
Probability I{ Chap. 4: Random Variables 14.1 IntrodutionIt is frequently the ase when an experimentis performed that we are mainly interested insome funtion of the outome as opposed to theatual outome itself.� In tossing die, we are often interested inthe sum of the two die and are not reallyonerned about the separate values of eahdie.�We may be interested in knowing that thesum is 7 and not be onerned over whetherthe atual outome was (1; 6) or (2; 5) or(3; 4) or (4; 3) or (5; 2) or (6; 1).� In oin ipping, we may be interested inthe total number of heads that our andnot are at all about the atual head-tailsequene that results.� These quantities of interest, or more for-mally, these real-valued funtions de�ned on



Probability I{ Chap. 4: Random Variables 2the sample spae, are known as randomvariables.Example 4.1a. Suppose that our experi-ment onsists of tossing 3 fair oins. If we letY denote the number of heads appearing, thenY is a random variable taking on one of thevalues 0, 1, 2, 3 with respetive probabilities� P (Y = 0) = P (T; T; T ) = 18P (Y = 1) = Pf(T; T;H); (T;H; T ); (H;T; T )g= 38P (Y = 2) = Pf(T;H;H); (H;T;H); (H;H; T )g= 38� P (Y = 3) = P (H;H;H) = 18�We must have1 = P 0BB� 3[i=0fY = ig1CCA = 3Xi=0PfY = igExample 4.1b. Three balls are to be ran-domly seleted without replaement from an



Probability I{ Chap. 4: Random Variables 3urn ontaining 20 balls numbered 1 through20. If we bet that at least one of the drawnballs has a number as large as or larger than17, what is the probability that we win the bet?�X : The largest number seleted.� PfX = ig = (i�12 )(203 ) i = 3; : : : ; 20� From above:PfX = 20g =  192 ! 203 ! = 320 = :150
PfX = 19g =  182 ! 203 ! = 51380 � :134
PfX = 18g =  172 ! 203 ! = 34285 � :119
PfX = 17g =  162 ! 203 ! = 219 � :105

� P (X � 17) � :105 + :119 + :134 + :150 =:508



Probability I{ Chap. 4: Random Variables 4Example 4.1. Independent trials, onsist-ing of the ipping of a oin having probability pof oming up heads, are ontinually performeduntil either a head ours or a total of n ipsis made.�X : The number of times the oin is ipped.PfX = 1g = PfHg = pPfX = 2g = Pf(T;H)g = (1� p)pPfX = 3g = Pf(T; T;H)g = (1� p)2p...PfX = n� 1g = Pf(T; T; : : : ; T| {z }n�2 ; H)g= (1� p)n�2pPfX = ng = Pf(T; T; : : : ; T| {z }n�1 ; T ); (T; T; : : : ; T| {z }n�1 ; H)g= (1� p)n�1� As a hek:P 0B� n[i=1fX = ig1CA = nXi=1PfX = ig= n�1Xi=1 p(1� p)i�1 + (1� p)n�1= p 26641� (1� p)n�11� (1� p) 3775 + (1� p)n�1= 1� (1� p)n�1 + (1� p)n�1= 1



Probability I{ Chap. 4: Random Variables 5
Example 4.1d. Three balls are randomlyhosen from an urn ontaining 3 white, 3 red,and 5 blak balls. Suppose that we win $1 foreah white ball seleted and lose $1 for eahred seleted.�X : Total winnings from the experiment.� PfX = 0g = (53)+(31)(31)(51)(113 ) = 55165� PfX = 1g = PfX = �1g = (31)(52)+(32)(31)(113 ) =39165� PfX = 2g = PfX = �2g = (32)(51)(113 ) = 15165� PfX = 3g = PfX = �3g = (33)(113 ) = 1165� 3Xi=0PfX = ig + 3Xi=1PfX = �ig= 55 + 39 + 15 + 1 + 39 + 15 + 1165 = 1



Probability I{ Chap. 4: Random Variables 6� The probability that we win money is3Xi=1PfX = ig = 55165 = 13Example 4.1e. Suppose that there are Ndistint types of oupons and eah time oneobtains a oupon it is, independent of prior se-letions, equally likely to be any one of the Ntypes.� T : The number of oupons that needs to beolleted until one obtains a omplete set ofat least one of eah type.� Aj: The event that no type j oupon isontained among the �rst n; j = 1; : : : ; N .PfT > ng = P 0B� N[j=1Aj1CA= Xj P (Aj)�XXj1<j2(Aj1Aj2) + � � �+(�1)k+1XXXj1<j2<���<jkP (Aj1Aj2 � � �Ajk) � � �+(�1)N+1P (A1A2 � � �AN)� P (Aj) = 0�N�1N 1An� P (Aj1Aj2) = 0�N�2N 1An



Probability I{ Chap. 4: Random Variables 7� P (Aj1Aj2 � � �Ajk) = 0�N�kN 1An�We see that for n > 0,PfT > ng = N 0�N � 1N 1An � 0B�N2 1CA 0�N � 2N 1An + 0B�N3 1CA 0�N � 3N 1An � � � �+(�1)N0B� NN � 11CA 0� 1N 1An= N�1Xi=1 0B�Ni 1CA 0�N � iN 1An (�1)i+1� PfT = ng = PfT > n� 1g � PfT > ng�Dn: The number of distint types of ouponsthat ontained in the �rst n seletions.� A: eah is one of these k types.� B: eah of these k types is represented.�We see that
P (A) = 0BBB� kN 1CCCAn

