
Probability I{ Chap. 4: Random Variables 14.1 Introdu
tionIt is frequently the 
ase when an experimentis performed that we are mainly interested insome fun
tion of the out
ome as opposed to thea
tual out
ome itself.� In tossing di
e, we are often interested inthe sum of the two di
e and are not really
on
erned about the separate values of ea
hdie.�We may be interested in knowing that thesum is 7 and not be 
on
erned over whetherthe a
tual out
ome was (1; 6) or (2; 5) or(3; 4) or (4; 3) or (5; 2) or (6; 1).� In 
oin 
ipping, we may be interested inthe total number of heads that o

ur andnot 
are at all about the a
tual head-tailsequen
e that results.� These quantities of interest, or more for-mally, these real-valued fun
tions de�ned on
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e, are known as randomvariables.Example 4.1a. Suppose that our experi-ment 
onsists of tossing 3 fair 
oins. If we letY denote the number of heads appearing, thenY is a random variable taking on one of thevalues 0, 1, 2, 3 with respe
tive probabilities� P (Y = 0) = P (T; T; T ) = 18P (Y = 1) = Pf(T; T;H); (T;H; T ); (H;T; T )g= 38P (Y = 2) = Pf(T;H;H); (H;T;H); (H;H; T )g= 38� P (Y = 3) = P (H;H;H) = 18�We must have1 = P 0BB� 3[i=0fY = ig1CCA = 3Xi=0PfY = igExample 4.1b. Three balls are to be ran-domly sele
ted without repla
ement from an
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ontaining 20 balls numbered 1 through20. If we bet that at least one of the drawnballs has a number as large as or larger than17, what is the probability that we win the bet?�X : The largest number sele
ted.� PfX = ig = (i�12 )(203 ) i = 3; : : : ; 20� From above:PfX = 20g =  192 ! 203 ! = 320 = :150
PfX = 19g =  182 ! 203 ! = 51380 � :134
PfX = 18g =  172 ! 203 ! = 34285 � :119
PfX = 17g =  162 ! 203 ! = 219 � :105

� P (X � 17) � :105 + :119 + :134 + :150 =:508



Probability I{ Chap. 4: Random Variables 4Example 4.1
. Independent trials, 
onsist-ing of the 
ipping of a 
oin having probability pof 
oming up heads, are 
ontinually performeduntil either a head o

urs or a total of n 
ipsis made.�X : The number of times the 
oin is 
ipped.PfX = 1g = PfHg = pPfX = 2g = Pf(T;H)g = (1� p)pPfX = 3g = Pf(T; T;H)g = (1� p)2p...PfX = n� 1g = Pf(T; T; : : : ; T| {z }n�2 ; H)g= (1� p)n�2pPfX = ng = Pf(T; T; : : : ; T| {z }n�1 ; T ); (T; T; : : : ; T| {z }n�1 ; H)g= (1� p)n�1� As a 
he
k:P 0B� n[i=1fX = ig1CA = nXi=1PfX = ig= n�1Xi=1 p(1� p)i�1 + (1� p)n�1= p 26641� (1� p)n�11� (1� p) 3775 + (1� p)n�1= 1� (1� p)n�1 + (1� p)n�1= 1
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Example 4.1d. Three balls are randomly
hosen from an urn 
ontaining 3 white, 3 red,and 5 bla
k balls. Suppose that we win $1 forea
h white ball sele
ted and lose $1 for ea
hred sele
ted.�X : Total winnings from the experiment.� PfX = 0g = (53)+(31)(31)(51)(113 ) = 55165� PfX = 1g = PfX = �1g = (31)(52)+(32)(31)(113 ) =39165� PfX = 2g = PfX = �2g = (32)(51)(113 ) = 15165� PfX = 3g = PfX = �3g = (33)(113 ) = 1165� 3Xi=0PfX = ig + 3Xi=1PfX = �ig= 55 + 39 + 15 + 1 + 39 + 15 + 1165 = 1



Probability I{ Chap. 4: Random Variables 6� The probability that we win money is3Xi=1PfX = ig = 55165 = 13Example 4.1e. Suppose that there are Ndistin
t types of 
oupons and ea
h time oneobtains a 
oupon it is, independent of prior se-le
tions, equally likely to be any one of the Ntypes.� T : The number of 
oupons that needs to be
olle
ted until one obtains a 
omplete set ofat least one of ea
h type.� Aj: The event that no type j 
oupon is
ontained among the �rst n; j = 1; : : : ; N .PfT > ng = P 0B� N[j=1Aj1CA= Xj P (Aj)�XXj1<j2(Aj1Aj2) + � � �+(�1)k+1XXXj1<j2<���<jkP (Aj1Aj2 � � �Ajk) � � �+(�1)N+1P (A1A2 � � �AN)� P (Aj) = 0�N�1N 1An� P (Aj1Aj2) = 0�N�2N 1An



Probability I{ Chap. 4: Random Variables 7� P (Aj1Aj2 � � �Ajk) = 0�N�kN 1An�We see that for n > 0,PfT > ng = N 0�N � 1N 1An � 0B�N2 1CA 0�N � 2N 1An + 0B�N3 1CA 0�N � 3N 1An � � � �+(�1)N0B� NN � 11CA 0� 1N 1An= N�1Xi=1 0B�Ni 1CA 0�N � iN 1An (�1)i+1� PfT = ng = PfT > n� 1g � PfT > ng�Dn: The number of distin
t types of 
ouponsthat 
ontained in the �rst n sele
tions.� A: ea
h is one of these k types.� B: ea
h of these k types is represented.�We see that
P (A) = 0BBB� kN 1CCCAn

P (BjA) = 1� k�1Xi=1 0BBBB�ki 1CCCCA 0BBB�k � ik 1CCCAn (�1)i+1



Probability I{ Chap. 4: Random Variables 8� There are  Nk ! possible 
hoi
es for the set ofk types.PfDn = kg = 0B�Nk 1CAP (AB)= 0B�Nk 1CA 0� kN 1An 2641� k�1Xi=1 0B�ki1CA 0�k � ik 1An (�1)i+1375
Remark.� Sin
e one must 
olle
t at leastN 
oupons toobtain a 
ompete set, it follows that PfT >ng = 1 if n < N .� From Eq. (1.2):N�1Xi=1 0BBBB�Ni 1CCCCA 0BBB�N � iN 1CCCAn (�1)i+1 = 1
� N�1Xi=0 0BBBB�Ni 1CCCCA 0BBB�N � iN 1CCCAn (�1)i+1 = 0� Set j = N � i,NXj=1 0BBBB�Nj 1CCCCAjn(�1)j�1 = 0



