
Probability I{ Chap. 5: Continuous Random Variables 15.1 Introdution� Consider disrete random variable in Chap.4.� There also exist random variables whose setof possible values is unountable.� Two examples would be the time that atrain arrives at a spei�ed stop and the life-time of a transistor.� Let X be suh a random variable.�We say thatX is a ontinuous random vari-able if there exist a nonnegative funtionf ,de�ned for all real x 2 (�1;1), havingthe property that for any set B of real num-bers PfX 2 Bg = ZB f (x)dx (1:1)The funtion f is alled the probability den-sity funtion of the random variableX (seeFig. 5.1).



Probability I{ Chap. 5: Continuous Random Variables 2� 1 = PfX 2 (�1;1)g = Z1�1 f (x)dx� Letting B = [a; b℄,Pfa � X � bg = Z ba f (x)dx (1:2)� Let a = b in Eq. (1.2), we obtainPfX = ag = Z aa f (x)dx = 0� In words, this equation states that the prob-ability that a ontinuous random variablewill assume any �xed value is zero.� Distribution funtion:PfX < ag = PfX � ag = F (a) = Z a�1 f (x)dxExample 5.1a. Suppose thatX is a ontin-uous random variable whose probability den-sity funtion is given byf (x) = 8>>>><>>>>:C(4x� 2x2) 0 < x < 20 otherwise(a) What is the value of C?



Probability I{ Chap. 5: Continuous Random Variables 3(b) Find PfX > 1g:(a) C Z 20 (4x� 2x2)dx = 1C 26666642x2 � 2x33 3777775�����������x=2x=0 = 1
C = 38(b) PfX > 1g = Z11 f (x)dx= 38 Z 21 (4x� 2x2)dx= 12Example 5.1b. The amount of time, in hours,that a omputer funtions before breaking downis a ontinuous random variable with probabil-ity density funtion given byf (x) = 8>>>><>>>>: �e�x=100 x � 00 x < 0What is the probability that



Probability I{ Chap. 5: Continuous Random Variables 4(a) a omputer will funtion between 50 and 150hours before breaking down;(b) it will funtion less than 100 hours?(a) 1 = Z1�1 f (x)dx = � Z10 e�x=100dx1 = � �(100)e�x=100������10 = 100�� = 1100
Pf50 < X < 150g = Z 15050 1100e�x=100dx= � ex=100������15050= e�1=2 � e�3=2 � :384(b) PfX < 100g = Z 1000 1100e�x=100dx= � ex=100������1000= 1� e�1 � :633



Probability I{ Chap. 5: Continuous Random Variables 5Example 5.1. The lifetime in hours of aertain kind of radio tube is a random variablehaving a probability density funtion given byf (x) = 8>>>><>>>>: 0 x � 100100x2 x > 100What is the probability that exatly 2 of 5suh tubes in a radio set will have to be re-plaed within the �rst 150 hours of operation?Assume that the events Ei, i = 1; 2; 3; 4; 5,that the ith suh tube will have to be replaedwithin this time, are independent.� P (Ei) = Z 1500 f (x)dx= 100 Z 150100 x�2dx= 13� From the independene of the events Ei, itfollows that the desired probability is0BBBB�521CCCCA 0BBB�131CCCA2 0BBB�231CCCA3 = 80243



Probability I{ Chap. 5: Continuous Random Variables 6� The relationship between F and f :F (a) = PfX 2 (�1; a℄g = Z a�1 f (x)dx� Di�erentiating both sides of the above yieldsddaF (a) = f (a)� If � is small, thenPfa� �=2 � X � a + �=2g = Z a+�=2a��=2 f (x)dx� �f (a)� The probability that X will be ontained inan interval of length � around the point a isapproximately �f (a).5.2 Expetation and variane of on-tinuous random variables� The expeted value of a disrete randomvariable: E[X ℄ = Xx xPfX = xg



Probability I{ Chap. 5: Continuous Random Variables 7� IfX is a ontinuous random variable havingprobability density funtion f (x), then asf (x)dx � Pfx � X � x+dxg for dx small� The expeted value of X :E[X ℄ = Z1�1 xf (x)dxExample 5.2a. Find E[X ℄ when the den-sity funtion of X isf (x) = 8>>>><>>>>: 2x if 0 � x � 10 otherwise� E[X ℄ = Z xf (x)dx= Z 10 2x2dx= 23Example 5.2b. The density funtion of Xis given byf (x) = 8>>>><>>>>: 1 if 0 � x � 10 otherwise



Probability I{ Chap. 5: Continuous Random Variables 8Find E[eX ℄.� Let Y = eX .� For 1 � x � e,FY (x) = PfY � xg= PfeX � xg= PfX � log(x)g= Z log(x)0 f (y)dy= log(x)� By di�erentiatingFY (x), the probability den-sity funtion of Y is given byfY (x) = 1x 1 � x � e� E[eX ℄ = E[Y ℄ = Z1�1 xfY (x)dx= Z e1 dx= e� 1



Probability I{ Chap. 5: Continuous Random Variables 9Proposition 5.2.1: If X is a ontinuousrandom variable with probability density fun-tion f (x), then for any real-valued funtion g,E[g(X)℄ = Z1�1 g(x)f (x)dxAn appliation of Proposition 2.1 to Example5.2b: E[eX ℄ = Z 10 exdx = e� 1Lemma 5.2.1: For a nonnegative randomvariable Y ,E[Y ℄ = Z10 PfY > ygdyProof:� Y is a ontinuous random variable with prob-ability density funtion fY .� Z10 PfY > ygdy = Z10 Z1y fY (x)dxdywhere we have used the fat that



Probability I{ Chap. 5: Continuous Random Variables 10
PfY > yg = Z1y fY (x)dx� Interhanging the order of integrationZ10 PfY > ygdy = Z10 (Z x0 dy)fY (x)dx= Z10 xfY (x)dx= E[Y ℄Proof of Proposition 5.2.1:� For any funtion g for whih g(x) � 0, wehave from Lemma 5.2.1 thatE[g(X)℄ = Z10 Pfg(X) > ygdy= Z10 Zx:g(x)>y f (x)dxdy= Zx:g(x)>0 Z g(x)0 dyf (x)dx= Zx:g(x)>0 g(x)f (x)dxExample 5.2. A stik of length 1 is splitat a point U that is uniformly distributed over(0,1). Determine the expeted length of thepiee that ontains the point p, 0 � p � 1.