P (BjA) = 1� k�1Xi=1 0BBBB�ki 1CCCCA 0BBB�k � ik 1CCCAn (�1)i+1



Probability I{ Chap. 4: Random Variables 8� There are  Nk ! possible hoies for the set ofk types.PfDn = kg = 0B�Nk 1CAP (AB)= 0B�Nk 1CA 0� kN 1An 2641� k�1Xi=1 0B�ki1CA 0�k � ik 1An (�1)i+1375
Remark.� Sine one must ollet at leastN oupons toobtain a ompete set, it follows that PfT >ng = 1 if n < N .� From Eq. (1.2):N�1Xi=1 0BBBB�Ni 1CCCCA 0BBB�N � iN 1CCCAn (�1)i+1 = 1
� N�1Xi=0 0BBBB�Ni 1CCCCA 0BBB�N � iN 1CCCAn (�1)i+1 = 0� Set j = N � i,NXj=1 0BBBB�Nj 1CCCCAjn(�1)j�1 = 0



Probability I{ Chap. 4: Random Variables 94.2 Distribution funtions� The umulative distribution funtion (.d.f.)of the random variable X :F (b) = PfX � bg �1 < b <1� Some properties of the .d.f. F :1. F is a nondereasing funtion; that is, ifa < b, then F (a) � F (b).2. limb!1F (b) = 1.3. limb!�1F (b) = 0.4. F is right ontinuous. That is, for any band any dereasing sequene bn, n � 1,that onverges to b, limn!1F (bn) = F (b).Example 4.2a. The distribution funtion



Probability I{ Chap. 4: Random Variables 10of the random variable X is given by
F (x) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0 x < 0x2 0 � x < 123 1 � x < 21112 2 � x < 31 3 � xA graph of F (x) is presented in Fig. 4.1.(a) PfX < 3g = limn P 8>>><>>>:X � 3� 1n9>>>=>>>;= limn F 0BBB�3� 1n1CCCA = 1112(b) PfX = 1g = PfX � 1g � PfX < 1g= F (1)� limn F 0BBB�1� 1n1CCCA= 23 � 12 = 16



Probability I{ Chap. 4: Random Variables 11() P 8>>><>>>:X > 129>>>=>>>; = 1�P 8>>><>>>:X � 129>>>=>>>; = 1�F 0BBB�121CCCA =34(d) Pf2 < X � 4g = F (4)� F (2) = 1124.3 Disrete random variableFor a disrete random variable X , we de�nethe probability mass funtion p(a) of Xby p(a) = PfX = ag�X must assume one of the values x1; x2; : : :� p(xi) � 0 i = 1; 2; : : :� p(x) = 0 all other values of x� 1Xi=1 p(xi) = 1� If the probability mass funtion of X isp(0) = 14 p(1) = 12 p(2) = 14



Probability I{ Chap. 4: Random Variables 12we an represent this graphially as shownin Fig. 4.2.� A graph of the probability mass funtion ofthe random variable representing the sumwhen two die are rolled looks like the oneshown in Fig. 4.3.Example 4.3a. The probability mass fun-tion of a random variable X is given by p(i) =�i=i!, i = 0; 1; 2; : : :, where � is some positivevalue. Find (a) PfX = 0g and (b) PfX > 2g.(a) Sine 1Xi=0 p(i) = 1, we have that
 1Xi=0 �ii! = e� = 1�  = e��� PfX = 0g = e���0=0! = e���X has a Poisson(�) distribution.(b) PfX > 2g = 1� PfX � 2g



Probability I{ Chap. 4: Random Variables 13= 1� PfX = 0g � PfX = 1g�PfX = 2g= 1� e�� � �e�� � �2e��2� The umulative distribution funtion F :F (a) = Xx�a p(x)� If X is a disrete random variable whosepossible values are x1; x2; x3; : : :, where x1 <x2 < x3 < � � �, then its distribution fun-tion is a step funtion.� If the probability mass funtion of X isp(1) = 14 p(2) = 12 p(3) = 18 p(4) = 18then its umulative distribution funtion is
F (a) =

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
0 a < 114 1 � a < 234 2 � a < 378 3 � a < 41 4 � a



Probability I{ Chap. 4: Random Variables 144.4 Expeted valueExpeted value:E[X ℄ = Xx:p(x)>0xp(x)E[X ℄ = nXi=1xip(xi)
� The expeted value of X is a weighted av-erage of the possible values that X an takeon, eah value being weighted by the prob-ability that X assumes it.� If p(0) = p(1) = 12, then E[X ℄ = 0(12) +1(12) = 12.� If p(0) = 13; p(1) = 23, then E[X ℄ = 0(13) +1(23) = 23.� If an in�nite sequene of independent repli-ations of an experiment is performed, thenfor any event, the proportion of time that Eours will be P (E).� Consider a random variable that must take



Probability I{ Chap. 4: Random Variables 15on one of the values X � 1; x2; : : : ; xn withrespetive probabilities p(x1); p(x2); : : : ; p(xn);and think ofX as representing our winningsin a single game of hane.� Now by the frequeny interpretation, it fol-lows that if we ontinually play this game,then the proportion of time that we win xiwill be p(xi).� The average winnings per game will benXi=1xip(xi) = E[X ℄
Example 4.4a. Find E[X ℄ where X is theoutome when we roll a fair die.� p(i) = 16; i = 1; 2; : : : ; 6.� E[X ℄ = 1(16) + 2(16) + 3(16) + 4(16) + 5(16) +6(16) = 72.Example 4.4b. We say that I is an india-tor variable for the event A if



Probability I{ Chap. 4: Random Variables 16
I = 8>>>><>>>>: 1 if A ours0 if A oursFind E[I ℄.� p(1) = P (A); p(0) = 1� P (A).�We have that E[I ℄ = P (A).Example 4.4. A ontestant on a quiz showis presented with two questions, questions 1and 2, whih he is to attempt to answer insome order hosen by him. If he deides totry question i, then he will be allowed to goon to question j, j 6= i only if his answer toi is orret. If his initial answer is inorret,he is not allowed to answer the other question.The ontestant is to reeive Vi dollars if he an-swers question i orretly, i = 1; 2. Thus, forinstane, he will reeive V1+V2 dollars if bothquestions are orretly answered. If the proba-bility that he knows the answer to question i isPi, i = 1; 2, whih question should he attempt



Probability I{ Chap. 4: Random Variables 17�rst so as to maximize his expeted winnings?Assume that the events Ei, i = 1; 2, that heknows the answer to question i, are indepen-dent events.� If he attempts question 1 �rst, then he willwin0 with probability 1� P1V1 with probability P1(1� P2)V1 + V2 with probability P1P2� His expeted winnings in this ase will beV1P1(1� P2) + (V1 + V2)P1P2� If he attempts question 2 �rst, his expetedwinnings will beV2P2(1� P1) + (V1 + V2)P1P2� It is better to try question 1 �rst ifV1P1(1� P2) � V2P2(1� P1)equivalently, if V1P11� P1 � V2P21� P2.