Probability I{ Chap. 4: Random Variables 94.2 Distribution fun
tions� The 
umulative distribution fun
tion (
.d.f.)of the random variable X :F (b) = PfX � bg �1 < b <1� Some properties of the 
.d.f. F :1. F is a nonde
reasing fun
tion; that is, ifa < b, then F (a) � F (b).2. limb!1F (b) = 1.3. limb!�1F (b) = 0.4. F is right 
ontinuous. That is, for any band any de
reasing sequen
e bn, n � 1,that 
onverges to b, limn!1F (bn) = F (b).Example 4.2a. The distribution fun
tion



Probability I{ Chap. 4: Random Variables 10of the random variable X is given by
F (x) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0 x < 0x2 0 � x < 123 1 � x < 21112 2 � x < 31 3 � xA graph of F (x) is presented in Fig. 4.1.(a) PfX < 3g = limn P 8>>><>>>:X � 3� 1n9>>>=>>>;= limn F 0BBB�3� 1n1CCCA = 1112(b) PfX = 1g = PfX � 1g � PfX < 1g= F (1)� limn F 0BBB�1� 1n1CCCA= 23 � 12 = 16
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) P 8>>><>>>:X > 129>>>=>>>; = 1�P 8>>><>>>:X � 129>>>=>>>; = 1�F 0BBB�121CCCA =34(d) Pf2 < X � 4g = F (4)� F (2) = 1124.3 Dis
rete random variableFor a dis
rete random variable X , we de�nethe probability mass fun
tion p(a) of Xby p(a) = PfX = ag�X must assume one of the values x1; x2; : : :� p(xi) � 0 i = 1; 2; : : :� p(x) = 0 all other values of x� 1Xi=1 p(xi) = 1� If the probability mass fun
tion of X isp(0) = 14 p(1) = 12 p(2) = 14



Probability I{ Chap. 4: Random Variables 12we 
an represent this graphi
ally as shownin Fig. 4.2.� A graph of the probability mass fun
tion ofthe random variable representing the sumwhen two di
e are rolled looks like the oneshown in Fig. 4.3.Example 4.3a. The probability mass fun
-tion of a random variable X is given by p(i) =
�i=i!, i = 0; 1; 2; : : :, where � is some positivevalue. Find (a) PfX = 0g and (b) PfX > 2g.(a) Sin
e 1Xi=0 p(i) = 1, we have that

 1Xi=0 �ii! = 
e� = 1� 
 = e��� PfX = 0g = e���0=0! = e���X has a Poisson(�) distribution.(b) PfX > 2g = 1� PfX � 2g



Probability I{ Chap. 4: Random Variables 13= 1� PfX = 0g � PfX = 1g�PfX = 2g= 1� e�� � �e�� � �2e��2� The 
umulative distribution fun
tion F :F (a) = Xx�a p(x)� If X is a dis
rete random variable whosepossible values are x1; x2; x3; : : :, where x1 <x2 < x3 < � � �, then its distribution fun
-tion is a step fun
tion.� If the probability mass fun
tion of X isp(1) = 14 p(2) = 12 p(3) = 18 p(4) = 18then its 
umulative distribution fun
tion is
F (a) =

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
0 a < 114 1 � a < 234 2 � a < 378 3 � a < 41 4 � a



Probability I{ Chap. 4: Random Variables 144.4 Expe
ted valueExpe
ted value:E[X ℄ = Xx:p(x)>0xp(x)E[X ℄ = nXi=1xip(xi)
� The expe
ted value of X is a weighted av-erage of the possible values that X 
an takeon, ea
h value being weighted by the prob-ability that X assumes it.� If p(0) = p(1) = 12, then E[X ℄ = 0(12) +1(12) = 12.� If p(0) = 13; p(1) = 23, then E[X ℄ = 0(13) +1(23) = 23.� If an in�nite sequen
e of independent repli-
ations of an experiment is performed, thenfor any event, the proportion of time that Eo

urs will be P (E).� Consider a random variable that must take



Probability I{ Chap. 4: Random Variables 15on one of the values X � 1; x2; : : : ; xn withrespe
tive probabilities p(x1); p(x2); : : : ; p(xn);and think ofX as representing our winningsin a single game of 
han
e.� Now by the frequen
y interpretation, it fol-lows that if we 
ontinually play this game,then the proportion of time that we win xiwill be p(xi).� The average winnings per game will benXi=1xip(xi) = E[X ℄
Example 4.4a. Find E[X ℄ where X is theout
ome when we roll a fair die.� p(i) = 16; i = 1; 2; : : : ; 6.� E[X ℄ = 1(16) + 2(16) + 3(16) + 4(16) + 5(16) +6(16) = 72.Example 4.4b. We say that I is an indi
a-tor variable for the event A if
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I = 8>>>><>>>>: 1 if A o

urs0 if A
 o

ursFind E[I ℄.� p(1) = P (A); p(0) = 1� P (A).�We have that E[I ℄ = P (A).Example 4.4
. A 
ontestant on a quiz showis presented with two questions, questions 1and 2, whi
h he is to attempt to answer insome order 
hosen by him. If he de
ides totry question i, then he will be allowed to goon to question j, j 6= i only if his answer toi is 
orre
t. If his initial answer is in
orre
t,he is not allowed to answer the other question.The 
ontestant is to re
eive Vi dollars if he an-swers question i 
orre
tly, i = 1; 2. Thus, forinstan
e, he will re
eive V1+V2 dollars if bothquestions are 
orre
tly answered. If the proba-bility that he knows the answer to question i isPi, i = 1; 2, whi
h question should he attempt
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ted winnings?Assume that the events Ei, i = 1; 2, that heknows the answer to question i, are indepen-dent events.� If he attempts question 1 �rst, then he willwin0 with probability 1� P1V1 with probability P1(1� P2)V1 + V2 with probability P1P2� His expe
ted winnings in this 
ase will beV1P1(1� P2) + (V1 + V2)P1P2� If he attempts question 2 �rst, his expe
tedwinnings will beV2P2(1� P1) + (V1 + V2)P1P2� It is better to try question 1 �rst ifV1P1(1� P2) � V2P2(1� P1)equivalently, if V1P11� P1 � V2P21� P2.



