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5.1 Introduction

e Consider discrete random variable in Chap.
4.

e There also exist random variables whose set
of possible values is uncountable.

e Two examples would be the time that a
train arrives at a specified stop and the life-
time of a transistor.

e et X be such a random variable.

e We say that X 1s a continuous random vari-
able if there exist a nonnegative functionf,
defined for all real x € (—o00,0), having
the property that for any set B of real num-
bers

P{X € BY = [ f(z)dz (1.1)

The function f is called the probability den-

sity function of the random variable X (see
Fig. 5.1).
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o
1=P{X € (—00,00)} = [Z f(x)dz
e Letting B = |a, b],
Pla <X <b} = [ f(z)dz  (1.2)
e et a =0bin Eq. (1.2), we obtain
P{X =a} =i f(z)dz =0
e In words, this equation states that the prob-

ability that a continuous random variable
will assume any fixed value is zero.

e Distribution function:

P{X <a}=P{X <a}=F(a)= /" f(z)dx

Example 5.1a. Suppose that X is a contin-

uous random variable whose probability den-

sity function is given by

ﬂ@__cum—m%o<x<2
10 otherwise

(a) What is the value of C?7
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(b) Find P{X > 1}.
(a) C R4z —22%)dx =1

=2
223"
C |22 - 1 =1
3 x=0
3
C =—
8

P(X > 1} = [ f(a)de
= 2/12(433 — 22°%)dx

DO | —

Example 5.1b. The amount of time, in hours,
that a computer functions before breaking down
1s a, continuous random variable with probabil-

ity density function given by

fla)=1

What is the probability that

B )\6—513/100 T 2 O
x <0
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(a) a computer will function between 50 and 150
hours before breaking down;

(b) it will function less than 100 hours?
(a) 1= [22 flx)de =\ [7° e~ T/ 10y
1= — A(100)e~/1% * = 100

1
A= —
100

1
P{50 < X < 150} = /45" 1006_x/ 1005,

__ z/1002Y
50
e"1/? — ¢732 v 334

1

P{X <100} = 0 _—_=#/1004,
100 0

___ _x/100

- ¢ ‘0

1—e 1~ 633

|
=
D
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Example 5.1c. The lifetime in hours of a
certain kind of radio tube is a random variable
having a probability density function given by

0 x <100
fle)=1100 . 2 100

2
What is the probability that exactly 2 of 5
such tubes in a radio set will have to be re-
placed within the first 150 hours of operation?
Assume that the events E;, 1 = 1,2,3,4,5,
that the ¢th such tube will have to be replaced
within this time, are independent.

P(E;) = > f(x)da

= 100 /110500 ZIT_QCZCIZ'
1

3

e From the independence of the events E;, it
follows that the desired probability is

HENRE
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e The relationship between F' and f:
F(a) = P{X € (—00,d]} = [% f(z)dz

e Differentiating both sides of the above yields

d

" F(a) = f(a)

o If € is small, then

Pla—e/2< X <a+e/2) = [ f(a)da

a

~ ef(a)

e The probability that X will be contained in
an interval of length € around the point a is
approximately €f(a).

5.2 Expectation and variance of con-
tinuous random variables

e The expected value of a discrete random
variable:

E[X] = saP{X = 1}
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e If X is a continuous random variable having
probability density function f(x), then as

f(x)dr ~ P{r < X <x+dx}  fordzrsmall

e The expected value of X:
EX] = /2 xf(z)d

Example 5.2a. Find E|X]| when the den-
sity function of X is
20 0 <x <1
fla) = 0 otherwise

BIX] = Jaf(z)d
—/O 202 dx
2

3

Example 5.2b. The density function of X
1s given by

flz) =

1if0<x <1
0 otherwise
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Find E[e?].

eletY = e,
eforl <z <e,
Fy(x) = P{Y <1}
— P{e* <z}
= P{X <log(x)}
= 0 Fdy
= log(z)

e By differentiating Fy-(z), the probability den-
sity function of Y is given by
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Proposition 5.2.1: If X is a continuous
random variable with probability density func-
tion f(x), then for any real-valued function g,

Elg(X)] = 25 9(x) f(x)dz

An application of Proposition 2.1 to Example

5.2b:
Ele?] = [l e®dz =e— 1

Lemma 5.2.1: For a nonnegative random
variable Y.

E[Y] = f° P{Y > y}dy

Proof:

e Y is a continuous random variable with prob-
ability density function fy .