Probability I{ Chap. 4: Random Variables 18� If he is 60 perent ertain of answering ques-tion 1, worth $200, orretly and he is 80perent ertain of answering question 2, worth$100, orretly, then he should attempt ques-tion 2 �rst beause400 = (100)(:8):2 > (200)(:6):4 = 300Example 4.4d. A shool lass of 120 stu-dents are driven in 3 buses to a symphoni per-formane. There are 36 students in one of thebuses, 40 in another, and 44 in the third bus.When the buses arrive, one of the 120 studentsis randomly hosen. Let X denote the numberof students on the bus of that randomly hosenstudent, and �nd E[X ℄.� PfX = 36g = 36120� PfX = 40g = 40120� PfX = 44g = 44120� E[X ℄ = 36( 310) + 40(13) + 44(1130) = 120830 =40:2667



Probability I{ Chap. 4: Random Variables 19� The average number of students on a bus is120=3 = 40.� The more students there are on a bus, thenmore likely a randomly hosen student wouldhave been on that bus.� Buses with many students are given moreweight than those with fewer students.The onept of expetation is analogous to thephysial onept of the enter of gravity of adistribution of mass (Fig. 4.5).4.5 Expetation of a funtion of a ran-dom variable
E[g(X)℄Example 4.5a. LetX denote a random vari-able that takes on any of the values �1; 0; 1with respetive probabilitiesPfX = �1g = :2 PfX = 0g = :5



Probability I{ Chap. 4: Random Variables 20PfX = 1g = :3Compute E[X2℄.� Letting Y = X2.� PfY = 1g = PfX = �1g + PfX = 1g =:5� PfY = 0g = PfX = 0g = :5� E[X2℄ = E[Y ℄ = 1(:5) + 0(:5) = :5Proposition 5.1: IfX is a disrete randomvariable that takes on one of the values xi,i � 1, with respetive probabilities p(xi), thenfor any real-valued funtion gE[g(X)℄ = Xi g(xi)p(xi)Example 4.5b. A produt, sold seasonally,yields a net pro�t of b dollars for eah unit soldand a net loss of ` dollars for eah unit leftunsold when the season ends. The number ofunits of the produt that are ordered at a spe-i� department store during any season is a



Probability I{ Chap. 4: Random Variables 21random variable having probability mass fun-tion p(i), i � 0. If the store must stok thisprodut in advane, determine the number ofunits the store should stok so as to maximizeits expeted pro�t.�X : The number of units ordered.� If s units are stoked, then the pro�tP (s) = 8>>>><>>>>: bX � (s�X)` if X � ssb if X > s� The expeted pro�t equalsE[P (s)℄ = sXi=0[bi� (s� i)`℄p(i) + 1Xi=s+1 sbp(i)= (b + `) sXi=0 ip(i)� s` sXi=0 p(i) + sb 241� sXi=0 p(i)35= (b + `) sXi=0 ip(i)� (b + `)s sXi=0 p(i) + sb= sb + (b + `) sXi=0(i� s)p(i)� To determine the optimal value of sE[P (s + 1)℄ = b(s + 1) + (b + `) s+1Xi=0(i� s� 1)p(i)= b(s + 1) + (b + `) sXi=0(i� s� 1)p(i)



Probability I{ Chap. 4: Random Variables 22� E[P (s+1)℄�E[P (s)℄ = b� (b+ `) sXi=0 p(i)� Stoking s + 1 units will be better thanstoking s units wheneversXi=0 p(i) < bb + `� Stoking s�+1 items will lead to a maximumexpeted pro�t where s� is the largest valueof s satisfying the above inequality.E[P (0)℄ < � � � < E[P (s�)℄ < E[P (s�+1)℄ > E[P (s�+2)℄ > � � �
Corollary 5.1: If a and b onstants, thenE[aX + b℄ = aE[X ℄ + bMean: The weighted average of the possiblevalues of X .E[X ℄ = Xx:p(x)>0xp(x)nth moment:E[Xn℄ = Xx:p(x)>0xnp(x)



Probability I{ Chap. 4: Random Variables 234.6 VarianeW = 0 with probability 1Y = 8>>>><>>>>:�1 with probability 12+1 with probability 12Z = 8>>>><>>>>:�100 with probability 12+100 with probability 12
� All have the same expetation, 0.� There is muh greater spread in possiblevalue of Y than in those of W and in thepossible values of Z than in those of Y .� A reasonable way of measuring the possi-ble variation of X would be to look at howfar apart X would be from its mean on theaverage.� CandidateE[jX��j℄ is inonvenient to dealwith.



Probability I{ Chap. 4: Random Variables 24De�nition: If X is a random variable withmean �, then the variane of X , denoted byVar(X), is de�ned byVar(X) = E[(X � �)2℄ = E[X2℄� �2Example 4.6a. Calulate Var(X) ifX rep-resents the outome when a fair die is rolled.� Shown in Example 4.4a that E[X ℄ = 72.� E[X2℄ = 12 0�161A + 22 0�161A + 32 0�161A + 42 0�161A + 52 0�161A + 62 0�161A= 0�161A (91)
� Var(X) = 916 � 0�721A2 = 3512Proposition: For any onstants a and b,Var(aX + b) = a2Var(X)In the terminology of mehanis, the varianevariane represents the moment of inertia.