Probability I{ Chap. 5: Continuous Random Variables 11� Lp(U ): The length of the substik that on-tains the point p.� Fig. 5.2: Lp(U ) = 8>>>><>>>>: 1� U U < pU U > p� E[Lp(U )℄ = Z 10 Lp(u)du= Z p0 (1� u)du + Z 1p udu= 12 � (1� p)22 + 12 � p22= 12 + p(1� p)� It is interesting to note that the expetedlength of the substik ontaining the pointp is maximized when p is the midpoint ofthe original stik.Example 5.2d. Suppose that if you are sminutes early for an appointment, then you in-ur the ost s, and if you are s minutes late,then you inur the ost ks. Suppose that the



Probability I{ Chap. 5: Continuous Random Variables 12travel time from where you presently are tothe loation of your appointment is a ontinu-ous random variable having probability densityfuntion f . Determine the time at whih youshould depart if you want to minimize your ex-peted ost.�X : The travel time.� If you leave t minutes before appointment,then your ost Ct(X) is given byCt(X) = 8>>>><>>>>: (t�X) if X � tk(X � t) if X � t� E[Ct(X)℄ = Z10 Ct(x)f (x)dx= Z t0 (t� x)f (x)dx + Z1t k(x� t)f (x)dx= t Z t0 f (x)dx�  Z t0 xf (x)dx+k Z1t xf (x)dx� kt Z1t f (x)dx� The value of t that minimize E[Ct(X)℄ annow be obtained by alulus.



Probability I{ Chap. 5: Continuous Random Variables 13� ddtE[Ct(X)℄ = tf (t) + F (t)� tf (t)�ktf (t) + ktf (t)� k[1� f (t)℄= (k + )F (t)� k� Equating to zero shows that the minimalexpeted ost is obtained when you leave t�minutes before your appointment, where t�satis�es F (t�) = kk + Corollary 5.2.1: If a and b are onstants,then E[aX + b℄ = aE[X ℄ + b
� The variane of a ontinuous random vari-able is de�ned exatly as it is for a disreteone.� If E[X ℄ = �, then the variane of X :Var(X) = E[(X � �)2℄ = E[X2℄� �2



Probability I{ Chap. 5: Continuous Random Variables 14Example 5.2e. Find Var(X) forX as givenin Example 5.2a.� E[X2℄ = Z1�1 x2f (x)dx= Z 10 2x3dx= 12� Sine E[X ℄ = 23, we obtain thatVar(X) = 12 � 0BBB�231CCCA2 = 118For onstants a and b:Var(aX + b) = a2Var(X)The next few setions are devoted to a studyof some of important lasses of ontinuous ran-dom variables.5.3 The uniform random variable� A random variable is said to be uniformly



Probability I{ Chap. 5: Continuous Random Variables 15distributed over the interval (0, 1) if its prob-ability density funtion is given byf (x) = 8>>>><>>>>: 1 0 < x < 10 otherwise� For any 0 < a < b < 1,Pfa � X � bg = Z ba f (x)dx = b� a� The probability that X is in any partiularsubinterval of (0, 1) equals the length of thatsubinterval.� In general, we say that X is a uniform ran-dom variable on the interval (�; �) if itsprobability density funtion is given byf (x) = 8>>>>><>>>>>: 1��� if � < x < �0 otherwise� Distribution funtion:
F (a) = 8>>>>>>>>><>>>>>>>>>:

0 a � �a����� if � < a < �0 otherwise



Probability I{ Chap. 5: Continuous Random Variables 16Example 5.3a. Let X be uniformly dis-tributed over (�; �). Find (a) E[X ℄ and (b)Var(X).� (a) E[X ℄ = Z1�1 xf (x)dx= Z �� x� � �dx= �2 � �22(� � �)= � + �2(b){ To �nd Var(X), we �rst alulate E[X2℄.E[X2℄ = Z �� 1� � �x2dx= �3 � �33(� � �)= �2 + �� + �23



Probability I{ Chap. 5: Continuous Random Variables 17{ The variane of a random variable that isuniformly distributed over some intervalis the square of the length of that intervaldivided by 12.Var(X) = �2 + �� + �23 � (� + �)24= (� � �)212Example 5.3b. IfX is uniformly distributedover (0, 10), alulate the probability that (a)X < 3, (b) X > 6, and () 3 < X < 8.
� (a) PfX < 3g = Z 30 110dx = 310(b) PfX > 6g = Z 106 110dx = 410() Pf3 < X < 8g = Z 83 110dx = 12
Example 5.3. Buses arrive at a spei�edstop at 15-minute intervals starting at 7 A.M.That is, they arrive at 7, 7:15, 7:30, 7:45, and



Probability I{ Chap. 5: Continuous Random Variables 18so on. If a passenger arrives at the stop at atime that is uniformly distributed between 7and 7:30, �nd the probability that he waits(a) less than 5 minutes for a bus;(b) more than 10 minutes for a bus.�X : The number of minutes past 7 that thepassenger arrives at the stop.(a) Sine X is a uniform random variable overthe interval (0, 30), it follows that the pas-senger will have to wait less than 5 minutesif (and only if) he arrives between 7:10 and7:15 or between 7:25 and 7:30.� The desired probability isPf10 < X < 15g + Pf25 < X < 30g= Z 1510 130dx + Z 3025 130dx = 13(b) He would have to wait more than 10 minutesif he arrives between 7 and 7:05 or between