0° PY > yydy = " ;" fy(z)dedy

where we have used the fact that
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P{Y >y} = [;° fy(z)dz

e Interchanging the order of integration

0" PLY > yldy = 770 dy) fy (z)dx
= [z fy(z)de
_ Y]

Proof of Proposition 5.2.1:

e For any function g for which g(x) > 0, we
have from Lemma 5.2.1 that

Elg(X)] = [y~ P{g(X) > y}dy
— /O /xg f< )d:l?dy

— Jz:g(x) >O/O dgf( )dz
= Jr. (x)>09< z) f(x)dx

Example 5.2c. A stick of length 1 is split
at a point U that is uniformly distributed over

(0,1). Determine the expected length of the
piece that contains the point p, 0 < p < 1.
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o L;,(U): The length of the substick that con-
tains the point p.
e ['ig. 5.2:

1 1=-UU<p
U U>np

Lyp(U)
E[Ly(U)] = fi Lp(u)du

= (1 — w)du + [} udu

1 (1—-p?* 1 p?

e [t is interesting to note that the expected
length of the substick containing the point
p 1s maximized when p is the midpoint of
the original stick.

Example 5.2d. Suppose that if you are s
minutes early for an appointment, then you in-
cur the cost cs, and if you are s minutes late,
then you incur the cost k£s. Suppose that the
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travel time from where you presently are to
the location of your appointment is a continu-
ous random variable having probability density
function f. Determine the time at which you
should depart if you want to minimize your ex-
pected cost.

e X: The travel time.

e If you leave ¢ minutes before appointment,
then your cost C¢(X) is given by

et —-X) X <t

CH(X) = (X —t) if X >t

E[C(X)] = 7 Cilz) f(z)dx
— /(f c(t —x)f(x)dx + [ k(x —t)f(z)

= ct | flz)dx — ¢t xf(z)dz
+k [0 xf(x)dr — kt [ f(z)dx

e The value of ¢ that minimize E|C¥X)| can
now be obtained by calculus.
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& BCUX)] = etf(1) + cF (1) — ctf (1
—kt£() + k(1) ~ K1~ £(0)
— (k+)F(t) — k

e [lquating to zero shows that the minimal
expected cost is obtained when you leave t*
minutes before your appointment, where ¢*
satisfies

k

(") = k4 c

Corollary 5.2.1: If a and b are constants,
then
FlaX + bl =aFE|X]+

e The variance of a continuous random vari-
able is defined exactly as it is for a discrete
one.

o If F[X]| = p, then the variance of X:
Var(X) = E[(X — p)’] = E[X?] — p*
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Example 5.2e. Find Var(X) for X as given
in Example 5.2a.

[ J
E[X?] = [ 2* f(z)da
= /01 207 d
1
T2
e Since K| X| = %, we obtain that
1 (22 1
Var(X) = - (3) -

For constants a and b:
Var(aX + b) = a®Var(X)

The next few sections are devoted to a study
of some of important classes of continuous ran-
dom variables.

5.3 The uniform random variable

e A random variable is said to be uniformly
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distributed over the interval (0, 1) if its prob-
ability density function is given by

f(z)

1 o0<z <]
| 0 otherwise

eforany 0 <a < b <1,
Pla<X<bl=[f(x)dz=b—ua

e The probability that X is in any particular
subinterval of (0, 1) equals the length of that
subinterval.

e In general, we say that X is a uniform ran-
dom wvariable on the interval («, () if its
probability density function is given by

F(z) = Bi—aifoz<.x<5
0 otherwise
e Distribution function:
0 o<«
Fla) =15 fa<a<p
|0 otherwise
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Example 5.3a. Let X be uniformly dis-
tributed over (a, ). Find (a) F[X] and (b)
Var(X).

(b)

E[X?] = B v’dz




Probability I- Chap. 5: Continuous Random Variables 17

— The variance of a random variable that is
uniformly distributed over some interval
is the square of the length of that interval
divided by 12.

B B +af+a’? (a+pB)?
B 3 4
(B — )
12

Example 5.3b. If X isuniformly distributed
over (0, 10), calculate the probability that (a)
X <3,(b) X >6,and (¢c) 3 < X <8.

Var(X)

1 3
1 4
P{Xx — 1 —dr =

Example 5.3c. Buses arrive at a specified
stop at 15-minute intervals starting at 7 A.M.
That 1s, they arrive at 7, 7:15, 7:30, 7:45, and
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so on. If a passenger arrives at the stop at a
time that is uniformly distributed between 7
and 7:30, find the probability that he waits

(a) less than 5 minutes for a bus;

(b) more than 10 minutes for a bus.

e X: The number of minutes past 7 that the
passenger arrives at the stop.

(a) Since X is a uniform random variable over
the interval (0, 30), it follows that the pas-
senger will have to wait less than 5 minutes

if (and only if) he arrives between 7:10 and
7:15 or between 7:25 and 7:30.

e The desired probability is

P{l() < X <15} + P{25 < X < 30}

1 1 1
15 30

—d —dx = -

10 3002 + /35 3507 = 3

(b) He would have to wait more than 10 minutes

if he arrives between 7 and 7:05 or between
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7:15 and 7:20, and so the probability is
1

P{O<X<5}+P{15<X<20}:§

The next example was first considered by the
French mathematician L. F. Bertrand in 1889
and is often referred to as Bertrand’s paradoz.
It 1s 1s a geometrical probability problem.