Probability I{ Chap. 4: Random Variables 25Standard deviationSD(X) = sVar(X)4.7 The Bernoulli and Binomial ran-dom variablesBernoulli random variable:p(0) = P (X = 0) = 1� pp(1) = P (X = 1) = p
Binomial random variable:p(i) = P (X = i) = 0BBBB�ni 1CCCCApi(1�p)n�i i = 0; 1; : : : ; n
Example 4.7a. Five fair oins are ipped.If the outomes are assumed independent, �ndthe probability mass funtion of the number ofheads obtained.� LetX equal the number of heads (suesses)that appear, then X is a binomial randomvariable with parameters (n = 5; p = 12).



Probability I{ Chap. 4: Random Variables 26
� PfX = 0g = 0BBBB�501CCCCA 0BBB�121CCCA0 0BBB�121CCCA5 = 132PfX = 1g = 0BBBB�511CCCCA 0BBB�121CCCA1 0BBB�121CCCA4 = 532PfX = 2g = 0BBBB�521CCCCA 0BBB�121CCCA2 0BBB�121CCCA3 = 1032PfX = 3g = 0BBBB�531CCCCA 0BBB�121CCCA3 0BBB�121CCCA2 = 1032PfX = 4g = 0BBBB�541CCCCA 0BBB�121CCCA4 0BBB�121CCCA1 = 532PfX = 5g = 0BBBB�551CCCCA 0BBB�121CCCA5 0BBB�121CCCA0 = 132Example 4.7b. It is known that srews pro-dued by a ertain ompany will be defetivewith probability .01 independently of eah other.The ompany sells the srews in pakages of10 and o�ers a money-bak guarantee that atmost 1 of the 10 srews is defetive. Whatproportion of pakage sold must the ompanyreplae?



Probability I{ Chap. 4: Random Variables 27�X : The number of defetive srews in apakage� Then X is a binomial random variable withparameters (10, .01).� The probability that a pakage will have tobe replaed is1� PfX = 0g � PfX = 1g= 1�  100 !(:01)0(:99)10 �  101 !(:01)1(:99)9� :004Example 4.7. The following gambling game,known as the wheel of fortune (or huk-a-luk),is quite popular at many arnivals and gam-bling asinos: A player bets on one of the num-bers 1 through 6. Three die are then rolled,and if the number bet by the player appears itimes, i = 1; 2; 3, then the player wins i units;on the other hand, if the number bet by theplayer does not appear on any of the die, thenthe player loses 1 unit. Is this game fair tothe player? (Atually, the game is played by



Probability I{ Chap. 4: Random Variables 28spinning a wheel that omes to rest on a slotlabeled by three of the numbers 1 through 6,but it is mathematially equivalent to the dieversion.)� Assume that the die are fair and at inde-pendently of eah other, then the numberof times that the number bet appears is abinomial random variable with parameters(3, 16).�X : The player's winnings in the game, wehavePfX = �1g = 0BBBB�301CCCCA 0BBB�161CCCA0 0BBB�561CCCA3 = 125216PfX = 1g = 0BBBB�311CCCCA 0BBB�161CCCA1 0BBB�561CCCA2 = 75216PfX = 2g = 0BBBB�321CCCCA 0BBB�161CCCA2 0BBB�561CCCA1 = 15216PfX = 3g = 0BBBB�331CCCCA 0BBB�161CCCA3 0BBB�561CCCA0 = 1216



Probability I{ Chap. 4: Random Variables 29� E[X ℄ = �125+75+30+3216 = �17216In the next example we onsider the simplestform of the theory of inheritane as developedby G. Mendel (1822-1884).Example 4.7d. Suppose that a partiulartrait (suh as eye olor or left handedness) ofa person is lassi�ed on the basis of one pairof genes and suppose that d represents a dom-inant gene and r a reessive gene. Thus a per-son with dd genes is pure dominant, one withrr is pure reessive, and one with rd is hybrid.The pure dominant and the hybrid are alike inappearane. Children reeive 1 gene from eahparent. If, with respet to a partiular trait, 2hybrid parents have a total of 4 hildren, whatis the probability that 3 of the 4 hildren havethe outward appearane of the dominant gene?� Assume that eah hild is equally likely toinherit either of 2 genes from eah parent,the probabilities that the hild of 2 hybrid



Probability I{ Chap. 4: Random Variables 30parents will have dd; rr; or rd pairs of genesare, respetively, 1=4; 1=4; 1=2:� An o�spring will have the outward appear-ane of the dominant gene if its gene pair iseither dd or rd.� The number of suh hildren is B(4; 3=4).� The desired probability is0BBBB�431CCCCA 0BBB�341CCCA3 0BBB�141CCCA1 = 2764Example 4.7e. Consider a jury trial in whihit takes 8 of the 12 jurors to onvit; that is,in order for the defendant to be onvited, atleast 8 of the jurors must vote him guilty. Ifwe assume that jurors at independently andeah makes the right deision with probability�, what is the probability that the jury rendersa orret deision?� If he is guilty, the probability of a orret



Probability I{ Chap. 4: Random Variables 31deision is 12Xi=8 0BBBB�12i 1CCCCA�i(1� �)12�i� If the defendant is innoent, the probabilityof the jury's rendering a orret deision is12Xi=5 0BBBB�12i 1CCCCA�i(1� �)12�i� If � represents the probability that the de-fendant is guilty, then, by onditioning onwhether or not he is guilty, we obtain thatthe probability that the jury renders a or-ret deision is� 12Xi=8 0BBBB�12i 1CCCCA�i(1��)12�i+(1��) 12Xi=5 0BBBB�12i 1CCCCA�i(1��)12�i
Example 4.7f. A ommuniation system on-sists of n omponents, eah of whih will, in-dependently, funtion with probability p. Thetotal system will be able to operate e�etivelyif at least one-half of its omponents funtion.