Probability I{ Chap. 4: Random Variables 18� If he is 60 per
ent 
ertain of answering ques-tion 1, worth $200, 
orre
tly and he is 80per
ent 
ertain of answering question 2, worth$100, 
orre
tly, then he should attempt ques-tion 2 �rst be
ause400 = (100)(:8):2 > (200)(:6):4 = 300Example 4.4d. A s
hool 
lass of 120 stu-dents are driven in 3 buses to a symphoni
 per-forman
e. There are 36 students in one of thebuses, 40 in another, and 44 in the third bus.When the buses arrive, one of the 120 studentsis randomly 
hosen. Let X denote the numberof students on the bus of that randomly 
hosenstudent, and �nd E[X ℄.� PfX = 36g = 36120� PfX = 40g = 40120� PfX = 44g = 44120� E[X ℄ = 36( 310) + 40(13) + 44(1130) = 120830 =40:2667



Probability I{ Chap. 4: Random Variables 19� The average number of students on a bus is120=3 = 40.� The more students there are on a bus, thenmore likely a randomly 
hosen student wouldhave been on that bus.� Buses with many students are given moreweight than those with fewer students.The 
on
ept of expe
tation is analogous to thephysi
al 
on
ept of the 
enter of gravity of adistribution of mass (Fig. 4.5).4.5 Expe
tation of a fun
tion of a ran-dom variable
E[g(X)℄Example 4.5a. LetX denote a random vari-able that takes on any of the values �1; 0; 1with respe
tive probabilitiesPfX = �1g = :2 PfX = 0g = :5



Probability I{ Chap. 4: Random Variables 20PfX = 1g = :3Compute E[X2℄.� Letting Y = X2.� PfY = 1g = PfX = �1g + PfX = 1g =:5� PfY = 0g = PfX = 0g = :5� E[X2℄ = E[Y ℄ = 1(:5) + 0(:5) = :5Proposition 5.1: IfX is a dis
rete randomvariable that takes on one of the values xi,i � 1, with respe
tive probabilities p(xi), thenfor any real-valued fun
tion gE[g(X)℄ = Xi g(xi)p(xi)Example 4.5b. A produ
t, sold seasonally,yields a net pro�t of b dollars for ea
h unit soldand a net loss of ` dollars for ea
h unit leftunsold when the season ends. The number ofunits of the produ
t that are ordered at a spe-
i�
 department store during any season is a



Probability I{ Chap. 4: Random Variables 21random variable having probability mass fun
-tion p(i), i � 0. If the store must sto
k thisprodu
t in advan
e, determine the number ofunits the store should sto
k so as to maximizeits expe
ted pro�t.�X : The number of units ordered.� If s units are sto
ked, then the pro�tP (s) = 8>>>><>>>>: bX � (s�X)` if X � ssb if X > s� The expe
ted pro�t equalsE[P (s)℄ = sXi=0[bi� (s� i)`℄p(i) + 1Xi=s+1 sbp(i)= (b + `) sXi=0 ip(i)� s` sXi=0 p(i) + sb 241� sXi=0 p(i)35= (b + `) sXi=0 ip(i)� (b + `)s sXi=0 p(i) + sb= sb + (b + `) sXi=0(i� s)p(i)� To determine the optimal value of sE[P (s + 1)℄ = b(s + 1) + (b + `) s+1Xi=0(i� s� 1)p(i)= b(s + 1) + (b + `) sXi=0(i� s� 1)p(i)



Probability I{ Chap. 4: Random Variables 22� E[P (s+1)℄�E[P (s)℄ = b� (b+ `) sXi=0 p(i)� Sto
king s + 1 units will be better thansto
king s units wheneversXi=0 p(i) < bb + `� Sto
king s�+1 items will lead to a maximumexpe
ted pro�t where s� is the largest valueof s satisfying the above inequality.E[P (0)℄ < � � � < E[P (s�)℄ < E[P (s�+1)℄ > E[P (s�+2)℄ > � � �
Corollary 5.1: If a and b 
onstants, thenE[aX + b℄ = aE[X ℄ + bMean: The weighted average of the possiblevalues of X .E[X ℄ = Xx:p(x)>0xp(x)nth moment:E[Xn℄ = Xx:p(x)>0xnp(x)
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eW = 0 with probability 1Y = 8>>>><>>>>:�1 with probability 12+1 with probability 12Z = 8>>>><>>>>:�100 with probability 12+100 with probability 12
� All have the same expe
tation, 0.� There is mu
h greater spread in possiblevalue of Y than in those of W and in thepossible values of Z than in those of Y .� A reasonable way of measuring the possi-ble variation of X would be to look at howfar apart X would be from its mean on theaverage.� CandidateE[jX��j℄ is in
onvenient to dealwith.



Probability I{ Chap. 4: Random Variables 24De�nition: If X is a random variable withmean �, then the varian
e of X , denoted byVar(X), is de�ned byVar(X) = E[(X � �)2℄ = E[X2℄� �2Example 4.6a. Cal
ulate Var(X) ifX rep-resents the out
ome when a fair die is rolled.� Shown in Example 4.4a that E[X ℄ = 72.� E[X2℄ = 12 0�161A + 22 0�161A + 32 0�161A + 42 0�161A + 52 0�161A + 62 0�161A= 0�161A (91)
� Var(X) = 916 � 0�721A2 = 3512Proposition: For any 
onstants a and b,Var(aX + b) = a2Var(X)In the terminology of me
hani
s, the varian
evarian
e represents the moment of inertia.