Example 5.3d. Consider a random chord
of a circle. What is the probability that the
length of the chord will be greater than the
side of the equilateral triangle inscribed in that
circle?

e The first formulation is as follows:

— The position of the chord can be deter-
mined by its distance from the center of
the circle.

— This distance can vary between 0 and r,
the radius of the circle.

— The length of the chord will be greater
than the side of the equilateral triangle
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inscribed in the circle if its distance from
the center is less than r/2.

— Assume that a random chord is one whose
distance D from the center is uniformly
distributed between 0 and r.

— The probability that it is greater than the
side of an inscribed equilateral triangle is

o or/2 1
PiD<—-}=—"—=-
{ = 2} T 2
e The second formulation of the problem con-
sider an arbitrary chord of the circle; through

one end of the chord draw a tangent.

— The angle 6 between the chord and the
tangent, which can vary from 0° to 180°,
determines the position of the chord (see
Fig. 5.4).

— The length of the chord will be greater
than the side of the inscribed equilateral
triangle if the angle  is between 60° and
120°.

— Assume that a random chord is one whose
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angle 6 is uniformly distributed between
0° and 180°.

— The desired answer in this formulation is

120 —60 1
P{60 < 0 < 120} = T

5.4 Normal random variables

e X is a normal random variable, or simply
that X i1s normally distributed, with param-
eters 1 and o if the density of X is given

L (a2’

f(@:\/%a —00 < T < 00

e The density function is a bell-shaped curve
that is symmetric about u. (see Fig. 5.5).

e The normal distribution was introduced by
the French mathematician Abraham de Moivre
1n 1733 and was used by him to approximate
probabilities associated with binomial ran-
dom variables when the binomial parameter
n 1s large.
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e This result was later extended by Laplace
and others and now is encompassed in prob-
ability theorem known as the central limit
theorem.

e The central limit theorem (Chap. 8), one of
the two most important results in probabil-
ity theory, gives a theoretical base to the of-
ten noted empirical observation that many
random phenomena obey, at least approx-
imately, a normal probability distribution.
(The strong law of large number)

e Some examples of this behavior are the height
of a man, the velocity in any direction of a
molecule in gas, and the error made in mea-
suring a physical quantity.

e To prove that f(x) is indeed a probability
density function we need to show that

[ e (z—p)?/20%dx=1

2mo

— By making the substitution y = (z —
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)/0 we see that

\/2_ /OO — ,LL)2/20'2dx — \/_/OO
mTo
—Let I = [Z2, e_yQ/Qdy. Then

2 . /OO —y2/2dy/oo —562/2d33
/OO y —|—.’17 )/Qdydx

= /O 27 e 2 dfdr

2
= 21 [Pre " Pdr

—7“2/2 00

— —271e |O

= 27
= /2.
Example 5.4a. Find (a) £|X]|and (b) Var(X)

when X 1s a random variable with parameters
1 and o2,

_?J

2
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- Sl — 1) + ple” @2 g

_ 0 (1 — e~ @127 g,

_|_Iu\/_ /oo (x—p)? /2072 dr
e Py dy S, f(a)de

Vomo T
= 1 [°% flz)dx
= u

I
Q.
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e [f X is normally distributed with parame-
ters u and o2, then Y = aX + 3 is nor-
mally distributed with parameters apu +
and ao?.

e To show this, suppose a > 0. (The verifica-
tion when o < 0 is similar.)

— Fy-, the cumulative distribution function
of the random variable Y, is given by

Fy(a) = P{laX + 3 < a}

— P{X <@=P }
Q
- ex[57
Q
— Differentiation yields that the density func-
tion of Y is
1 a— [
fr(a) = fX(
Q Q
1 fa—B Vo
= — - 2
V2TQo P | ( « ,u) 20

- \/%oza exp{—(a — B — ap)*/2(a0)’
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e [f X is normally distributed with param-
eters 11 and o2, then Z = (X — p)/o is
normally distributed with parameters 0 and
1.

e Such a random variable Z is said to have
the standard, or unit, normal distribution.

e The cumulative distribution function of a
standard normal random variable:

1
d(x) = \/%/icoo e

e The value of ®(x) for nonnegative x are
given in Table 5.1.

e For negative values of x,
Pl—x)=1—-P(x) —oo<zr <00
e I[f / is a standard normal random variable,
then
P{Z < —z}=P{Z >z} —oco<zr<x

e Since Z = (X — p)/o is a standard normal
random variable whenever X is normally
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distributed with parameters p and o2, it fol-
lows that the distribution function of X can
be expressed as

Fx(a) = P{X <a}
e

[

O o)
o)

Example 5.4b. If X is a normal random

variable with parameters ¢ = 3 and o2 =9
find

(a) P{2 < X < b5};
(b) P{X > 0};
(c) P{|X — 3| > 6}.

o (a)