Probability I{ Chap. 4: Random Variables 32(a) For what values of p is a 5-omponent sys-tem more likely to operate e�etively thana 3-omponent system?(b) In general, when is a (2k + 1)-omponentsystem better than a (2k � 1)-omponentsystem?(a) � As the number of funtioning omponentsis a binomial random variable with pa-rameters (n; p).� The probability that a 5-omponent sys-tem will be e�etive is0BBBB�531CCCCAp3(1� p)2 + 0BBBB�541CCCCAp4(1� p) + p5� The orresponding probability for a 3-omponent system is0BBBB�321CCCCAp2(1� p) + p3� The 5-omponent system is better if10p3(1�p)2+5p4(1�p)+p5 > 3p2(1�p)+p3



Probability I{ Chap. 4: Random Variables 33whih redues to3(p� 1)2(2p� 1) > 0or p > 12(b) � In general, a system with 2k + 1 ompo-nents will be better than one with 2k� 1omponents if and only if p > 1=2:�X : The number of the �rst 2k � 1 thatfuntion.� P2k+1(e�etive)= PfX � k+1g+PfX = kg(1� (1�p)2) + PfX = k � 1gp2whih follows sine the (2k+1)-omponentsystem will be e�etive if either(i)X � k + 1;(ii)X = k and at least one of the remain-ing 2 omponents funtion; or(iii)X = k � 1 and both of the next 2funtions.



Probability I{ Chap. 4: Random Variables 34P2k�1(e�etive) = PfX � kg= PfX = kg + PfX � k + 1gP2k+1(e�etive)� P2k�1(e�etive)= PfX = k�1gp2�(1�p)2PfX = kg=  2k�1k�1 !pk�1(1�p)kp2�(1�p)2 2k�1k !pk(1�p)k�1=  2k�1k !pk(1 � p)k[p � (1 � p)℄ sine 2k�1k�1 ! =  2k�1k !> 0 , p > 124.7.1 Properties of binomial randomvariable� E[Xk℄ = nXi=0 ik0B�ni1CApi(1� p)n�i= nXi=1 ik0B�ni1CApi(1� p)n�ii0B�ni1CA = n0B�n� 1i� 11CA= np nXi=1 ik�10B�n� 1i� 11CApi�1(1� p)n�i= np n�1Xj=0(j + 1)k�10B�n� 1j 1CApj(1� p)n�1�j



Probability I{ Chap. 4: Random Variables 35= npE[(Y + 1)k�1℄where Y is a binomial random variable withparameters (n� 1; p).� k = 1, E[X ℄ = np� k = 2, E[X2℄ = npE[Y + 1℄= np[(n� 1)p + 1℄� Var(X) = E[X2℄� (E[X ℄)2= np[(n� 1)p + 1℄� (np)2= np(1� p)Proposition: If X is a binomial randomvariable with parameters n and p, thenE[X ℄ = npVar(X) = np(1� p)



Probability I{ Chap. 4: Random Variables 36Proposition 7.1: If X is a binomial ran-dom variable with parameters (n; p), where0 < p < 1, then as k goes from 0 ton, PfX = kg �rst inreases monotoniallyand then dereases monotonially, reahing itslargest value when k is the largest integer lessthan or equal to (n + 1)p.Example 4.7g.� In a U.S. presidential eletion the andidatewho gains the maximum number of votes ina state is awarded the total number of ele-toral ollege votes alloated to that state.� The number of eletoral ollege votes of agiven state is roughly proportional to thepopulation of that state { that us, a state ofpopulation size n has roughly n eletoralvotes.� Let us determine the average power in alose presidential eletion of a itizen in astate of size n, where by average power in



Probability I{ Chap. 4: Random Variables 37a lose eletion, we mean the following:� A vote in a state of size n = 2k + 1 willbe deisive if the other n � 1 voters splittheir votes split their votes evenly betweenthe two andidates.� P fvoter in state of size 2k + 1 makes adi�erene g=  2kk !(12)k(12)k = (2k)!k!k!22k�Make use of Stirling's approximation, whihsays that for k large,k! � kk+1=2e�kp2�where we say that ak � bk when the ratioak=bk approahes 1 as k approahes1.� P fvoter in state of size 2k + 1 makes adi�erene g� (2k)2k+1=2e�2kp2�k2k+1e�2k(2�)22k = 1pk�.� Average power = nPfmakes a di�ereneg� npn�=2= s2n=�.



Probability I{ Chap. 4: Random Variables 384.7.2 Computing the binomial distri-bution funtion� Suppose that X is B(n; p).� The key to omputing its distribution fun-tion PfX � ig = iXk=0 0BBBB�nk1CCCCApk(1� p)n�k i = 0; 1; : : : ; n
PfX = k + 1g = p1� pn� kk + 1PfX = kg

Example 4.7h.�X � B(6; :4).PfX = 0g = (:6)6 � :0467PfX = 1g = 4661PfX = 0g � :1866PfX = 2g = 4652PfX = 1g � :3110PfX = 3g = 4643PfX = 2g � :2765PfX = 4g = 4634PfX = 3g � :1382



Probability I{ Chap. 4: Random Variables 39PfX = 5g = 4625PfX = 4g � :0369PfX = 6g = 4616PfX = 5g � :0041
Example 4.7i. If X is a B(100; :75), �ndPfX = 70g and PfX � 70g.� PfX = 70g � :04575381� PfX � 70g � :149541054.8 The Poisson random variablePoisson probability distribution:p(i) = PfX = ig = e���ii! i = 0; 1; 2; : : :
� The Poisson random variable has a tremen-dous range of appliations in diverse areasbeause it may be used as an approximationfor a B(n; p) when n is large and p is smallenough so that np is a moderate size.



Probability I{ Chap. 4: Random Variables 40� If X is B(n; p) and let � = np. ThenPfX = ig = n!(n� i)!i!pi(1� p)n�i= n!(n� i)!i!(�n)i(1� �n)n�i= n(n� 1) � � � (n� i+ 1)ni �ii! (1� �=n)n(1� �=n)i� For n large and � moderate,0BBB�1� �n1CCCAn � e��n(n� 1) � � � (n� i + 1)ni � 10BBB�1� �n1CCCAi � 1
PfX = ig � e���ii!Examples of Poisson random variable:1. The number of misprints on a page (or agroup of pages) of a book.2. The number of people in a ommunity livingto 100 years of age.