Probability I{ Chap. 4: Random Variables 25Standard deviationSD(X) = sVar(X)4.7 The Bernoulli and Binomial ran-dom variablesBernoulli random variable:p(0) = P (X = 0) = 1� pp(1) = P (X = 1) = p
Binomial random variable:p(i) = P (X = i) = 0BBBB�ni 1CCCCApi(1�p)n�i i = 0; 1; : : : ; n
Example 4.7a. Five fair 
oins are 
ipped.If the out
omes are assumed independent, �ndthe probability mass fun
tion of the number ofheads obtained.� LetX equal the number of heads (su

esses)that appear, then X is a binomial randomvariable with parameters (n = 5; p = 12).
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� PfX = 0g = 0BBBB�501CCCCA 0BBB�121CCCA0 0BBB�121CCCA5 = 132PfX = 1g = 0BBBB�511CCCCA 0BBB�121CCCA1 0BBB�121CCCA4 = 532PfX = 2g = 0BBBB�521CCCCA 0BBB�121CCCA2 0BBB�121CCCA3 = 1032PfX = 3g = 0BBBB�531CCCCA 0BBB�121CCCA3 0BBB�121CCCA2 = 1032PfX = 4g = 0BBBB�541CCCCA 0BBB�121CCCA4 0BBB�121CCCA1 = 532PfX = 5g = 0BBBB�551CCCCA 0BBB�121CCCA5 0BBB�121CCCA0 = 132Example 4.7b. It is known that s
rews pro-du
ed by a 
ertain 
ompany will be defe
tivewith probability .01 independently of ea
h other.The 
ompany sells the s
rews in pa
kages of10 and o�ers a money-ba
k guarantee that atmost 1 of the 10 s
rews is defe
tive. Whatproportion of pa
kage sold must the 
ompanyrepla
e?
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tive s
rews in apa
kage� Then X is a binomial random variable withparameters (10, .01).� The probability that a pa
kage will have tobe repla
ed is1� PfX = 0g � PfX = 1g= 1�  100 !(:01)0(:99)10 �  101 !(:01)1(:99)9� :004Example 4.7
. The following gambling game,known as the wheel of fortune (or 
hu
k-a-lu
k),is quite popular at many 
arnivals and gam-bling 
asinos: A player bets on one of the num-bers 1 through 6. Three di
e are then rolled,and if the number bet by the player appears itimes, i = 1; 2; 3, then the player wins i units;on the other hand, if the number bet by theplayer does not appear on any of the di
e, thenthe player loses 1 unit. Is this game fair tothe player? (A
tually, the game is played by



Probability I{ Chap. 4: Random Variables 28spinning a wheel that 
omes to rest on a slotlabeled by three of the numbers 1 through 6,but it is mathemati
ally equivalent to the di
eversion.)� Assume that the di
e are fair and a
t inde-pendently of ea
h other, then the numberof times that the number bet appears is abinomial random variable with parameters(3, 16).�X : The player's winnings in the game, wehavePfX = �1g = 0BBBB�301CCCCA 0BBB�161CCCA0 0BBB�561CCCA3 = 125216PfX = 1g = 0BBBB�311CCCCA 0BBB�161CCCA1 0BBB�561CCCA2 = 75216PfX = 2g = 0BBBB�321CCCCA 0BBB�161CCCA2 0BBB�561CCCA1 = 15216PfX = 3g = 0BBBB�331CCCCA 0BBB�161CCCA3 0BBB�561CCCA0 = 1216



Probability I{ Chap. 4: Random Variables 29� E[X ℄ = �125+75+30+3216 = �17216In the next example we 
onsider the simplestform of the theory of inheritan
e as developedby G. Mendel (1822-1884).Example 4.7d. Suppose that a parti
ulartrait (su
h as eye 
olor or left handedness) ofa person is 
lassi�ed on the basis of one pairof genes and suppose that d represents a dom-inant gene and r a re
essive gene. Thus a per-son with dd genes is pure dominant, one withrr is pure re
essive, and one with rd is hybrid.The pure dominant and the hybrid are alike inappearan
e. Children re
eive 1 gene from ea
hparent. If, with respe
t to a parti
ular trait, 2hybrid parents have a total of 4 
hildren, whatis the probability that 3 of the 4 
hildren havethe outward appearan
e of the dominant gene?� Assume that ea
h 
hild is equally likely toinherit either of 2 genes from ea
h parent,the probabilities that the 
hild of 2 hybrid