P{2< X <5} =P s <5 <
1 2

= Pi—— < Z <=
| 3 3}

2-3 X-3 5-3

|
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ol

oY~ o

=

=

W DN W DN

P{X>O}:P{ ; >T

= P{Z > —1}
1 —d(-1)
O(1) ~ .8413

X -3 0—3}

(c)
P{|X —-3|>6} = P{X >9} + P{X < -3}

X—-3 9-3
=P >
s s

X =3 —3—3}

P <
+{3 3

= P{Z > 2} + P{Z < -2}
1 —®(2)+ d(—2)
= 21 — &(2)] &~ .0456
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Example 5.4c. An examination is often re-
garded as being good (in the sense of deter-
mining a valid grade spread for those taking
it) if the test scores of those taking the exami-
nation can be approximated by a normal den-
sity function. (In order words, a graph of the
frequency of grade scores should have approxi-
mately the bell-shaped form of the normal den-
sity.) The instructor often uses the test scores
to estimate the normal parameters u and o2
and then assigns the letter grade A to those
whose test score is greater than u + o, B to
those whose score is between p and u + o, C
to those whose score is between 1 — o and p,
D to those whose score is between p© — 20 and
1t — o, and F' to those getting a score below
p—20. (This is sometimes referred to as grad-
ing "on the curve.”) Since

P{X >p+o} = P{
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= 1—®(1) ~ .1587

[ J
X —

P{M<X<u+a}:P{O< M<1}

O

— ®(1) — O(0) ~ .3413

X —
P{u—a<X<u}:P{—1< M<O}
o)

— B(0) — O(—1) ~ .3413

— B(2) — d(1) ~ 1350

X —
P{,u—20<X<,LL—O}:P{—2< 'LL<—1}

o
= ¢(—2) ~ .0228

P{X < j— 20} :P{X_“<—2}

e Approximately 16 percent of the class will
receive an A grade on the examination, 34
percent a B grade, 34 percent a C grade, and
14 percent a D grade; 2 percent will fail.
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Example 5.4d. An expert witness in a pa-
ternity suit testifies that the length (in days) of
pregnancy (that is, the time from impregnation
to the delivery of the child) is approximately
normally distributed with parameters u = 270
and 02 = 100. The defendant in the suit is
able to prove that he was out of the country
during a period that began 290 days before the
birth of the child and ended 240 days before the
birth. If the defendant was, in fact, the father
of the child, what is the probability that the
mother could have had the very long or very
short pregnancy indicated by the testimony?

e X: The length of the pregnancy:.
e Assume that the defendant is the father.

e The probability that the birth could occur
within the indicated period is
P{X > 290 or X < 240}
= P{X > 290} + P{X < 240}
_ pIX20 Loy p(Xa o )
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=1—-9(2)+1—P(3)
~ .0241

Example 5.4e.

e Suppose that a binary message— either 0 or
1-must be transmitted by write from loca-
tion A to location B.

e The data sent over the write are subject to a
channel noise disturbance, so to reduce the
possibility of error, the value 2 is sent over
the wire when the message is 1 and the value
—2 1s sent when the message is 0.

o I[f v, x £ 2, is the value sent at location A,
then R, the value received at location B, is
given by R = x+ NV, where NV 1s the channel
noise disturbance.

e When the message is received at location
B the receiver decodes it according to the
following rule:

If R > .5, then 1 is concluded.
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If R < .5, then 0 is concluded.

e As the channel noise is often normally dis-
tributed, we will determine the error prob-
abilities when N 1s a unit normal random
variable.

e There are two types of errors that can occur:
— One 1s that the message 1 can be incor-
rectly concluded to be O.
— The other that 0 is concluded to be 1.
e The first type of error will occur if the mes-

sage 1s 1 and 2 + N < .5, whereas the
second will occur if the message is 0 and

—2+ N > 5.

P{error|message is 1} = P{N < —1.5}
— 1 — ®(1.5) ~ 0668

P{error|message is 0} = P{N > 2.5}
= 1 — ®(2.5) ~ .0062
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e The following inequality for ®(x) is of the-
oretical importance:

I (1 1 1 1
wor ( - 3) e /2 < 1—P(z) < > S/
Vor\x V2T
for all z > 0 (4.4)

e To prove inequality (4.4)

— Note the obvious inequality
—4 =y /2 _ —YP)2 —2y,—y*/2
(1-3y™ *)e <e < (14+y “)e

o(1=3y~He v Py < [2° eV Py <

X
(1 4y 2)eV Py
d = a2 A a2
I =y e P = —(1=3y e VS
d 1 _.2 ol .2
il eV = —(1 4y 2)e v /2
for x > 0,

~(y =y e R < [T eV Py < —y e VR
or
(27! — x—3)6—y2/2 < /;O e_yQ/Qdy < g le7?/2
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o]l — d(x) ~ - 127T6_x2/2 for large x.

5.4.1 The normal approximation to the
binomial distribution

e The DEMoivre-Laplace limit theorem states
that when n is large, a binomial random
variable with parameters n and p will have
approximately the same distribution as the
normal random variable with the same mean
and variance as the binomial.

e This result was proved originally for the spe-
cial case p = 1/2 by DeMoivre in 1733 and
was then extended to general p by Laplace
in 1812.
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The DeMoivre-Laplace limit theo-
rem: If .S, denotes the number of successes
that occur when n independent trials, each re-
sulting in a success with probability p, are per-
formed then, for any a < b,

Sp — np

a <
— /np(1—p)
as n — OQ.