Probability I{ Chap. 5: Continuous Random Variables 197:15 and 7:20, and so the probability isPf0 < X < 5g + Pf15 < X < 20g = 13The next example was �rst onsidered by theFrenh mathematiian L. F. Bertrand in 1889and is often referred to as Bertrand's paradox.It is is a geometrial probability problem.Example 5.3d. Consider a random hordof a irle. What is the probability that thelength of the hord will be greater than theside of the equilateral triangle insribed in thatirle?� The �rst formulation is as follows:{ The position of the hord an be deter-mined by its distane from the enter ofthe irle.{ This distane an vary between 0 and r,the radius of the irle.{ The length of the hord will be greaterthan the side of the equilateral triangle



Probability I{ Chap. 5: Continuous Random Variables 20insribed in the irle if its distane fromthe enter is less than r=2.{ Assume that a random hord is one whosedistane D from the enter is uniformlydistributed between 0 and r.{ The probability that it is greater than theside of an insribed equilateral triangle isP 8><>:D < r29>=>; = r=2r = 12� The seond formulation of the problem on-sider an arbitrary hord of the irle; throughone end of the hord draw a tangent.{ The angle � between the hord and thetangent, whih an vary from 0Æ to 180Æ,determines the position of the hord (seeFig. 5.4).{ The length of the hord will be greaterthan the side of the insribed equilateraltriangle if the angle � is between 60Æ and120Æ.{ Assume that a random hord is one whose



Probability I{ Chap. 5: Continuous Random Variables 21angle � is uniformly distributed between0Æ and 180Æ.{ The desired answer in this formulation isPf60 < � < 120g = 120� 60180 = 135.4 Normal random variables�X is a normal random variable, or simplythatX is normally distributed, with param-eters � and �2 if the density of X is givenbyf (x) = 1p2��e�(x��)2=2�2 �1 < x <1� The density funtion is a bell-shaped urvethat is symmetri about �. (see Fig. 5.5).� The normal distribution was introdued bythe Frenh mathematiian Abraham deMoivrein 1733 and was used by him to approximateprobabilities assoiated with binomial ran-dom variables when the binomial parametern is large.



Probability I{ Chap. 5: Continuous Random Variables 22� This result was later extended by Laplaeand others and now is enompassed in prob-ability theorem known as the entral limittheorem.� The entral limit theorem (Chap. 8), one ofthe two most important results in probabil-ity theory, gives a theoretial base to the of-ten noted empirial observation that manyrandom phenomena obey, at least approx-imately, a normal probability distribution.(The strong law of large number)� Some examples of this behavior are the heightof a man, the veloity in any diretion of amoleule in gas, and the error made in mea-suring a physial quantity.� To prove that f (x) is indeed a probabilitydensity funtion, we need to show that1p2�� Z1�1 e�(x��)2=2�2dx=1
{ By making the substitution y = (x �



Probability I{ Chap. 5: Continuous Random Variables 23�)=�, we see that1p2�� Z1�1 e�(x��)2=2�2dx = 1p2� Z1�1 e�y2=2dy
{ Let I = Z1�1 e�y2=2dy. ThenI2 = Z1�1 e�y2=2dy Z1�1 e�x2=2dx= Z1�1 Z1�1 e�(y2+x2)=2dydx= Z10 Z 2�0 er2=2rd�dr= 2� Z10 re�r2=2dr= �2�e�r2=2j10= 2�{ I = p2�.Example 5.4a. Find (a)E[X ℄ and (b) Var(X)when X is a random variable with parameters� and �2.� (a)E[X ℄ = 1p2�� Z1�1 xe�(x��)2=2�2dx



Probability I{ Chap. 5: Continuous Random Variables 24= 1p2�� Z1�1[(x� �) + �℄e�(x��)2=2�2dx= 1p2�� Z1�1(x� �)e�(x��)2=2�2dx+� 1p2�� Z1�1 e�(x��)2=2�2dx= 1p2�� Z1�1 ye�y2=2�2dy + � Z1�1 f (x)dx= � Z1�1 f (x)dx= �(b)Var(X) = E[(X � �)2℄= 1p2�� Z1�1(x� �)2e�(x��)2=2�2dx
= �2p2� Z1�1 y2e�y2=2dy
= �2p2� 264�ye�y2=2j1�1 + Z1�1 e�y2=2dy375= �2 1p2� Z1�1 e�y2=2dy= �2



Probability I{ Chap. 5: Continuous Random Variables 25� If X is normally distributed with parame-ters � and �2, then Y = �X + � is nor-mally distributed with parameters �� + �and �2�2.� To show this, suppose � > 0. (The veri�a-tion when � < 0 is similar.){ FY , the umulative distribution funtionof the random variable Y , is given byFY (a) = Pf�X + � � ag= P 8>>><>>>:X � a� �� 9>>>=>>>;= FX 0BBB�a� �� 1CCCA{ Di�erentiation yields that the density fun-tion of Y isfY (a) = 1�fX 0BBB�a� �� 1CCCA
= 1p2��� exp 8>>>>><>>>>>:� 0BBB�a� �� � �1CCCA2 =2�29>>>>>=>>>>>;= 1p2��� expf�(a� � � ��)2=2(��)2g



Probability I{ Chap. 5: Continuous Random Variables 26� If X is normally distributed with param-eters � and �2, then Z = (X � �)=� isnormally distributed with parameters 0 and1.� Suh a random variable Z is said to havethe standard, or unit, normal distribution.� The umulative distribution funtion of astandard normal random variable:�(x) = 1p2� Z x�1 e�y2=2dy� The value of �(x) for nonnegative x aregiven in Table 5.1.� For negative values of x,�(�x) = 1� �(x) �1 < x <1� If Z is a standard normal random variable,thenPfZ � �xg = PfZ > xg �1 < x <1� Sine Z = (X � �)=� is a standard normalrandom variable whenever X is normally



