hand
pocket and 1 in his right-hand pocket. Each
time he needs a match he is equally likely to
take it from either pocket. Consider the mo-
ment when the mathematician first discovers
that one of this matchboxes is empty. If it is
assumed that both matchboxes initially con-
tained /N matches, what is the probability that

there are exactly k matches in the other box,
k=0,1,...,N"

e [/: The event that the mathematician first
discovers that the right-hand matchbox is

empty and there are k& matches in the left-
hand box at the time.

. P(E) _ <2N]V_k> (%>2N—k—l—1
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e The desired result is

OP(E) = (QNN_ k] (;)QN_k

Example 4.9f. Compute the expected value
and the variance of a negative binomial random
variable with parameters r and p.

BXY = 5 ”k(n_l)pr(l—p)"r

where Y is a negative binomial random
variable with parameters r + 1, p.

ok=1 FX|=1

p
ok =2,
E[XY = "By — 1
p

_r(r+1 1)
p\ D
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r(r+1 2
Var(X) = ( - 1) - ()
p\ p p
_r(l—p)
p2

e If independent trials, each of which is a suc-
cess with probability p, are performed, then
the expected value and variance of the num-
ber of trials that it takes to amass r suc-

cesses is 7/p and (1 — p)/p.
e For G(p), r = 1.

Example 4.9g. Find the expected value and
the variance of the number of times one must
throw a die until the outcome 1 has occurred 4
times.

e X ~ NB(r,p)
er=4andp=

)

E[X] = 24

Oy
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4(5)
(6)7

4.9.3 The hypergeometric random vari-
able

Y Ot

Var(X) = =120

=

e Suppose that a sample of size n is to be cho-
sen randomly (without replacement) from
an urn containing /N balls, of which m are
white and N — m are block.

e Let X denote the number of white balls se-

lected, then
Ve
P{X=i}="""x"" i=0,1,....,n (9.4
(n)

e A random variable X, whose probability mass
function is given by Eq. (9.4) or some values
of n, N,m is said to be a hypergeometric
random variable.

Example 4.9h. An unknown number, say
N, of animals inhabit a certain region. To
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obtain some information about the population
size, ecologists often perform the following ex-
periment: They first catch a number, say m, of
these animals, mark them in some manner, and
release them. After allowing the marked ani-
mals time to disperse throughout the region, a
new catch of size, say n, is made. Let X denote
the number of marked animals in this second
capture. If we assume that the population of
animals in the region remained fixed between
the time of the two catches and that each time
an animal was caught it was equally likely to be
any of the remaining uncaught animals, it fol-
lows that is a hypergeometric random variable

such that
m) (N —m)

' n—iu

P{X:i}:(Z 5

e Suppose now that X is observed to equal 7.

e P;(N) represents the probability of the ob-
served event when there are actually N an-




Probability I- Chap. 4: Random Variables 59

1mals present in the region, it would appear
that a reasonable estimate of N would be
the value of N that maximizes P;(/N). Such
an estimate 1s called a maximum likelihood
estimate.

e The maximization of P;(/N) can most sim-
ply be done by first nothing that

PAN) _ (N—m)(N—n
P(N—-1) NN -—-—m-—n+1)

the above ratio is greater than 1 if and only

if

(N—m)(N—n)> NN —m—n-+1)

or, equivalently, if and only if

mn
N < —
i

e P;(N) is first increasing, and then decreas-
ing, and reaches its maximum value at the
largest integral value not exceeding mn /1.
This value 1s thus the maximum likelihood
estimate of V.
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e Suppose that the initial catch consists of
m = b0 animals of which are marked and
then released.

e If a subsequent catch consists of n = 40
animals of which ¢+ = 4 are marked, then
we would estimate that there are some 500
animals in the region.

Example 4.9i. A purchaser of electrical com-
ponents buys them in lots of size 10. It is his
policy to inspect 3 components randomly from
a lot and to accept the lot only if all 3 are
nondefective. If 30 percent of the lots have 4
defective components and 70 percent have only
1, what proportion of lots does the purchaser
reject?

e A: The event that the purchaser accepts a
lot.

e P(A) = P(Allot has 4 defeCtiVGS)%—l— P(A]
lot has 1 defective)l—%
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O
=y )+
H4

100

If n balls are randomly chosen without replace-
ment from a set of V balls, of which the frac-
tion p = m/N is white, then the number of
white balls selected is hypergeometric.

It would seem that when m and N are large
in relation to n, it shouldn’t make much differ-
ence whether the selection is being done with
or without replacement.

(MO () .
P{X =i} =120~ (,]pz(l —p)*t!
() /
when p = m/N and m and N are large in
relation to n and 2.

Example 4.9). Determine the expected value
and the variance of X, a hypergeometric ran-
dom variable with parameters n, NV, m.
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®
E[xF = ?:Osz{X = 4}
N —m) (N
= ¢k m/
1=1 7 n—1 n

oi(™) = m("7}Y) and n(Y) = NV

ot = 57 £ ()T )
- o (M) )
= SFEIY + D)

where Y is a hypergeometric random vari-
able with parametersn — 1, N —1,m — 1.

ok=1 EX]="%
ok =2,

E[X? :TE[YJA]
- nm[(n—1)(m—1)
N N—1 ¢
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e As F|X]|=nm/N we can conclude that
nm [(n—1)(m —1) nm
Var(X) = p
wX=N N-1 TN

e [f p = m/N denote the fraction of balls that
are white, then

N —n

Var(X) = N1

np(l —p)
Remark

e We shown in Example 4.9j that if n balls
are randomly selected without replacement
from a set of NV balls, of which the fraction
p are white, then the expected number of
white balls chosen 1s np.

e [f V is large in relation to n, then Var(X) =~
np(l —p).

4.9.4 The Zeta (or Zipf) distribution

e A random variable is said to have a zeta
(sometimes called the Zipf) distribution if
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its probability mass function is given by

C
P{X:k}:kaﬂ k=1,2,...
for some value of o > 0.
a+17—1
o (' = OZO l
k=1 \k

e The zeta distribution owes its name to the
fact that the function

) =1+ [ [ e [

1s known in mathematical disciplines as the
Riemann zeta function.

e The zeta distribution was used by the Ital-
1an economist Pareto to describe the distri-
bution of family incomes in a given country.

o It was G. K. Zipf who applied these distri-
butions in a wide variety of different areas
and popularized their use.

Summary
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e Random variable: A real-valued function
defined on the outcome of a probability ex-
periment.

e Distribution function:
F(x)=P{X <z}

All probabilities concerning X can be stated
in terms of F'.

e Probability mass function: Discrete random
variable

p(z) = P{X =z}

e Expected value:
E[X] =xzp(z)
e Variance:
Var(X) = E[(X—-E[X])’] = E[X"]—(E[X])’
e Standard deviation: |Var(X)
o B(n,p): p(i) = (})p'(1 —p)"~"’
EX]=np  Var(X) =np(l —p)
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o P(V): pli) = <
ElX]=X Var(X)= A\

FE[X]=np  Var(X) =

with p = m/N.
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