P < bl — ®(b) — (a)

e Poisson approximation and normal approx-
1mation.

e The normal approximation will, in general,
be quite good for values of n satisfying np(1—
p) > 10.

Example 5.4f. Let X be the number of
times that a fair coin, flipped 40 times, lands
heads. Find the probability that X = 20. Use
the normal approximation and then compare it
to the exact solution.
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P{X =20} = P{195< X < 20.5}
195—-20 X —20 20.5—20

_P{\/E<\/TO<\/T0}

X —20
~ P{—.16 < < .16}
=10 <
~ $(.16) — B(—.16)} ~ .1272

e The exact result:

40) (1)%0
P{X = 20} = (20) (2) ~ 1254

Example 5.4g. The ideal size of a first-year
class at a particular college 1s 150 students.
The college, knowing from past experience that
on the average only 30 percent of those ac-
cepted for admission will actually attend, uses
a policy of approving the applications of 450
students. Compute the probability that more
than 150 first-year students attend this college.

e X: The number of students that attend.
e X is a binomial(450, .3).
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e The normal approximation yields that

X — (450)(.3) _ 150.5 — (450)(.3)
J450(.3)(.7) T /450(.3)(.7)
1 — (1.59)

0559

P{X > 1505} = P

€

Example 5.4h. To determine the effective-
ness of a certain diet in reducing the amount of
cholesterol in the bloodstream, 100 people are
put on the diet. After they have been on the
diet for a sufficient length of time, their choles-
terol count will be taken. The nutritionist run-
ning this experiment has decided to endorse the
diet if at least 65 percent of the people have a
lower cholesterol count after going on the diet.
What is the probability that the nutritionist
endorses the new diet if, in fact, it has no ef-
fect on the cholesterol level?

e X: The number of people whose count is
lowered.
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o X is a B(100,1/2).

e The probability that the nutritionist will en-
dorse the diet when it actually has no effect
on the cholesterol count:

100 (100) (1)100
> X = P11 X >064.5
=65 | )(2) X = J
_ p|X - 000G) 5
00~
~1— (2.9)
~ .0019.

Historical notes concerning the normal distri-
bution:

e Abraham De Moire (1733).
e Karl Griedrich Gauss (1777-1855).

5.5 Exponential random variables

e A continuous random variable whose prob-
ability density function is given, for some
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A > 0, by

e AT if £ >0
fle) = 0 if x <0
18 sald to be an exponential random variable

(or, more simply, is said to be exponentially
distributed) with parameter \.

e The cumulative distribution function F'(a)
of an exponential random variable:

F(a) = P{X < a)

= [*xe Mdg
—)\x’
0

—1—e M 4>0

o Note that F(c0) = [ Ne Mdz = 1.

Example 5.5a. Let X be an exponential

random variable with parameter A. Calculate
(a) F[X] and (b) Var(X).

* (a)
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— The density function is given by

e M g >0

@ =1y 220

E[X] = [°zie Mdx

= — _)\x‘o /OOO G_Aajdx
—)\a:

— 0 —
A 0

_ 1

D)



Probability I- Chap. 5: Continuous Random Variables 42

1
Y

e The exponential distribution often arises, in
practice, as being the distribution of the
amount of the time until some specific event
OCCUTS.

e The amount of time starting from now un-
til an earthquake occurs, or until a new war
breaks out, or until a telephone call you re-
ceive turns out to be a wrong number are
all random variables that tend in practice
to have exponential distributions.

Example 5.5b. Suppose that the length of
a phone call in minutes 1s an exponential ran-
dom variable with parameter A = 1—10 If some-
one arrive immediately ahead of you at a public
telephone booth, find the probability that you

will have to wait

(a) more than 10 minutes;
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(b) between 10 and 20 minutes.

e X: The length of the call made by the per-
son in the booth.

(a)
P{X > 10} = 1 - F(10)
— et~ 368

(b)
P{10 < X < 20} = F(20) — F(10)
— el _ 72 233

Memoryless property:

e A nonnegative random variable X is mem-
oryless it

P{X >s+t|X >t} =P{X >s} foralls, t>0 (5.1)

e [f we think of X as being the lifetime of some
instrument, Eq. (5.1) states that the prob-
ability that the instrument survives for at
least s 4 t hours, given that it has survived
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t hours, 1s that same as the initial probabil-
ity that it survives for at least s hours.

e In other words, if the instrument is alive
at age t, the distribution of the remaining
amount of time that it survives is the same
as the original lifetime distribution (that is,
it is as if the instrument does not remember
that it has already been in use for a time t).

e The condition (5.1) is equivalent to
P{X >s+t,X >t}

pix > X
P{X >s+t} =P{X >s}P{X >t}
(5.2)