Probability I{ Chap. 5: Continuous Random Variables 27distributed with parameters � and �2, it fol-lows that the distribution funtion of X anbe expressed asFX(a) = PfX � ag= P 0BBB�X � �� � a� �� 1CCCA= � 0BB�a� �� 1CCA
Example 5.4b. If X is a normal randomvariable with parameters � = 3 and �2 = 9,�nd(a) Pf2 < X < 5g;(b) PfX > 0g;() PfjX � 3j > 6g.� (a)Pf2 < X < 5g = P 8>>><>>>:2� 33 < X � 33 < 5� 33 9>>>=>>>;= P 8>>><>>>:�13 < Z < 239>>>=>>>;



Probability I{ Chap. 5: Continuous Random Variables 28= � 0BBB�231CCCA� � 0BBB��131CCCA= � 0BBB�231CCCA� 266641� � 0BBB�131CCCA37775 � :3779(b)PfX > 0g = P 8>>><>>>:X � 33 > 0� 33 9>>>=>>>;= PfZ > �1g= 1� �(�1)= �(1) � :8413
()PfjX � 3j > 6g = PfX > 9g + PfX < �3g= P 8>>><>>>:X � 33 > 9� 33 9>>>=>>>;+P 8>>><>>>:X � 33 < �3� 33 9>>>=>>>;= PfZ > 2g + PfZ < �2g= 1� �(2) + �(�2)= 2[1� �(2)℄ � :0456



Probability I{ Chap. 5: Continuous Random Variables 29Example 5.4. An examination is often re-garded as being good (in the sense of deter-mining a valid grade spread for those takingit) if the test sores of those taking the exami-nation an be approximated by a normal den-sity funtion. (In order words, a graph of thefrequeny of grade sores should have approxi-mately the bell-shaped form of the normal den-sity.) The instrutor often uses the test soresto estimate the normal parameters � and �2and then assigns the letter grade A to thosewhose test sore is greater than � + �, B tothose whose sore is between � and � + �, Cto those whose sore is between � � � and �,D to those whose sore is between �� 2� and� � �, and F to those getting a sore below��2�. (This is sometimes referred to as grad-ing "on the urve.") Sine� PfX > � + �g = P 8>>><>>>:X � �� > 19>>>=>>>;



Probability I{ Chap. 5: Continuous Random Variables 30= 1� �(1) � :1587� Pf� < X < � + �g = P 8>>><>>>:0 < X � �� < 19>>>=>>>;= �(1)� �(0) � :3413� Pf�� � < X < �g = P 8>>><>>>:�1 < X � �� < 09>>>=>>>;= �(0)� �(�1) � :3413� Pf�� 2� < X < �� �g = P 8<:�2 < X � �� < �19=;= �(2)� �(1) � :1359� PfX < �� 2�g = P 8>>><>>>:X � �� < �29>>>=>>>;= �(�2) � :0228� Approximately 16 perent of the lass willreeive an A grade on the examination, 34perent a B grade, 34 perent a C grade, and14 perent a D grade; 2 perent will fail.



Probability I{ Chap. 5: Continuous Random Variables 31Example 5.4d. An expert witness in a pa-ternity suit testi�es that the length (in days) ofpregnany (that is, the time from impregnationto the delivery of the hild) is approximatelynormally distributed with parameters � = 270and �2 = 100. The defendant in the suit isable to prove that he was out of the ountryduring a period that began 290 days before thebirth of the hild and ended 240 days before thebirth. If the defendant was, in fat, the fatherof the hild, what is the probability that themother ould have had the very long or veryshort pregnany indiated by the testimony?�X : The length of the pregnany.� Assume that the defendant is the father.� The probability that the birth ould ourwithin the indiated period isPfX > 290 or X < 240g= PfX > 290g + PfX < 240g= P 8<:X�27010 > 29=; + P 8<:X�27010 < �39=;



Probability I{ Chap. 5: Continuous Random Variables 32= 1� �(2) + 1� �(3)� :0241Example 5.4e.� Suppose that a binary message{ either 0 or1{must be transmitted by write from loa-tion A to loation B.� The data sent over the write are subjet to ahannel noise disturbane, so to redue thepossibility of error, the value 2 is sent overthe wire when the message is 1 and the value�2 is sent when the message is 0.� If x, x � 2, is the value sent at loation A,then R, the value reeived at loation B, isgiven byR = x+N , whereN is the hannelnoise disturbane.�When the message is reeived at loationB the reeiver deodes it aording to thefollowing rule:If R � :5; then 1 is onluded.



Probability I{ Chap. 5: Continuous Random Variables 33If R < :5; then 0 is onluded.� As the hannel noise is often normally dis-tributed, we will determine the error prob-abilities when N is a unit normal randomvariable.� There are two types of errors that an our:{ One is that the message 1 an be inor-retly onluded to be 0.{ The other that 0 is onluded to be 1.� The �rst type of error will our if the mes-sage is 1 and 2 + N < :5, whereas theseond will our if the message is 0 and�2 +N � :5.� Pferrorjmessage is 1g = PfN < �1:5g= 1� �(1:5) � :0668� Pferrorjmessage is 0g = PfN � 2:5g= 1� �(2:5) � :0062



Probability I{ Chap. 5: Continuous Random Variables 34� The following inequality for �(x) is of the-oretial importane:1p2� 0BBB�1x � 1x31CCCA e�x2=2 < 1��(x) < 1p2� 1xe�x2=2for all x > 0 (4.4)� To prove inequality (4.4){ Note the obvious inequality(1�3y�4)e�y2=2 < e�y2=2 < (1+y�2)e�y2=2Z1x (1�3y�4)e�y2=2dy < Z1x e�y2=2dy <Z1x (1 + y�2)e�y2=2dyddy [(y�1�y�3)e�y2=2℄ = �(1�3y�4)e�y2=2ddy [y�1e�y2=2℄ = �(1 + y�2)e�y2=2for x > 0,�(y�1 � y�3)e�y2=2j1x < Z 1x e�y2=2dy < �y�1e�y2=2j1xor (x�1 � x�3)e�y2=2 < Z 1x e�y2=2dy < x�1e�x2=2