Probability I{ Chap. 4: Random Variables 30parents will have dd; rr; or rd pairs of genesare, respe
tively, 1=4; 1=4; 1=2:� An o�spring will have the outward appear-an
e of the dominant gene if its gene pair iseither dd or rd.� The number of su
h 
hildren is B(4; 3=4).� The desired probability is0BBBB�431CCCCA 0BBB�341CCCA3 0BBB�141CCCA1 = 2764Example 4.7e. Consider a jury trial in whi
hit takes 8 of the 12 jurors to 
onvi
t; that is,in order for the defendant to be 
onvi
ted, atleast 8 of the jurors must vote him guilty. Ifwe assume that jurors a
t independently andea
h makes the right de
ision with probability�, what is the probability that the jury rendersa 
orre
t de
ision?� If he is guilty, the probability of a 
orre
t
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ision is 12Xi=8 0BBBB�12i 1CCCCA�i(1� �)12�i� If the defendant is inno
ent, the probabilityof the jury's rendering a 
orre
t de
ision is12Xi=5 0BBBB�12i 1CCCCA�i(1� �)12�i� If � represents the probability that the de-fendant is guilty, then, by 
onditioning onwhether or not he is guilty, we obtain thatthe probability that the jury renders a 
or-re
t de
ision is� 12Xi=8 0BBBB�12i 1CCCCA�i(1��)12�i+(1��) 12Xi=5 0BBBB�12i 1CCCCA�i(1��)12�i
Example 4.7f. A 
ommuni
ation system 
on-sists of n 
omponents, ea
h of whi
h will, in-dependently, fun
tion with probability p. Thetotal system will be able to operate e�e
tivelyif at least one-half of its 
omponents fun
tion.
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omponent sys-tem more likely to operate e�e
tively thana 3-
omponent system?(b) In general, when is a (2k + 1)-
omponentsystem better than a (2k � 1)-
omponentsystem?(a) � As the number of fun
tioning 
omponentsis a binomial random variable with pa-rameters (n; p).� The probability that a 5-
omponent sys-tem will be e�e
tive is0BBBB�531CCCCAp3(1� p)2 + 0BBBB�541CCCCAp4(1� p) + p5� The 
orresponding probability for a 3-
omponent system is0BBBB�321CCCCAp2(1� p) + p3� The 5-
omponent system is better if10p3(1�p)2+5p4(1�p)+p5 > 3p2(1�p)+p3
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h redu
es to3(p� 1)2(2p� 1) > 0or p > 12(b) � In general, a system with 2k + 1 
ompo-nents will be better than one with 2k� 1
omponents if and only if p > 1=2:�X : The number of the �rst 2k � 1 thatfun
tion.� P2k+1(e�e
tive)= PfX � k+1g+PfX = kg(1� (1�p)2) + PfX = k � 1gp2whi
h follows sin
e the (2k+1)-
omponentsystem will be e�e
tive if either(i)X � k + 1;(ii)X = k and at least one of the remain-ing 2 
omponents fun
tion; or(iii)X = k � 1 and both of the next 2fun
tions.
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tive) = PfX � kg= PfX = kg + PfX � k + 1gP2k+1(e�e
tive)� P2k�1(e�e
tive)= PfX = k�1gp2�(1�p)2PfX = kg=  2k�1k�1 !pk�1(1�p)kp2�(1�p)2 2k�1k !pk(1�p)k�1=  2k�1k !pk(1 � p)k[p � (1 � p)℄ sin
e 2k�1k�1 ! =  2k�1k !> 0 , p > 124.7.1 Properties of binomial randomvariable� E[Xk℄ = nXi=0 ik0B�ni1CApi(1� p)n�i= nXi=1 ik0B�ni1CApi(1� p)n�ii0B�ni1CA = n0B�n� 1i� 11CA= np nXi=1 ik�10B�n� 1i� 11CApi�1(1� p)n�i= np n�1Xj=0(j + 1)k�10B�n� 1j 1CApj(1� p)n�1�j



Probability I{ Chap. 4: Random Variables 35= npE[(Y + 1)k�1℄where Y is a binomial random variable withparameters (n� 1; p).� k = 1, E[X ℄ = np� k = 2, E[X2℄ = npE[Y + 1℄= np[(n� 1)p + 1℄� Var(X) = E[X2℄� (E[X ℄)2= np[(n� 1)p + 1℄� (np)2= np(1� p)Proposition: If X is a binomial randomvariable with parameters n and p, thenE[X ℄ = npVar(X) = np(1� p)



Probability I{ Chap. 4: Random Variables 36Proposition 7.1: If X is a binomial ran-dom variable with parameters (n; p), where0 < p < 1, then as k goes from 0 ton, PfX = kg �rst in
reases monotoni
allyand then de
reases monotoni
ally, rea
hing itslargest value when k is the largest integer lessthan or equal to (n + 1)p.Example 4.7g.� In a U.S. presidential ele
tion the 
andidatewho gains the maximum number of votes ina state is awarded the total number of ele
-toral 
ollege votes allo
ated to that state.� The number of ele
toral 
ollege votes of agiven state is roughly proportional to thepopulation of that state { that us, a state ofpopulation size n has roughly n
 ele
toralvotes.� Let us determine the average power in a
lose presidential ele
tion of a 
itizen in astate of size n, where by average power in
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lose ele
tion, we mean the following:� A vote in a state of size n = 2k + 1 willbe de
isive if the other n � 1 voters splittheir votes split their votes evenly betweenthe two 
andidates.� P fvoter in state of size 2k + 1 makes adi�eren
e g=  2kk !(12)k(12)k = (2k)!k!k!22k�Make use of Stirling's approximation, whi
hsays that for k large,k! � kk+1=2e�kp2�where we say that ak � bk when the ratioak=bk approa
hes 1 as k approa
hes1.� P fvoter in state of size 2k + 1 makes adi�eren
e g� (2k)2k+1=2e�2kp2�k2k+1e�2k(2�)22k = 1pk�.� Average power = n
Pfmakes a di�eren
eg� n
pn�=2= 
s2n=�.



Probability I{ Chap. 4: Random Variables 384.7.2 Computing the binomial distri-bution fun
tion� Suppose that X is B(n; p).� The key to 
omputing its distribution fun
-tion PfX � ig = iXk=0 0BBBB�nk1CCCCApk(1� p)n�k i = 0; 1; : : : ; n
PfX = k + 1g = p1� pn� kk + 1PfX = kg

Example 4.7h.�X � B(6; :4).PfX = 0g = (:6)6 � :0467PfX = 1g = 4661PfX = 0g � :1866PfX = 2g = 4652PfX = 1g � :3110PfX = 3g = 4643PfX = 2g � :2765PfX = 4g = 4634PfX = 3g � :1382



Probability I{ Chap. 4: Random Variables 39PfX = 5g = 4625PfX = 4g � :0369PfX = 6g = 4616PfX = 5g � :0041
Example 4.7i. If X is a B(100; :75), �ndPfX = 70g and PfX � 70g.� PfX = 70g � :04575381� PfX � 70g � :149541054.8 The Poisson random variablePoisson probability distribution:p(i) = PfX = ig = e���ii! i = 0; 1; 2; : : :
� The Poisson random variable has a tremen-dous range of appli
ations in diverse areasbe
ause it may be used as an approximationfor a B(n; p) when n is large and p is smallenough so that np is a moderate size.



Probability I{ Chap. 4: Random Variables 40� If X is B(n; p) and let � = np. ThenPfX = ig = n!(n� i)!i!pi(1� p)n�i= n!(n� i)!i!(�n)i(1� �n)n�i= n(n� 1) � � � (n� i+ 1)ni �ii! (1� �=n)n(1� �=n)i� For n large and � moderate,0BBB�1� �n1CCCAn � e��n(n� 1) � � � (n� i + 1)ni � 10BBB�1� �n1CCCAi � 1
PfX = ig � e���ii!Examples of Poisson random variable:1. The number of misprints on a page (or agroup of pages) of a book.2. The number of people in a 
ommunity livingto 100 years of age.