Example 5.5c. Consider a post office that
is staffed by two clerks. Suppose that when
Mr. Smith enters the system, he discovers that
Ms. Jones is being served by one of the clerks
and Mr. Brown by the other. Suppose also
that Mr. Smith is told that his service will be-
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oin as soon as either Jones or Brown leaves. If
the amount of time that a clerk spends with a
customer 1s exponentially distributed with pa-
rameter A, what is the probability that, of the
three customers, Mr. Smith is the last to leave
the post office?

e The answer is obtained by reasoning as fol-
lows: Consider the time at which Mr. Smith
first finds a free clerk. At this point either
Ms. Jones or Mr. Brown would have just
lett and the other one would still be in ser-
vice.

e However, by the lack of memory of the expo-
nential, it follows that the additional amount
of time that this other person (either Jones
or Brown) would still have to spend in the
post office is exponentially distributed with
parameter A,

e That is, it is the same as if service for this
person were just starting at this point. Hence,
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by symmetry, the probability that the re-
maining person finishes before Smith must
equal %

Uniqueness of memoryless property:
F(z) = P{X >z}
F(s+1) = F(s)F(t)

F(z) = e 7

Example 5.5d. Suppose that the number
of miles that a car run before its battery wears
out 1s exponentially distributed with an aver-
age value of 10,000 miles. If a person desires
to take a 5000-mile trip, what is the probabil-
1ty that he or she will be able to complete the
trip without having to replace the car battery?
What can be said when the distribution is not
exponential?

e [t follows by the memoryless property of the
exponential distribution that the remaining
lifetime (in thousands of miles) of the bat-
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tery is exponential with parameter A = 1—10

e The desired probability is
P{remaining lifetime > 5} = 1 — F(5) =e¢
e /2 ~ 604

o If the lifetime distribution F' is not expo-
nential, then the relevant probability is

1 —F(t+5)
1 — F(t)

where ¢ is the number of miles that the bat-

tery had been in use prior to the start of the

trip.

—dA

D

P{lifetime > t+5|lifetime > t} =

Laplace distribution: (Double exponential
distribution)

e The distribution of a random variable that
1s equally likely to be either positive or neg-
ative and | X| ~ exp(\).

e The density function:

1
f(z) = 2)\6_)‘m —00 < T <00
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e The distribution function:

LT o AN <0
Flx) = 1
@) %/900 Ae M dx + §/Ox e Mdr x>0
B %6)‘5’7 r <0
11— %e_)‘x x> 0

Example 5.5e. Let us reconsider Example
5.4e, which suppose that a binary message is to
be transmitted from A to B, with the value 2
being sent when the message is 1 and —2 when
1t 18 0. However, suppose now that rather than
being a standard normal random variable, the
channel noise [V is a Laplacian random variable
with parameter A = 1. Again suppose that if
R 1s the value received at location B, then the
message is decoded as follows:

If R > .5, then 1 is concluded.
If R < .5, then 0 is concluded.

e The noise 1s Laplace with parameter A = 1.
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e The 2 types of errors will have probabilities
given by
P{error | message 1 is sent} = P{N < —1.5}
= ;e—lﬁ ~ 1116
P{error | message 0 is sent} = P{N > 2.5}

1
“e 729 g 041
9

e The error probabilities are higher when the
noise 1s Laplacian with A = 1 than when it
18 a standard normal variable.

5.5.1 Hazard rate functions

e Consider a positive continuous random vari-
able X that we interpret as being the life-
time of some item, having distribution func-
tion /' and density f.

e The hazard rate (sometimes called the fail-
ure rate) function A(¢) of F is defined by

A(t):lfi((’?) F=1-F
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P{X € (t,t +dt), X >t}
P{X >t}
P{X € (t,t+dt)}
P{X >t}
/()

~ —dt
F(1)

P{X e (t,t+dt)|X >t} =

e \(t) represents the conditional probability
intensity that a t-unit-old item will fail.

e Suppose that the lifetime distribution is ex-
ponential. Then, by the memoryless prop-
erty, it follows that the distribution of re-
maining life for a t-year-old item is the same
as for a new item. Hence A(¢) should be con-
stant.

Aty = 10

Y
= A

The parameter \ is often reterred to as the
rate of the distribution.
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e The failure rate function A(¢) uniquely de-
termines the distribution £

e Note that by definition
d
al(t)
At) = -4t
Q 1 — F(t)
log(1 — F(t)) = — EA(t)dt + k

or
1 — F(t) = efexp{— [L M(t)dt}
e Letting t = 0 shows that £ = 0 and thus
F(t) = 1 — exp{— [{ A(t)dt}
o [f \(t) =a+ bt:
~F(t)=1- 6—at—bt2/2

— f(t) = (a+ bt)e_at_th/Q, t>0
— The Rayleigh density function if a = 0.