Probability I{ Chap. 5: Continuous Random Variables 35� 1� �(x) � 1xp2�e�x2=2 for large x.5.4.1 The normal approximation to thebinomial distribution� The DEMoivre-Laplae limit theorem statesthat when n is large, a binomial randomvariable with parameters n and p will haveapproximately the same distribution as thenormal random variable with the same meanand variane as the binomial.� This result was proved originally for the spe-ial ase p = 1=2 by DeMoivre in 1733 andwas then extended to general p by Laplaein 1812.



Probability I{ Chap. 5: Continuous Random Variables 36The DeMoivre-Laplae limit theo-rem: If Sn denotes the number of suessesthat our when n independent trials, eah re-sulting in a suess with probability p, are per-formed then, for any a < b,P 8>>>><>>>>:a � Sn � npsnp(1� p) � b9>>>>=>>>>; ! �(b)� �(a)as n!1.� Poisson approximation and normal approx-imation.� The normal approximation will, in general,be quite good for values of n satisfying np(1�p) � 10.Example 5.4f. Let X be the number oftimes that a fair oin, ipped 40 times, landsheads. Find the probability that X = 20. Usethe normal approximation and then ompare itto the exat solution.



Probability I{ Chap. 5: Continuous Random Variables 37� PfX = 20g = Pf19:5 � X < 20:5g= P 8<:19:5� 20p10 < X � 20p10 < 20:5� 20p10 9=;� P 8<:�:16 < X � 20p10 < :169=;� �(:16)� �(�:16)g � :1272� The exat result:PfX = 20g = 0BBBB�40201CCCCA 0BBB�121CCCA40 � :1254
Example 5.4g. The ideal size of a �rst-yearlass at a partiular ollege is 150 students.The ollege, knowing from past experiene thaton the average only 30 perent of those a-epted for admission will atually attend, usesa poliy of approving the appliations of 450students. Compute the probability that morethan 150 �rst-year students attend this ollege.�X : The number of students that attend.�X is a binomial(450; :3).



Probability I{ Chap. 5: Continuous Random Variables 38� The normal approximation yields thatPfX � 150:5g = P 8>><>>:X � (450)(:3)r450(:3)(:7) � 150:5� (450)(:3)r450(:3)(:7) 9>>=>>;� 1� �(1:59)� :0559
Example 5.4h. To determine the e�etive-ness of a ertain diet in reduing the amount ofholesterol in the bloodstream, 100 people areput on the diet. After they have been on thediet for a suÆient length of time, their holes-terol ount will be taken. The nutritionist run-ning this experiment has deided to endorse thediet if at least 65 perent of the people have alower holesterol ount after going on the diet.What is the probability that the nutritionistendorses the new diet if, in fat, it has no ef-fet on the holesterol level?�X : The number of people whose ount islowered.



Probability I{ Chap. 5: Continuous Random Variables 39�X is a B(100; 1=2).� The probability that the nutritionist will en-dorse the diet when it atually has no e�eton the holesterol ount:100Xi=65 0BBBB�100i 1CCCCA 0BBB�121CCCA100 = PfX � 64:5g
= P 8>>>>>><>>>>>>:X � (100)(12)vuut100(12)(12) � 2:99>>>>>>=>>>>>>;� 1� �(2:9)� :0019:Historial notes onerning the normal distri-bution:� Abraham De Moire (1733).� Karl Griedrih Gauss (1777-1855).5.5 Exponential random variables� A ontinuous random variable whose prob-ability density funtion is given, for some



Probability I{ Chap. 5: Continuous Random Variables 40� > 0, byf (x) = 8>>>><>>>>: �e��x if x � 00 if x < 0is said to be an exponential random variable(or, more simply, is said to be exponentiallydistributed) with parameter �.� The umulative distribution funtion F (a)of an exponential random variable:F (a) = PfX � ag= Z a0 �e��xdx= �e��xja0= 1� e��a a � 0� Note that F (1) = Z10 �e��xdx = 1.Example 5.5a. Let X be an exponentialrandom variable with parameter �. Calulate(a) E[X ℄ and (b) Var(X).� (a)



Probability I{ Chap. 5: Continuous Random Variables 41{ The density funtion is given byf (x) = 8>>>><>>>>: �e��x x � 00 x < 0{ E[X ℄ = Z10 x�e��xdx= �xe��x������10 + Z10 e��xdx= 0� e��x� �����������10= 1�� (b){ E[X2℄ = Z10 x2�e��xdx= �x2e��xj10 + Z10 2xe��xdx= 0 + 2�E[X ℄= 2�2{ Var(X) = 2�2 � 0BBB�1�1CCCA2



Probability I{ Chap. 5: Continuous Random Variables 42= 1�2� The exponential distribution often arises, inpratie, as being the distribution of theamount of the time until some spei� eventours.� The amount of time starting from now un-til an earthquake ours, or until a new warbreaks out, or until a telephone all you re-eive turns out to be a wrong number areall random variables that tend in pratieto have exponential distributions.Example 5.5b. Suppose that the length ofa phone all in minutes is an exponential ran-dom variable with parameter � = 110. If some-one arrive immediately ahead of you at a publitelephone booth, �nd the probability that youwill have to wait(a) more than 10 minutes;