Probability I{ Chap. 4: Random Variables 413. The number of wrong telephone numbersthat are dialed in a day.4. The number of pakages of dog bisuits soldin a partiular store eah day.5. The number of ustomers entering a postoÆe on a given day.6. The number of vaanies ourring during ayear in the Supreme Court.7. The number of �-partiles disharged in a�xed period of time from some radioativematerial.Example 4.8a. Suppose that the numberof typographial errors on a single page of thisbook has a Poison distribution with parameter� = 12. Calulate the probability that there isat least one error on this page.�X : Denote the number of errors on thispage.



Probability I{ Chap. 4: Random Variables 42� PfX � 1g = 1�PfX = 0g = 1�e�1=2 �:393Example 4.8b. Suppose that the probabil-ity that an item produed by a ertain mahinewill be defetive is .1. Find the probability thata sample of 10 items will ontain at most 1 de-fetive item.� The desired probability is0BBBB�100 1CCCCA(:1)0(:9)10 + 0BBBB�101 1CCCCA(:1)1(:9)9 = :7361� The Poisson approximation yields the valuee�1 + e�1 � :7358.Example 4.8. Consider an experiment thatonsists of ounting the number of �-partilesgiven o� in a 1-seond interval by 1 gram of ra-dioative material. If we know from past expe-riene that, on the average, 3.2 suh �-partilesare given o�, what is a good approximation to



Probability I{ Chap. 4: Random Variables 43the probability that no more than 2 �-partileswill appear?�X � Poisson(3:2)� The desired probability isPfX � 2g = e�3:2 + 3:2e�3:2 + (3:2)22 e�3:2� :3799Before omputing the expeted value and vari-ane of the Poisson random variable with pa-rameter �, reall that this random variable ap-proximates aB(n; p) when n is large, p is small,and � = np.� np = �� np(1� p) � �Reursive relation for moments:E[Xk℄ = �E[(X + 1)k�1℄



Probability I{ Chap. 4: Random Variables 44Mean: E[X ℄ = 1Xi=0 ie���ii!= � 1Xi=1 e���i�1(i� 1)!= �e�� 1Xj=0 �jj!= �Seond moment:E[X2℄ = 1Xi=0 i2e���ii!= � 1Xi=1 ie���i�1(i� 1)!= � 1Xj=0 (j + 1)e���jj!= �[ 1Xj=0 je���jj! + 1Xj=0 e���jj! ℄= �(� + 1)



Probability I{ Chap. 4: Random Variables 45Variane: Var(X) = E[X2℄�(E[X ℄)2 = �Proposition: The expeted value and vari-ane of a Poisson random variable are bothequal to its parameter �.Another use of the Poisson probability distri-bution arises in situations where \events" ourat ertain points in time.A Poisson random variable is usually a goodapproximation for diverse phenomena:1. The number of earthquakes during some �xedtime span.2. The number of people enters a partiularestablishment (bank, post oÆe, gas station,and so on).3. The number of wars per year.4. The number of eletrons emitted from a heatedathode during a �xed time period.5. The number of deaths in a given period of



Probability I{ Chap. 4: Random Variables 46time of the poliyholders of a life insuraneompany.Assume that for some positive onstant � thefollowing assumptions hold true:1. The probability that exatly 1 event oursin a given interval of length h is equal to�h + o(h), where o(h) stands for any fun-tion f (h) that is suh that limh!0 f (h)=h =0.2. The probability that 2 or more events ourin an interval of length h is equal to o(h).3. For any integers n; j1; j2; : : : ; jn, and anyset of n nonoverlapping intervals, if we de-�ne Ei to be the event that exatly ji of theevents under onsideration our in the ithof these intervals, then eventsE1; E2; : : : ; Enare independent.N (t) � P (�): The number of events ours in(0; t℄.



Probability I{ Chap. 4: Random Variables 47Example 4.8d. Suppose that earthquakesour in the western portion of the United Statesin aordane with assumptions 1, 2, and 3with � = 2 and with 1 week as the unit of time.(That is, earthquakes our in aordane withthe three assumptions at a rate of 2 per week.)(a) Find the probability that at least 3 earth-quakes our during the next 2 weeks.(b) Find the probability distribution of the time,staring from now, until the next earthquake.(a) PfN(2) � 3g = 1� PfN(2) = 0g � PfN(2) = 1g�PfN(2) = 2g= 1� e�4 + 4e�4 � 422 e�4= 1� 13e�4(b) {X : Denote the amount of time (in weeks)until the next earthquake.{ PfX > tg = PfN (t) = 0g = e��t{ F (t) = PfX � tg = 1 � PfX > tg =1� e��t = 1� e2t



Probability I{ Chap. 4: Random Variables 484.8.1 Computing the Poisson distribu-tion funtion�X is Poisson with parameter �,PfX = i + 1gPfX = ig = e���i+1=(i + 1)!e���i=i! = �i + 1PfX = 0g = e��PfX = 1g = �PfX = 0gPfX = 2g = �2PfX = 1g...PfX = i + 1g = �i + 1PfX = igExample 4.8e.(a) Determine PfX � 100g whenX is Poissonwith mean 90.(b) Determine PfY � 1075g when Y is Pois-son with mean 1000.� From the text diskette we obtain the solu-tion



Probability I{ Chap. 4: Random Variables 49(a) PfX � 100g � :1714;(b) PfY � 1075g � :9894.4.9 Other disrete probability distri-butions4.9.1 The geometri random variableGeometri distribution: G(p)PfX = ng = (1� p)n�1p n = 1; 2; : : :
� Suppose that independent trials, eah hav-ing a probability p, 0 < p < 1, of beinga suess, are performed until a suess o-urs.�X � G(p): Number of trials required.Example 4.9a. An urn ontains N whiteand M blak balls. Balls are randomly se-leted, one at a time, until a blok one is ob-tained. If we assume that eah seleted ball is



Probability I{ Chap. 4: Random Variables 50replaed before the next one is drawn, what isthe probability that(a) exatly n draws are needed;(b) at least k draws are needed?� Let X denote the number of draws neededto selet a blak ball, p = MM+N .(a) PfX = ng = 0� NM+N 1An�1 MM+N = MNn�1(M+N)n(b) PfX � kg = MM +N 1Xn=k 0B� NM +N 1CAn�1= 0B� MM +N 1CA 0B� NM +N 1CAk�1 = 2641� NM +N 375= 0B� NM +N 1CAk�1= (1� p)k�1
Example 4.9b. Find the expeted value ofa geometri random variable.