Example 5.5f. One often hears that the
death rate of a person who smokes is, at each
age, twice that of a nonsmoker. What does
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this mean? Does it mean that a nonsmoker
has twice the probability of surviving a given
number of years as does a smoker of the same
age’

e )\s(t) denote the hazard rate of a smoker of
age t and A\p(t) that of a nonsmoker of age
t, then

)\S(t) — 2>\n(t)

e The probability that an A-year-old nonsmoker
will survive until age B, A < B, is
P{ A-year-old nonsmoker reaches age B}

= P{nonsmoker’s lifetime > B| nonsmoker’s life1
1 — Fhon(B)
1 — Fhon(A)
exp{— i’ An(t)dt}
exp{— fi An(t)dt}
= exp{— [ An(t)dt}
whereas the corresponding probability for a
smoker is, by the same reasoning,
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P{ A-year-old smoker reaches age B}
= exp {— [§ As(t)dt}
= exp {—2 [{ An(t)dt]
— fexp {— 1 Mty

e T'wo people of the same age, one of whom
15 a smoker and the other a nonsmoker, the
probability that the smoker survives to any
given age is the square of the corresponding
probability for a nonsmoker.

5.6 Other continuous distributions

5.6.1 The Gamma distribution

e A random variable is said to have a gamma
distribution with parameters (£, A), A > 0,
and ¢ > 0 if its density function is given by

)\e_>‘x()\a:)t_1

flay=1 T T2
0 r <0
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where I'(¢)
defined as

[(t) = (e Yy dy

called the gamma function, is

)

e The integration by parts of ['(%),
[(t) = —e Yy P + [ Ut — 1)y’ dy
= (t—1) [ e Yy dy
= (t—1DI'(t—1)

e For integral values of ¢, say t = n,

['(n) =(n—1I'n-—1)
= (n—1)(n—2)'(n —2)

(= 1)(n=2)--3-20(1

e Since I['(1) = 77 e~ "dx = 1, it follows that
for integral values of n,

['(n)=(n—1)

e If the events are occurring randomly in time
and in accordance with three axioms of Sec.
4.8, then it turns out that the amount of



Probability I- Chap. 5: Continuous Random Variables 25

time one has to wait until a total n events
has occurred will be a gamma random vari-
able with parameters (n, ).

e 7). The time at which the nth event occurs.
P{T, <t} = P{N({) > n}
o0 .
= ¥ P{N(t)=j}
1=n
ESVVANRY:
_ OZO e ()\t)
j=n  J!
e The density function of T};:
o e i TIN o AeTAMG(AL)

ft) = % . b> .
j=n 9! j=n 9!
o Ae ML oo AeTM(At)
= ¥ . - X .
j=n  (j—1) j=n  J

B )\6—)\t<)\t)n—1
(n —1)!
This distribution is often referred to in the
literature as the n-Erlang distribution.

o [fn=1,itis exp(\).
elf \=1/2andt=n/2, it is x5.
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e The chi-squared distribution often arises in
practice as being the distribution of the er-
ror involved in attempting to hit a target in
n dimensional space when each coordinate
error 1s normally distributed.

Example 5.6a. Let X be a gamma random

variable with parameters ¢t and A. Calculate (a)
F[X] and (b) Var(X).

1w —A\T t—1

E|X] = I Are” U (Ax)' T dx

—~ AFI@) 2 xe M (\z)lde
C(t+1)

(1)
t
A
(b) E[X?] = t(t +1)/)\°
t

V&f(X) = p
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5.6.2 The Weibull distribution

e The Weibull distribution is widely used in
engineering practice due to its versatility.

e [t was originally proposed for interpretation
of fatigue data, but now its use has extended
to many other engineering problems.

o [t is widely used, in the field of life phe-
nomena, as the distribution of the lifetime
of some object.

e The Weibull distribution function:

; r < v
F@) =11~ ep{-(z22)8) = > (©2)

e A random variable whose cumulative distri-
bution function is given by Eq. (6.2) is said
to be a Weibull random variable with pa-
rameters v, o, and (.
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e Differentiation yields that the density is

0 r <
flx) = g(%)ﬁ—l _ exp{—(%)ﬁ} T >

5.6.3 The Cauchy distribution

e A random variable is said to have a Cauchy
distribution with parameter 8, —oo < 6 <
0o, if its density is given by

1 1
f(x>:7rl+(a:—0)2 — 00 < 0 <0

Example 5.6b. Suppose that a narrow beam
flashlight is spun around its center, which is lo-
cated a unit distance from the x-axis (see Fig.
5.7). When the flashlight has stopped spinning,
consider the point X at which the beam inter-
sects the z-axis. (If the beam is not pointing
toward the z-axis, repeat the experiment.)

e As indicated in Fig. 5.7, the point X is de-
termined by the angle 8 between the flash-
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light and the y-axis, which from the phys-
ical situation appears to be uniformly dis-
tributed between —7 /2 and 7 /2.

e The distribution function of X is thus given
by

F(x) = P{X <z}
= P{tanf < z}
— P{# < tan"' 2}
11 4
= -+ —tan "~z
2 T
where the last equality follows since 6, being

uniform over (—m /2, 7/2), yields that

— (—m/2 1
P{@ga}:a (W/):_+g tca<t
7 2 2 2
e The density function of X is given by
d 1
= —F = — <<
/(z) dx () m(1+ 22) CsEs

e X has the Cauchy distribution.