Probability I{ Chap. 5: Continuous Random Variables 43(b) between 10 and 20 minutes.�X : The length of the all made by the per-son in the booth.(a) PfX > 10g = 1� F (10)= e�1 � :368(b) Pf10 < X < 20g = F (20)� F (10)= e�1 � e�2 � :233Memoryless property:� A nonnegative random variable X is mem-oryless ifPfX > s + tjX > tg = PfX > sg for all s, t � 0 (5:1)� If we think ofX as being the lifetime of someinstrument, Eq. (5.1) states that the prob-ability that the instrument survives for atleast s+ t hours, given that it has survived



Probability I{ Chap. 5: Continuous Random Variables 44t hours, is that same as the initial probabil-ity that it survives for at least s hours.� In other words, if the instrument is aliveat age t, the distribution of the remainingamount of time that it survives is the sameas the original lifetime distribution (that is,it is as if the instrument does not rememberthat it has already been in use for a time t).� The ondition (5.1) is equivalent toPfX > s + t;X > tgPfX > tg = PfX > sgorPfX > s + tg = PfX > sgPfX > tg(5:2)Example 5.5. Consider a post oÆe thatis sta�ed by two lerks. Suppose that whenMr. Smith enters the system, he disovers thatMs. Jones is being served by one of the lerksand Mr. Brown by the other. Suppose alsothat Mr. Smith is told that his servie will be-



Probability I{ Chap. 5: Continuous Random Variables 45gin as soon as either Jones or Brown leaves. Ifthe amount of time that a lerk spends with austomer is exponentially distributed with pa-rameter �, what is the probability that, of thethree ustomers, Mr. Smith is the last to leavethe post oÆe?� The answer is obtained by reasoning as fol-lows: Consider the time at whih Mr. Smith�rst �nds a free lerk. At this point eitherMs. Jones or Mr. Brown would have justleft and the other one would still be in ser-vie.� However, by the lak of memory of the expo-nential, it follows that the additional amountof time that this other person (either Jonesor Brown) would still have to spend in thepost oÆe is exponentially distributed withparameter �,� That is, it is the same as if servie for thisperson were just starting at this point. Hene,



Probability I{ Chap. 5: Continuous Random Variables 46by symmetry, the probability that the re-maining person �nishes before Smith mustequal 12.Uniqueness of memoryless property:F (x) = PfX > xgF (s + t) = F (s)F (t)F (x) = e��xExample 5.5d. Suppose that the numberof miles that a ar run before its battery wearsout is exponentially distributed with an aver-age value of 10,000 miles. If a person desiresto take a 5000-mile trip, what is the probabil-ity that he or she will be able to omplete thetrip without having to replae the ar battery?What an be said when the distribution is notexponential?� It follows by the memoryless property of theexponential distribution that the remaininglifetime (in thousands of miles) of the bat-



Probability I{ Chap. 5: Continuous Random Variables 47tery is exponential with parameter � = 110.� The desired probability isPfremaining lifetime > 5g = 1� F (5) = e�5�= e�1=2 � :604� If the lifetime distribution F is not expo-nential, then the relevant probability isPflifetime > t+5jlifetime > tg = 1� F (t + 5)1� F (t)where t is the number of miles that the bat-tery had been in use prior to the start of thetrip.Laplae distribution: (Double exponentialdistribution)� The distribution of a random variable thatis equally likely to be either positive or neg-ative and jXj � exp(�).� The density funtion:f (x) = 12�e��jxj �1 < x <1



Probability I{ Chap. 5: Continuous Random Variables 48� The distribution funtion:F (x) = 8>>>>>>>><>>>>>>>>: 12 Z x�1 �e�xdx x < 012 Z 0�1 �e�xdx + 12 Z x0 �e��xdx x > 0= 8>>>><>>>>: 12e�x x < 01� 12e��x x > 0Example 5.5e. Let us reonsider Example5.4e, whih suppose that a binary message is tobe transmitted from A to B, with the value 2being sent when the message is 1 and �2 whenit is 0. However, suppose now that rather thanbeing a standard normal random variable, thehannel noiseN is a Laplaian random variablewith parameter � = 1. Again suppose that ifR is the value reeived at loation B, then themessage is deoded as follows:If R � :5, then 1 is onluded.If R < :5, then 0 is onluded.� The noise is Laplae with parameter � = 1.



Probability I{ Chap. 5: Continuous Random Variables 49� The 2 types of errors will have probabilitiesgiven byPferror j message 1 is sentg = PfN < �1:5g= 12e�1:5 � :1116Pferror j message 0 is sentg = PfN � 2:5g= 12e�2:5 � :041� The error probabilities are higher when thenoise is Laplaian with � = 1 than when itis a standard normal variable.5.5.1 Hazard rate funtions� Consider a positive ontinuous random vari-able X that we interpret as being the life-time of some item, having distribution fun-tion F and density f .� The hazard rate (sometimes alled the fail-ure rate) funtion �(t) of F is de�ned by�(t) = f (t)F (t) F = 1� F



Probability I{ Chap. 5: Continuous Random Variables 50� PfX 2 (t; t + dt)jX > tg = PfX 2 (t; t + dt); X > tgPfX > tg= PfX 2 (t; t + dt)gPfX > tg� f(t)F (t)dt� �(t) represents the onditional probabilityintensity that a t-unit-old item will fail.� Suppose that the lifetime distribution is ex-ponential. Then, by the memoryless prop-erty, it follows that the distribution of re-maining life for a t-year-old item is the sameas for a new item. Hene �(t) should be on-stant. �(t) = f (t)F (t)= �e��te��t= �The parameter � is often referred to as therate of the distribution.