Probability I{ Chap. 4: Random Variables 51� q = 1� p,E[X ℄ = 1Xn=1nqn�1p= p 1Xn=0 ddq(qn)= p ddq 0BB� 1Xn=0 qn1CCA= p ddq 0BBB� 11� q1CCCA= p(1� q)2= 1pExample 4.9. Find the variane of a geo-metri random variable.� E[X2℄ = 1Xn=1n2qn�1p= p 1Xn=1 ddq(nqn)= p ddq 0BB� 1Xn=1nqn1CCA



Probability I{ Chap. 4: Random Variables 52= p ddq 0BBB� q1� qE[X ℄1CCCA= p ddq [q(1� q)�2℄
= p 26664 1p2 + 2(1� p)p3 37775= 2p2 � 1p� Sine E[X ℄ = 1=p,Var(X) = 1� pp24.9.2 The negative binomial randomvariable� Suppose that independent trials, eah hav-ing probability p, 0 < p < 1, of being asuess are performed until a total of r su-esses is aumulated.�X : Number of trials required, thenPfX = ng = 0BBBB�n� 1r � 11CCCCApr(1�p)n�r n = r; r+1; : : :



Probability I{ Chap. 4: Random Variables 53X is said to be a negative binomial randomvariable with parameter (r; p).� Y1: The number of trials required for the�rst suess.� Y2: The number of additional trials afterthe �rst suess until the seond suess.�X = Y1 + Y2 + � � � + Yr where Yi's areindependently and identially distributed asG(p).Example 4.9d. If independent trials, eahresulting in a suess with probability p, areperformed, what is the probability of r su-esses ourring before m failures?� The solution will be arrived at by notingthat r suesses will our before m failuresif and only if the rth suesses ours nolater than the r +m� 1 trial.



Probability I{ Chap. 4: Random Variables 54� The desired probability isr+m�1Xn=r 0BBBB�n� 1r � 11CCCCApr(1� p)n�r
Example 4.9e. The Banah math prob-lem. A pipe-smoking mathematiian arries,at all times, 2 mathboxes, 1 in his left-handpoket and 1 in his right-hand poket. Eahtime he needs a math he is equally likely totake it from either poket. Consider the mo-ment when the mathematiian �rst disoversthat one of this mathboxes is empty. If it isassumed that both mathboxes initially on-tained N mathes, what is the probability thatthere are exatly k mathes in the other box,k = 0; 1; : : : ; N?� E: The event that the mathematiian �rstdisovers that the right-hand mathbox isempty and there are k mathes in the left-hand box at the time.� P (E) =  2N�kN ! 0�121A2N�k+1



Probability I{ Chap. 4: Random Variables 55� The desired result is2P (E) = 0BBBB�2N � kN 1CCCCA 0BBB�121CCCA2N�kExample 4.9f. Compute the expeted valueand the variane of a negative binomial randomvariable with parameters r and p.� E[Xk℄ = 1Xn=r nk0B�n� 1r � 11CApr(1� p)n�r= rp 1Xn=r nk�10B�nr1CApr+1(1� p)n�r= rp 1Xm=r+1(m� 1)k�10B�m� 1r 1CApr+1(1� p)m�(r+1)= rpE[(Y � 1)k�1℄where Y is a negative binomial randomvariable with parameters r + 1, p.� k = 1, E[X ℄ = rp� k = 2, E[X2℄ = rpE[Y � 1℄= rp 0BBB�r + 1p � 11CCCA



Probability I{ Chap. 4: Random Variables 56� Var(X) = rp 0BBB�r + 1p � 11CCCA� 0BBB�rp1CCCA2= r(1� p)p2� If independent trials, eah of whih is a su-ess with probability p, are performed, thenthe expeted value and variane of the num-ber of trials that it takes to amass r su-esses is r=p and r(1� p)=p2.� For G(p), r = 1.Example 4.9g. Find the expeted value andthe variane of the number of times one mustthrow a die until the outome 1 has ourred 4times.�X � NB(r; p)� r = 4 and p = 16,E[X ℄ = 24
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Var(X) = 4(56)(16)2 = 120

4.9.3 The hypergeometri random vari-able� Suppose that a sample of size n is to be ho-sen randomly (without replaement) froman urn ontaining N balls, of whih m arewhite and N �m are blok.� Let X denote the number of white balls se-leted, thenPfX = ig =  mi ! N�mn�i ! Nn ! i = 0; 1; : : : ; n (9:4)
� A random variableX , whose probability massfuntion is given by Eq. (9.4) or some valuesof n;N;m is said to be a hypergeometrirandom variable.Example 4.9h. An unknown number, sayN , of animals inhabit a ertain region. To



Probability I{ Chap. 4: Random Variables 58obtain some information about the populationsize, eologists often perform the following ex-periment: They �rst ath a number, saym, ofthese animals, mark them in some manner, andrelease them. After allowing the marked ani-mals time to disperse throughout the region, anew ath of size, say n, is made. LetX denotethe number of marked animals in this seondapture. If we assume that the population ofanimals in the region remained �xed betweenthe time of the two athes and that eah timean animal was aught it was equally likely to beany of the remaining unaught animals, it fol-lows that is a hypergeometri random variablesuh thatPfX = ig =  mi ! N�mn�i ! Nn ! � Pi(N )
� Suppose now that X is observed to equal i.� Pi(N ) represents the probability of the ob-served event when there are atually N an-