Probability I{ Chap. 4: Random Variables 413. The number of wrong telephone numbersthat are dialed in a day.4. The number of pa
kages of dog bis
uits soldin a parti
ular store ea
h day.5. The number of 
ustomers entering a postoÆ
e on a given day.6. The number of va
an
ies o

urring during ayear in the Supreme Court.7. The number of �-parti
les dis
harged in a�xed period of time from some radioa
tivematerial.Example 4.8a. Suppose that the numberof typographi
al errors on a single page of thisbook has a Poison distribution with parameter� = 12. Cal
ulate the probability that there isat least one error on this page.�X : Denote the number of errors on thispage.



Probability I{ Chap. 4: Random Variables 42� PfX � 1g = 1�PfX = 0g = 1�e�1=2 �:393Example 4.8b. Suppose that the probabil-ity that an item produ
ed by a 
ertain ma
hinewill be defe
tive is .1. Find the probability thata sample of 10 items will 
ontain at most 1 de-fe
tive item.� The desired probability is0BBBB�100 1CCCCA(:1)0(:9)10 + 0BBBB�101 1CCCCA(:1)1(:9)9 = :7361� The Poisson approximation yields the valuee�1 + e�1 � :7358.Example 4.8
. Consider an experiment that
onsists of 
ounting the number of �-parti
lesgiven o� in a 1-se
ond interval by 1 gram of ra-dioa
tive material. If we know from past expe-rien
e that, on the average, 3.2 su
h �-parti
lesare given o�, what is a good approximation to



Probability I{ Chap. 4: Random Variables 43the probability that no more than 2 �-parti
leswill appear?�X � Poisson(3:2)� The desired probability isPfX � 2g = e�3:2 + 3:2e�3:2 + (3:2)22 e�3:2� :3799Before 
omputing the expe
ted value and vari-an
e of the Poisson random variable with pa-rameter �, re
all that this random variable ap-proximates aB(n; p) when n is large, p is small,and � = np.� np = �� np(1� p) � �Re
ursive relation for moments:E[Xk℄ = �E[(X + 1)k�1℄



Probability I{ Chap. 4: Random Variables 44Mean: E[X ℄ = 1Xi=0 ie���ii!= � 1Xi=1 e���i�1(i� 1)!= �e�� 1Xj=0 �jj!= �Se
ond moment:E[X2℄ = 1Xi=0 i2e���ii!= � 1Xi=1 ie���i�1(i� 1)!= � 1Xj=0 (j + 1)e���jj!= �[ 1Xj=0 je���jj! + 1Xj=0 e���jj! ℄= �(� + 1)
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e: Var(X) = E[X2℄�(E[X ℄)2 = �Proposition: The expe
ted value and vari-an
e of a Poisson random variable are bothequal to its parameter �.Another use of the Poisson probability distri-bution arises in situations where \events" o

urat 
ertain points in time.A Poisson random variable is usually a goodapproximation for diverse phenomena:1. The number of earthquakes during some �xedtime span.2. The number of people enters a parti
ularestablishment (bank, post oÆ
e, gas station,and so on).3. The number of wars per year.4. The number of ele
trons emitted from a heated
athode during a �xed time period.5. The number of deaths in a given period of
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yholders of a life insuran
e
ompany.Assume that for some positive 
onstant � thefollowing assumptions hold true:1. The probability that exa
tly 1 event o

ursin a given interval of length h is equal to�h + o(h), where o(h) stands for any fun
-tion f (h) that is su
h that limh!0 f (h)=h =0.2. The probability that 2 or more events o

urin an interval of length h is equal to o(h).3. For any integers n; j1; j2; : : : ; jn, and anyset of n nonoverlapping intervals, if we de-�ne Ei to be the event that exa
tly ji of theevents under 
onsideration o

ur in the ithof these intervals, then eventsE1; E2; : : : ; Enare independent.N (t) � P (�): The number of events o

urs in(0; t℄.



Probability I{ Chap. 4: Random Variables 47Example 4.8d. Suppose that earthquakeso

ur in the western portion of the United Statesin a

ordan
e with assumptions 1, 2, and 3with � = 2 and with 1 week as the unit of time.(That is, earthquakes o

ur in a

ordan
e withthe three assumptions at a rate of 2 per week.)(a) Find the probability that at least 3 earth-quakes o

ur during the next 2 weeks.(b) Find the probability distribution of the time,staring from now, until the next earthquake.(a) PfN(2) � 3g = 1� PfN(2) = 0g � PfN(2) = 1g�PfN(2) = 2g= 1� e�4 + 4e�4 � 422 e�4= 1� 13e�4(b) {X : Denote the amount of time (in weeks)until the next earthquake.{ PfX > tg = PfN (t) = 0g = e��t{ F (t) = PfX � tg = 1 � PfX > tg =1� e��t = 1� e2t



Probability I{ Chap. 4: Random Variables 484.8.1 Computing the Poisson distribu-tion fun
tion�X is Poisson with parameter �,PfX = i + 1gPfX = ig = e���i+1=(i + 1)!e���i=i! = �i + 1PfX = 0g = e��PfX = 1g = �PfX = 0gPfX = 2g = �2PfX = 1g...PfX = i + 1g = �i + 1PfX = igExample 4.8e.(a) Determine PfX � 100g whenX is Poissonwith mean 90.(b) Determine PfY � 1075g when Y is Pois-son with mean 1000.� From the text diskette we obtain the solu-tion



Probability I{ Chap. 4: Random Variables 49(a) PfX � 100g � :1714;(b) PfY � 1075g � :9894.4.9 Other dis
rete probability distri-butions4.9.1 The geometri
 random variableGeometri
 distribution: G(p)PfX = ng = (1� p)n�1p n = 1; 2; : : :
� Suppose that independent trials, ea
h hav-ing a probability p, 0 < p < 1, of beinga su

ess, are performed until a su

ess o
-
urs.�X � G(p): Number of trials required.Example 4.9a. An urn 
ontains N whiteand M bla
k balls. Balls are randomly se-le
ted, one at a time, until a blo
k one is ob-tained. If we assume that ea
h sele
ted ball is
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ed before the next one is drawn, what isthe probability that(a) exa
tly n draws are needed;(b) at least k draws are needed?� Let X denote the number of draws neededto sele
t a bla
k ball, p = MM+N .(a) PfX = ng = 0� NM+N 1An�1 MM+N = MNn�1(M+N)n(b) PfX � kg = MM +N 1Xn=k 0B� NM +N 1CAn�1= 0B� MM +N 1CA 0B� NM +N 1CAk�1 = 2641� NM +N 375= 0B� NM +N 1CAk�1= (1� p)k�1
Example 4.9b. Find the expe
ted value ofa geometri
 random variable.