5.6.4 The Beta distribution
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e A random variable is said to have a beta
distribution if its density is given by

f(a) = B&L b>xa_1(1 2 lo<z <1

0 otherwise

where
B(a,b) = ff 22 Y1 — 2)" dz

e When a = b, the beta density is symmetric
about 1/2, giving more and more weight to
regions about 1/2 as the common value a
INcreases.

e When b > a, the density is skewed to the
left, and it is skewed to the right when a >

b.

e The relationship between the beta function
and the gamma function:

['(a)I'(b)
['(a+0)

B(a,b) =
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ab
(a+b)*(a+b+1)

Var(X) =

5.7 The distribution of a function of a
random variable

e Suppose that we know the distribution of X
and want to find the distribution of g(X).

e To do so, it 1s necessary to express the event
that g(X) < y in terms of X being in some
set.

Example 5.7a.

e Let X be uniformly distributed over (0, 1).
We obtain the distribution of the random
variable Y, defined by Y = X" as follows:
For 0 <y <1,

Fy(y) = P{Y <y}
= P{X" <y}
— P{X <y'/™
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= Fx(y'/")
yl/n

e The density function of Y is given by

ction of
) =TSy <1

0 otherwise

Example 5.7b.

o [f X is a continuous random variable with
probability density fx, then the distribu-
tion of Y = X? is obtained as follows: For
y >0,

Fy(y) = P{Y <y}
= P{X* <y}
= P{-Vy < X <y}
= Fx(Vy) — Fx(—Y)

e Differentiation yields

fyy) = 2\1@[]‘}((\/@) + fx(=vY)]
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Example 5.7c.

e [f X has a probability density fy, then Y =
| X'| has a density function that is obtained
as follows: For y > 0,

Fy(y) = P{Y <y}
= P{|X| <y}
= P{—y <X <y}
= Fx(y) — Fx(—y)

e On differentiation,

fyw)=fxw) + fx(~y) y>0
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Theorem 7.1: Let X be a continuous ran-
dom variable having probability density func-

tion fx. Suppose that g(z) is a strictly mono-
tone (increasing or decreasing), differentiable
(and thus continuous) function of . Then the

random variable Y defined by Y = ¢g(X) has
a probability density function given by

_ fX[g_l(y)”%g_l(y” if y = g(x) for some x
frw)= { U d if y # g(x) for all z

where ¢! (y) is defined to equal that value of
x such that g(z) = y.

Proof:

e When g¢(x) is an increasing function.

e Suppose that y = g(x) for some z. Then,
with Y = g(X)
Fy(y) = P{g(X) <y}
= P{X < g '(y)}
= Fx(g~'(y))
e Differentiation gives that

d

fy(y) = fx(g_l(w)dyg_l(y)
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e When y # g(x) for any x, then Fy(y) is
either 0 or 1, and in either case fy(y) = 0.

Example 5.7d. Let X be a continuous non-
negative random variable with density function

f,and let Y = X", Find fy, the probability
density function ot Y.

o If g(x) = 2", then
g y) =yH"

and

L P R SR |
dy{g W)=y

e From Theorem 7.1,

fy(y) = iyl/ Lyt

olfn=2

fy(y) = 2\1@1‘(\/@)

which (since X > 0) is in agreement with
the result of Example 5.7b.
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Summary

e A random variable is called continuous if
there is a nonnegative function f, called the

probability density function ot X, such that
for any B

P{X € B} = |p f(z)dx

e If X is continuous, then its distribution func-
tion F' will be differentiable and

d
F(x) = f(x)

e Expected value of X:
E[X]| = 2% xf(z)dx

o Blg(X)] = 250 g(a) f(x)da
o Var(X) = E[(X — E[X])?] = E[X?] —
(E[X])?

e Uniform(a, b):

f(z)

pioifa <z <b,

— a
0  otherwise.
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_a)?
E[X] =0 var(x) = 079

® N(p,0°);
L (a2
f(x):ﬁe H —00 < & < 00
mo
n=E[X] o%=Var(X)
o If X ~ N(u,0%), then Z = 21 ~ N(0,1).

oIf X ~ N(u,0%), then Z = aX +b ~
Nlap + b, a’0?).

o Exp()\):
Ae M if ¢ > 0,
flz) = 0 otherwise.
EX]=% Var(X)=

e An exponential random variable has the mem-
oryless property,

P{X>s+t| X >t} =P{X > s}
e Hazard rate:

NG P AR

- F(t) =
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e If /' is the exponential distribution with pa-
rameter A\, then A\(f) = A

e Gamma/(t, \):

o) =2 a0
EX]=% Var(X) =1

e Beta(a, b):
f(x) = 5 clz b)xa_l(l—x)b_l 0<x<1
ElX]=gp VarlX) = (a+b)2%2+b+1)