Probability I{ Chap. 4: Random Variables 59imals present in the region, it would appearthat a reasonable estimate of N would bethe value of N that maximizes Pi(N ). Suhan estimate is alled a maximum likelihoodestimate.� The maximization of Pi(N ) an most sim-ply be done by �rst nothing thatPi(N )Pi(N � 1) = (N �m)(N � n)N (N �m� n + i)the above ratio is greater than 1 if and onlyif(N �m)(N � n) � N (N �m� n + i)or, equivalently, if and only ifN � mni� Pi(N ) is �rst inreasing, and then dereas-ing, and reahes its maximum value at thelargest integral value not exeeding mn=i.This value is thus the maximum likelihoodestimate of N .



Probability I{ Chap. 4: Random Variables 60� Suppose that the initial ath onsists ofm = 50 animals of whih are marked andthen released.� If a subsequent ath onsists of n = 40animals of whih i = 4 are marked, thenwe would estimate that there are some 500animals in the region.Example 4.9i. A purhaser of eletrial om-ponents buys them in lots of size 10. It is hispoliy to inspet 3 omponents randomly froma lot and to aept the lot only if all 3 arenondefetive. If 30 perent of the lots have 4defetive omponents and 70 perent have only1, what proportion of lots does the purhaserrejet?� A: The event that the purhaser aepts alot.� P (A) = P (Ajlot has 4 defetives) 310+P (Ajlot has 1 defetive) 710



Probability I{ Chap. 4: Random Variables 61= (40)(63)(103 ) ( 310) + (10)(93)(103 ) ( 710)= 54100If n balls are randomly hosen without replae-ment from a set of N balls, of whih the fra-tion p = m=N is white, then the number ofwhite balls seleted is hypergeometri.It would seem that when m and N are largein relation to n, it shouldn't make muh di�er-ene whether the seletion is being done withor without replaement.
PfX = ig =  mi ! N�mn�i ! Nn ! � 0BBBB�ni 1CCCCApi(1� p)n�iwhen p = m=N and m and N are large inrelation to n and i.Example 4.9j. Determine the expeted valueand the variane of X , a hypergeometri ran-dom variable with parameters n;N;m.



Probability I{ Chap. 4: Random Variables 62� E[Xk℄ = nXi=0 ikPfX = ig= nXi=1 ik0BBBB�mi 1CCCCA0BBBB�N �mn� i 1CCCCA=0BBBB�Nn 1CCCCA
� i mi ! = m m�1i�1 ! and n Nn ! = N  N�1n�1 !� E[Xk℄ = nmN nXi=1 ik�10B�m� 1i� 1 1CA0B�N �mn� i 1CA=0B�N � 1n� 1 1CA= nmN n�1Xj=0(j + 1)k�10B�m� 1j 1CA0B� N �mn� 1� j1CA=0B�N � 1n� 1 1CA= nmN E[(Y + 1)k�1℄where Y is a hypergeometri random vari-able with parameters n� 1; N � 1;m� 1.� k = 1, E[X ℄ = nmN� k = 2,E[X2℄ = nmN E[Y + 1℄= nmN 26664(n� 1)(m� 1)N � 1 + 137775



Probability I{ Chap. 4: Random Variables 63� As E[X ℄ = nm=N we an onlude thatVar(X) = nmN 26664(n� 1)(m� 1)N � 1 + 1� nmN 37775� If p = m=N denote the fration of balls thatare white, thenVar(X) = N � nN � 1np(1� p)
Remark�We shown in Example 4.9j that if n ballsare randomly seleted without replaementfrom a set of N balls, of whih the frationp are white, then the expeted number ofwhite balls hosen is np.� IfN is large in relation to n, then Var(X) �np(1� p).4.9.4 The Zeta (or Zipf) distribution� A random variable is said to have a zeta(sometimes alled the Zipf) distribution if



Probability I{ Chap. 4: Random Variables 64its probability mass funtion is given byPfX = kg = Ck�+1 k = 1; 2; : : :for some value of � > 0.� C = 266664 1Xk=1 0BBB�1k1CCCA�+1377775�1
� The zeta distribution owes its name to thefat that the funtion�(s) = 1 + 0BBB�121CCCAs + 0BBB�131CCCAs + � � � + 0BBB�1k1CCCAs + � � �is known in mathematial disiplines as theRiemann zeta funtion.� The zeta distribution was used by the Ital-ian eonomist Pareto to desribe the distri-bution of family inomes in a given ountry.� It was G. K. Zipf who applied these distri-butions in a wide variety of di�erent areasand popularized their use.Summary



Probability I{ Chap. 4: Random Variables 65� Random variable: A real-valued funtionde�ned on the outome of a probability ex-periment.� Distribution funtion:F (x) = PfX � xgAll probabilities onerningX an be statedin terms of F .� Probability mass funtion: Disrete randomvariable p(x) = PfX = xg� Expeted value:E[X ℄ = X xp(x)� Variane:Var(X) = E[(X�E[X ℄)2℄ = E[X2℄�(E[X ℄)2� Standard deviation: sVar(X)� B(n; p): p(i) =  ni !pi(1� p)n�iE[X ℄ = np Var(X) = np(1� p)



Probability I{ Chap. 4: Random Variables 66� P (�): p(i) = e���ii!E[X ℄ = � Var(X) = �� G(p): p(i) = p(1� p)i�1
E[X ℄ = 1p Var(X) = 1� pp2� NB(r; p): p(i) =  i�1r�1!pr(1� p)i�rE[X ℄ = rp Var(X) = r(1� p)p2�HG(n;N;m): p(i) = (mi )(N�mn�i )(Nn)E[X ℄ = np Var(X) = N � nN � 1np(1� p)with p = m=N .