Probability I{ Chap. 4: Random Variables 51� q = 1� p,E[X ℄ = 1Xn=1nqn�1p= p 1Xn=0 ddq(qn)= p ddq 0BB� 1Xn=0 qn1CCA= p ddq 0BBB� 11� q1CCCA= p(1� q)2= 1pExample 4.9
. Find the varian
e of a geo-metri
 random variable.� E[X2℄ = 1Xn=1n2qn�1p= p 1Xn=1 ddq(nqn)= p ddq 0BB� 1Xn=1nqn1CCA



Probability I{ Chap. 4: Random Variables 52= p ddq 0BBB� q1� qE[X ℄1CCCA= p ddq [q(1� q)�2℄
= p 26664 1p2 + 2(1� p)p3 37775= 2p2 � 1p� Sin
e E[X ℄ = 1=p,Var(X) = 1� pp24.9.2 The negative binomial randomvariable� Suppose that independent trials, ea
h hav-ing probability p, 0 < p < 1, of being asu

ess are performed until a total of r su
-
esses is a

umulated.�X : Number of trials required, thenPfX = ng = 0BBBB�n� 1r � 11CCCCApr(1�p)n�r n = r; r+1; : : :



Probability I{ Chap. 4: Random Variables 53X is said to be a negative binomial randomvariable with parameter (r; p).� Y1: The number of trials required for the�rst su

ess.� Y2: The number of additional trials afterthe �rst su

ess until the se
ond su

ess.�X = Y1 + Y2 + � � � + Yr where Yi's areindependently and identi
ally distributed asG(p).Example 4.9d. If independent trials, ea
hresulting in a su

ess with probability p, areperformed, what is the probability of r su
-
esses o

urring before m failures?� The solution will be arrived at by notingthat r su

esses will o

ur before m failuresif and only if the rth su

esses o

urs nolater than the r +m� 1 trial.



Probability I{ Chap. 4: Random Variables 54� The desired probability isr+m�1Xn=r 0BBBB�n� 1r � 11CCCCApr(1� p)n�r
Example 4.9e. The Bana
h mat
h prob-lem. A pipe-smoking mathemati
ian 
arries,at all times, 2 mat
hboxes, 1 in his left-handpo
ket and 1 in his right-hand po
ket. Ea
htime he needs a mat
h he is equally likely totake it from either po
ket. Consider the mo-ment when the mathemati
ian �rst dis
oversthat one of this mat
hboxes is empty. If it isassumed that both mat
hboxes initially 
on-tained N mat
hes, what is the probability thatthere are exa
tly k mat
hes in the other box,k = 0; 1; : : : ; N?� E: The event that the mathemati
ian �rstdis
overs that the right-hand mat
hbox isempty and there are k mat
hes in the left-hand box at the time.� P (E) =  2N�kN ! 0�121A2N�k+1



Probability I{ Chap. 4: Random Variables 55� The desired result is2P (E) = 0BBBB�2N � kN 1CCCCA 0BBB�121CCCA2N�kExample 4.9f. Compute the expe
ted valueand the varian
e of a negative binomial randomvariable with parameters r and p.� E[Xk℄ = 1Xn=r nk0B�n� 1r � 11CApr(1� p)n�r= rp 1Xn=r nk�10B�nr1CApr+1(1� p)n�r= rp 1Xm=r+1(m� 1)k�10B�m� 1r 1CApr+1(1� p)m�(r+1)= rpE[(Y � 1)k�1℄where Y is a negative binomial randomvariable with parameters r + 1, p.� k = 1, E[X ℄ = rp� k = 2, E[X2℄ = rpE[Y � 1℄= rp 0BBB�r + 1p � 11CCCA



Probability I{ Chap. 4: Random Variables 56� Var(X) = rp 0BBB�r + 1p � 11CCCA� 0BBB�rp1CCCA2= r(1� p)p2� If independent trials, ea
h of whi
h is a su
-
ess with probability p, are performed, thenthe expe
ted value and varian
e of the num-ber of trials that it takes to amass r su
-
esses is r=p and r(1� p)=p2.� For G(p), r = 1.Example 4.9g. Find the expe
ted value andthe varian
e of the number of times one mustthrow a die until the out
ome 1 has o

urred 4times.�X � NB(r; p)� r = 4 and p = 16,E[X ℄ = 24
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Var(X) = 4(56)(16)2 = 120

4.9.3 The hypergeometri
 random vari-able� Suppose that a sample of size n is to be 
ho-sen randomly (without repla
ement) froman urn 
ontaining N balls, of whi
h m arewhite and N �m are blo
k.� Let X denote the number of white balls se-le
ted, thenPfX = ig =  mi ! N�mn�i ! Nn ! i = 0; 1; : : : ; n (9:4)
� A random variableX , whose probability massfun
tion is given by Eq. (9.4) or some valuesof n;N;m is said to be a hypergeometri
random variable.Example 4.9h. An unknown number, sayN , of animals inhabit a 
ertain region. To
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ologists often perform the following ex-periment: They �rst 
at
h a number, saym, ofthese animals, mark them in some manner, andrelease them. After allowing the marked ani-mals time to disperse throughout the region, anew 
at
h of size, say n, is made. LetX denotethe number of marked animals in this se
ond
apture. If we assume that the population ofanimals in the region remained �xed betweenthe time of the two 
at
hes and that ea
h timean animal was 
aught it was equally likely to beany of the remaining un
aught animals, it fol-lows that is a hypergeometri
 random variablesu
h thatPfX = ig =  mi ! N�mn�i ! Nn ! � Pi(N )
� Suppose now that X is observed to equal i.� Pi(N ) represents the probability of the ob-served event when there are a
tually N an-