Probability I{ Chap. 5: Continuous Random Variables 51� The failure rate funtion �(t) uniquely de-termines the distribution F .� Note that by de�nition�(t) = ddtF (t)1� F (t)log(1� F (t)) = � Z t0 �(t)dt + kor 1� F (t) = ekexpf� Z t0 �(t)dtg� Letting t = 0 shows that k = 0 and thusF (t) = 1� expf� Z t0 �(t)dtg� If �(t) = a + bt:{ F (t) = 1� e�at�bt2=2{ f (t) = (a + bt)e�at�bt2=2; t � 0{ The Rayleigh density funtion if a = 0.Example 5.5f. One often hears that thedeath rate of a person who smokes is, at eahage, twie that of a nonsmoker. What does



Probability I{ Chap. 5: Continuous Random Variables 52this mean? Does it mean that a nonsmokerhas twie the probability of surviving a givennumber of years as does a smoker of the sameage?� �s(t) denote the hazard rate of a smoker ofage t and �n(t) that of a nonsmoker of aget, then �s(t) = 2�n(t)� The probability that anA-year-old nonsmokerwill survive until age B, A < B, isPfA-year-old nonsmoker reahes age Bg= Pfnonsmoker's lifetime > Bj nonsmoker's lifetime > A g= 1� Fnon(B)1� Fnon(A)= expf� ZB0 �n(t)dtgexpf� Z A0 �n(t)dtg= expf� ZBA �n(t)dtgwhereas the orresponding probability for asmoker is, by the same reasoning,



Probability I{ Chap. 5: Continuous Random Variables 53PfA-year-old smoker reahes age Bg= exp 8<:� ZBA �s(t)dt9=;= exp 8<:�2 ZBA �n(t)dt9=;= 24exp 8<:� ZBA �n(t)dt9=;352� Two people of the same age, one of whomis a smoker and the other a nonsmoker, theprobability that the smoker survives to anygiven age is the square of the orrespondingprobability for a nonsmoker.5.6 Other ontinuous distributions5.6.1 The Gamma distribution� A random variable is said to have a gammadistribution with parameters (t; �), � > 0,and t > 0 if its density funtion is given by
f (x) = 8>>>>>><>>>>>>: �e��x(�x)t�1�(t) x � 00 x < 0



Probability I{ Chap. 5: Continuous Random Variables 54where �(t), alled the gamma funtion, isde�ned as �(t) = Z10 e�yyt�1dy� The integration by parts of �(t),�(t) = �e�yyt�1j10 + Z10 e�y(t� 1)yt�2dy= (t� 1) Z10 e�yyt�2dy= (t� 1)�(t� 1)� For integral values of t, say t = n,�(n) = (n� 1)�(n� 1)= (n� 1)(n� 2)�(n� 2)= � � �= (n� 1)(n� 2) � � � 3 � 2�(1)� Sine �(1) = Z10 e�xdx = 1, it follows thatfor integral values of n,�(n) = (n� 1)!� If the events are ourring randomly in timeand in aordane with three axioms of Se.4.8, then it turns out that the amount of



Probability I{ Chap. 5: Continuous Random Variables 55time one has to wait until a total n eventshas ourred will be a gamma random vari-able with parameters (n; �).� Tn: The time at whih the nth event ours.PfTn � tg = PfN (t) � ng= 1Xj=nPfN (t) = jg
= 1Xj=n e��t(�t)jj!� The density funtion of Tn:f (t) = 1Xj=n e��tj(�t)j�1�j! � 1Xj=n �e��tj(�t)jj!= 1Xj=n �e��t(�t)j�1(j � 1)! � 1Xj=n �e��t(�t)jj!= �e��t(�t)n�1(n� 1)!This distribution is often referred to in theliterature as the n-Erlang distribution.� If n = 1, it is exp(�).� If � = 1=2 and t = n=2, it is �2n.



Probability I{ Chap. 5: Continuous Random Variables 56� The hi-squared distribution often arises inpratie as being the distribution of the er-ror involved in attempting to hit a target inn dimensional spae when eah oordinateerror is normally distributed.Example 5.6a. LetX be a gamma randomvariable with parameters t and �. Calulate (a)E[X ℄ and (b) Var(X).� (a)E[X ℄ = 1�(t) Z10 �xe��x(�x)t�1dx= 1��(t) Z10 �e��x(�x)tdx
= �(t + 1)��(t)= t�(b) E[X2℄ = t(t + 1)=�2Var(X) = t�2



Probability I{ Chap. 5: Continuous Random Variables 575.6.2 The Weibull distribution� The Weibull distribution is widely used inengineering pratie due to its versatility.� It was originally proposed for interpretationof fatigue data, but now its use has extendedto many other engineering problems.� It is widely used, in the �eld of life phe-nomena, as the distribution of the lifetimeof some objet.� The Weibull distribution funtion:F (x) = 8>>>><>>>>: 0 x � v1� expf�(x�v� )�g x > v(6:2)� A random variable whose umulative distri-bution funtion is given by Eq. (6.2) is saidto be a Weibull random variable with pa-rameters v, �, and �.



Probability I{ Chap. 5: Continuous Random Variables 58� Di�erentiation yields that the density isf (x) = 8>>>><>>>>: 0 x � v��(x�v� )��1 � expf�(x�v� )�g x > v5.6.3 The Cauhy distribution� A random variable is said to have a Cauhydistribution with parameter �, �1 < � <1, if its density is given byf (x) = 1� 11 + (x� �)2 �1 < � <1
Example 5.6b. Suppose that a narrow beamashlight is spun around its enter, whih is lo-ated a unit distane from the x-axis (see Fig.5.7). When the ashlight has stopped spinning,onsider the point X at whih the beam inter-sets the x-axis. (If the beam is not pointingtoward the x-axis, repeat the experiment.)� As indiated in Fig. 5.7, the point X is de-termined by the angle � between the ash-



Probability I{ Chap. 5: Continuous Random Variables 59light and the y-axis, whih from the phys-ial situation appears to be uniformly dis-tributed between ��=2 and �=2.� The distribution funtion of X is thus givenby F (x) = PfX � xg= Pftan � � xg= Pf� � tan�1 xg= 12 + 1� tan�1 xwhere the last equality follows sine �, beinguniform over (��=2; �=2), yields thatPf� � ag = a� (��=2)� = 12+a� ��2 < a < �2� The density funtion of X is given byf (x) = ddxF (x) = 1�(1 + x2) �1 < x <1�X has the Cauhy distribution.5.6.4 The Beta distribution