Probability I{ Chap. 4: Random Variables 59imals present in the region, it would appearthat a reasonable estimate of N would bethe value of N that maximizes Pi(N ). Su
han estimate is 
alled a maximum likelihoodestimate.� The maximization of Pi(N ) 
an most sim-ply be done by �rst nothing thatPi(N )Pi(N � 1) = (N �m)(N � n)N (N �m� n + i)the above ratio is greater than 1 if and onlyif(N �m)(N � n) � N (N �m� n + i)or, equivalently, if and only ifN � mni� Pi(N ) is �rst in
reasing, and then de
reas-ing, and rea
hes its maximum value at thelargest integral value not ex
eeding mn=i.This value is thus the maximum likelihoodestimate of N .
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at
h 
onsists ofm = 50 animals of whi
h are marked andthen released.� If a subsequent 
at
h 
onsists of n = 40animals of whi
h i = 4 are marked, thenwe would estimate that there are some 500animals in the region.Example 4.9i. A pur
haser of ele
tri
al 
om-ponents buys them in lots of size 10. It is hispoli
y to inspe
t 3 
omponents randomly froma lot and to a

ept the lot only if all 3 arenondefe
tive. If 30 per
ent of the lots have 4defe
tive 
omponents and 70 per
ent have only1, what proportion of lots does the pur
haserreje
t?� A: The event that the pur
haser a

epts alot.� P (A) = P (Ajlot has 4 defe
tives) 310+P (Ajlot has 1 defe
tive) 710



Probability I{ Chap. 4: Random Variables 61= (40)(63)(103 ) ( 310) + (10)(93)(103 ) ( 710)= 54100If n balls are randomly 
hosen without repla
e-ment from a set of N balls, of whi
h the fra
-tion p = m=N is white, then the number ofwhite balls sele
ted is hypergeometri
.It would seem that when m and N are largein relation to n, it shouldn't make mu
h di�er-en
e whether the sele
tion is being done withor without repla
ement.
PfX = ig =  mi ! N�mn�i ! Nn ! � 0BBBB�ni 1CCCCApi(1� p)n�iwhen p = m=N and m and N are large inrelation to n and i.Example 4.9j. Determine the expe
ted valueand the varian
e of X , a hypergeometri
 ran-dom variable with parameters n;N;m.



Probability I{ Chap. 4: Random Variables 62� E[Xk℄ = nXi=0 ikPfX = ig= nXi=1 ik0BBBB�mi 1CCCCA0BBBB�N �mn� i 1CCCCA=0BBBB�Nn 1CCCCA
� i mi ! = m m�1i�1 ! and n Nn ! = N  N�1n�1 !� E[Xk℄ = nmN nXi=1 ik�10B�m� 1i� 1 1CA0B�N �mn� i 1CA=0B�N � 1n� 1 1CA= nmN n�1Xj=0(j + 1)k�10B�m� 1j 1CA0B� N �mn� 1� j1CA=0B�N � 1n� 1 1CA= nmN E[(Y + 1)k�1℄where Y is a hypergeometri
 random vari-able with parameters n� 1; N � 1;m� 1.� k = 1, E[X ℄ = nmN� k = 2,E[X2℄ = nmN E[Y + 1℄= nmN 26664(n� 1)(m� 1)N � 1 + 137775
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an 
on
lude thatVar(X) = nmN 26664(n� 1)(m� 1)N � 1 + 1� nmN 37775� If p = m=N denote the fra
tion of balls thatare white, thenVar(X) = N � nN � 1np(1� p)
Remark�We shown in Example 4.9j that if n ballsare randomly sele
ted without repla
ementfrom a set of N balls, of whi
h the fra
tionp are white, then the expe
ted number ofwhite balls 
hosen is np.� IfN is large in relation to n, then Var(X) �np(1� p).4.9.4 The Zeta (or Zipf) distribution� A random variable is said to have a zeta(sometimes 
alled the Zipf) distribution if
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tion is given byPfX = kg = Ck�+1 k = 1; 2; : : :for some value of � > 0.� C = 266664 1Xk=1 0BBB�1k1CCCA�+1377775�1
� The zeta distribution owes its name to thefa
t that the fun
tion�(s) = 1 + 0BBB�121CCCAs + 0BBB�131CCCAs + � � � + 0BBB�1k1CCCAs + � � �is known in mathemati
al dis
iplines as theRiemann zeta fun
tion.� The zeta distribution was used by the Ital-ian e
onomist Pareto to des
ribe the distri-bution of family in
omes in a given 
ountry.� It was G. K. Zipf who applied these distri-butions in a wide variety of di�erent areasand popularized their use.Summary



Probability I{ Chap. 4: Random Variables 65� Random variable: A real-valued fun
tionde�ned on the out
ome of a probability ex-periment.� Distribution fun
tion:F (x) = PfX � xgAll probabilities 
on
erningX 
an be statedin terms of F .� Probability mass fun
tion: Dis
rete randomvariable p(x) = PfX = xg� Expe
ted value:E[X ℄ = X xp(x)� Varian
e:Var(X) = E[(X�E[X ℄)2℄ = E[X2℄�(E[X ℄)2� Standard deviation: sVar(X)� B(n; p): p(i) =  ni !pi(1� p)n�iE[X ℄ = np Var(X) = np(1� p)



Probability I{ Chap. 4: Random Variables 66� P (�): p(i) = e���ii!E[X ℄ = � Var(X) = �� G(p): p(i) = p(1� p)i�1
E[X ℄ = 1p Var(X) = 1� pp2� NB(r; p): p(i) =  i�1r�1!pr(1� p)i�rE[X ℄ = rp Var(X) = r(1� p)p2�HG(n;N;m): p(i) = (mi )(N�mn�i )(Nn)E[X ℄ = np Var(X) = N � nN � 1np(1� p)with p = m=N .