Probability I{ Chap. 5: Continuous Random Variables 60� A random variable is said to have a betadistribution if its density is given byf (x) = 8>>>>><>>>>>: 1B(a;b)xa�1(1� x)b�1 0 < x < 10 otherwisewhereB(a; b) = Z 10 xa�1(1� x)b�1dx�When a = b, the beta density is symmetriabout 1/2, giving more and more weight toregions about 1/2 as the ommon value ainreases.�When b > a, the density is skewed to theleft, and it is skewed to the right when a >b.� The relationship between the beta funtionand the gamma funtion:B(a; b) = �(a)�(b)�(a + b)E[X ℄ = aa + b



Probability I{ Chap. 5: Continuous Random Variables 61Var(X) = ab(a + b)2(a + b + 1)5.7 The distribution of a funtion of arandom variable� Suppose that we know the distribution ofXand want to �nd the distribution of g(X).� To do so, it is neessary to express the eventthat g(X) � y in terms of X being in someset.Example 5.7a.� Let X be uniformly distributed over (0, 1).We obtain the distribution of the randomvariable Y , de�ned by Y = Xn, as follows:For 0 � y � 1,FY (y) = PfY � yg= PfXn � yg= PfX � y1=ng



Probability I{ Chap. 5: Continuous Random Variables 62= FX(y1=n)= y1=n� The density funtion of Y is given by
fY (y) = 8>>>>>>><>>>>>>>: 1ny1=n�1 0 � y � 10 otherwiseExample 5.7b.� If X is a ontinuous random variable withprobability density fX , then the distribu-tion of Y = X2 is obtained as follows: Fory � 0,FY (y) = PfY � yg= PfX2 � yg= Pf�py � X � pyg= FX(py)� FX(�py)� Di�erentiation yieldsfY (y) = 12py [fX(py) + fX(�py)℄



Probability I{ Chap. 5: Continuous Random Variables 63Example 5.7.� IfX has a probability density fX , then Y =jXj has a density funtion that is obtainedas follows: For y � 0,FY (y) = PfY � yg= PfjXj � yg= Pf�y � X � yg= FX(y)� FX(�y)� On di�erentiation,fY (y) = fX(y) + fX(�y) y � 0



Probability I{ Chap. 5: Continuous Random Variables 64Theorem 7.1: Let X be a ontinuous ran-dom variable having probability density fun-tion fX . Suppose that g(x) is a stritly mono-tone (inreasing or dereasing), di�erentiable(and thus ontinuous) funtion of x. Then therandom variable Y de�ned by Y = g(X) hasa probability density funtion given byfY (y) = 8><>: fX [g�1(y)℄j ddyg�1(y)j if y = g(x) for some x0 if y 6= g(x) for all xwhere g�1(y) is de�ned to equal that value ofx suh that g(x) = y.Proof:�When g(x) is an inreasing funtion.� Suppose that y = g(x) for some x. Then,with Y = g(X)FY (y) = Pfg(X) � yg= PfX � g�1(y)g= FX(g�1(y))� Di�erentiation gives thatfY (y) = fX(g�1(y)) ddyg�1(y)



Probability I{ Chap. 5: Continuous Random Variables 65�When y 6= g(x) for any x, then FY (y) iseither 0 or 1, and in either ase fY (y) = 0.Example 5.7d. LetX be a ontinuous non-negative random variable with density funtionf , and let Y = Xn. Find fY , the probabilitydensity funtion of Y .� If g(x) = xn, theng�1(y) = y1=nand ddyfg�1(y)g = 1ny1=n�1
� From Theorem 7.1,fY (y) = 1ny1=n�1f (y1=n)� If n = 2, fY (y) = 12pyf (py)whih (sine X � 0) is in agreement withthe result of Example 5.7b.



Probability I{ Chap. 5: Continuous Random Variables 66Summary� A random variable is alled ontinuous ifthere is a nonnegative funtion f , alled theprobability density funtion ofX , suh thatfor any BPfX 2 Bg = ZB f (x)dx� IfX is ontinuous, then its distribution fun-tion F will be di�erentiable andddxF (x) = f (x)� Expeted value of X :E[X ℄ = Z1�1 xf (x)dx� E[g(X)℄ = Z1�1 g(x)f (x)dx� Var(X) = E[(X � E[X ℄)2℄ = E[X2℄ �(E[X ℄)2� Uniform(a; b):f (x) = 8>>>><>>>>: 1b�a if a � x � b;0 otherwise.



Probability I{ Chap. 5: Continuous Random Variables 67E[X ℄ = (a+b)2 Var(X) = (b�a)212� N (�; �2):f (x) = 1p2��e�(x��)2=2�2 �1 < x <1� = E[X ℄ �2 = Var(X)� IfX � N (�; �2), thenZ = X��� � N (0; 1).� If X � N (�; �2), then Z = aX + b �N (a� + b; a2�2).� Exp(�):f (x) = 8>>>><>>>>: �e��x if x � 0;0 otherwise.E[X ℄ = 1� Var(X) = 1�2� An exponential random variable has themem-oryless property,PfX > s + t j X > tg = PfX > sg� Hazard rate:�(t) = f (t)1� F (t) t � 0



Probability I{ Chap. 5: Continuous Random Variables 68� If F is the exponential distribution with pa-rameter �, then �(t) = �.� Gamma(t; �):f (x) = �e��x(�x)t�1�(t) x � 0E[X ℄ = t� Var(X) = t�2� Beta(a; b):f (x) = 1B(a; b)xa�1(1�x)b�1 0 � x � 1
E[X ℄ = aa+b Var(X) = ab(a+b)2(a+b+1)


