
Probability I{ Chap. 5: Continuous Random Variables 15.1 Introdu
tion� Consider dis
rete random variable in Chap.4.� There also exist random variables whose setof possible values is un
ountable.� Two examples would be the time that atrain arrives at a spe
i�ed stop and the life-time of a transistor.� Let X be su
h a random variable.�We say thatX is a 
ontinuous random vari-able if there exist a nonnegative fun
tionf ,de�ned for all real x 2 (�1;1), havingthe property that for any set B of real num-bers PfX 2 Bg = ZB f (x)dx (1:1)The fun
tion f is 
alled the probability den-sity fun
tion of the random variableX (seeFig. 5.1).



Probability I{ Chap. 5: Continuous Random Variables 2� 1 = PfX 2 (�1;1)g = Z1�1 f (x)dx� Letting B = [a; b℄,Pfa � X � bg = Z ba f (x)dx (1:2)� Let a = b in Eq. (1.2), we obtainPfX = ag = Z aa f (x)dx = 0� In words, this equation states that the prob-ability that a 
ontinuous random variablewill assume any �xed value is zero.� Distribution fun
tion:PfX < ag = PfX � ag = F (a) = Z a�1 f (x)dxExample 5.1a. Suppose thatX is a 
ontin-uous random variable whose probability den-sity fun
tion is given byf (x) = 8>>>><>>>>:C(4x� 2x2) 0 < x < 20 otherwise(a) What is the value of C?



Probability I{ Chap. 5: Continuous Random Variables 3(b) Find PfX > 1g:(a) C Z 20 (4x� 2x2)dx = 1C 26666642x2 � 2x33 3777775�����������x=2x=0 = 1
C = 38(b) PfX > 1g = Z11 f (x)dx= 38 Z 21 (4x� 2x2)dx= 12Example 5.1b. The amount of time, in hours,that a 
omputer fun
tions before breaking downis a 
ontinuous random variable with probabil-ity density fun
tion given byf (x) = 8>>>><>>>>: �e�x=100 x � 00 x < 0What is the probability that



Probability I{ Chap. 5: Continuous Random Variables 4(a) a 
omputer will fun
tion between 50 and 150hours before breaking down;(b) it will fun
tion less than 100 hours?(a) 1 = Z1�1 f (x)dx = � Z10 e�x=100dx1 = � �(100)e�x=100������10 = 100�� = 1100
Pf50 < X < 150g = Z 15050 1100e�x=100dx= � ex=100������15050= e�1=2 � e�3=2 � :384(b) PfX < 100g = Z 1000 1100e�x=100dx= � ex=100������1000= 1� e�1 � :633



Probability I{ Chap. 5: Continuous Random Variables 5Example 5.1
. The lifetime in hours of a
ertain kind of radio tube is a random variablehaving a probability density fun
tion given byf (x) = 8>>>><>>>>: 0 x � 100100x2 x > 100What is the probability that exa
tly 2 of 5su
h tubes in a radio set will have to be re-pla
ed within the �rst 150 hours of operation?Assume that the events Ei, i = 1; 2; 3; 4; 5,that the ith su
h tube will have to be repla
edwithin this time, are independent.� P (Ei) = Z 1500 f (x)dx= 100 Z 150100 x�2dx= 13� From the independen
e of the events Ei, itfollows that the desired probability is0BBBB�521CCCCA 0BBB�131CCCA2 0BBB�231CCCA3 = 80243



Probability I{ Chap. 5: Continuous Random Variables 6� The relationship between F and f :F (a) = PfX 2 (�1; a℄g = Z a�1 f (x)dx� Di�erentiating both sides of the above yieldsddaF (a) = f (a)� If � is small, thenPfa� �=2 � X � a + �=2g = Z a+�=2a��=2 f (x)dx� �f (a)� The probability that X will be 
ontained inan interval of length � around the point a isapproximately �f (a).5.2 Expe
tation and varian
e of 
on-tinuous random variables� The expe
ted value of a dis
rete randomvariable: E[X ℄ = Xx xPfX = xg



Probability I{ Chap. 5: Continuous Random Variables 7� IfX is a 
ontinuous random variable havingprobability density fun
tion f (x), then asf (x)dx � Pfx � X � x+dxg for dx small� The expe
ted value of X :E[X ℄ = Z1�1 xf (x)dxExample 5.2a. Find E[X ℄ when the den-sity fun
tion of X isf (x) = 8>>>><>>>>: 2x if 0 � x � 10 otherwise� E[X ℄ = Z xf (x)dx= Z 10 2x2dx= 23Example 5.2b. The density fun
tion of Xis given byf (x) = 8>>>><>>>>: 1 if 0 � x � 10 otherwise



Probability I{ Chap. 5: Continuous Random Variables 8Find E[eX ℄.� Let Y = eX .� For 1 � x � e,FY (x) = PfY � xg= PfeX � xg= PfX � log(x)g= Z log(x)0 f (y)dy= log(x)� By di�erentiatingFY (x), the probability den-sity fun
tion of Y is given byfY (x) = 1x 1 � x � e� E[eX ℄ = E[Y ℄ = Z1�1 xfY (x)dx= Z e1 dx= e� 1



Probability I{ Chap. 5: Continuous Random Variables 9Proposition 5.2.1: If X is a 
ontinuousrandom variable with probability density fun
-tion f (x), then for any real-valued fun
tion g,E[g(X)℄ = Z1�1 g(x)f (x)dxAn appli
ation of Proposition 2.1 to Example5.2b: E[eX ℄ = Z 10 exdx = e� 1Lemma 5.2.1: For a nonnegative randomvariable Y ,E[Y ℄ = Z10 PfY > ygdyProof:� Y is a 
ontinuous random variable with prob-ability density fun
tion fY .� Z10 PfY > ygdy = Z10 Z1y fY (x)dxdywhere we have used the fa
t that



Probability I{ Chap. 5: Continuous Random Variables 10
PfY > yg = Z1y fY (x)dx� Inter
hanging the order of integrationZ10 PfY > ygdy = Z10 (Z x0 dy)fY (x)dx= Z10 xfY (x)dx= E[Y ℄Proof of Proposition 5.2.1:� For any fun
tion g for whi
h g(x) � 0, wehave from Lemma 5.2.1 thatE[g(X)℄ = Z10 Pfg(X) > ygdy= Z10 Zx:g(x)>y f (x)dxdy= Zx:g(x)>0 Z g(x)0 dyf (x)dx= Zx:g(x)>0 g(x)f (x)dxExample 5.2
. A sti
k of length 1 is splitat a point U that is uniformly distributed over(0,1). Determine the expe
ted length of thepie
e that 
ontains the point p, 0 � p � 1.



Probability I{ Chap. 5: Continuous Random Variables 11� Lp(U ): The length of the substi
k that 
on-tains the point p.� Fig. 5.2: Lp(U ) = 8>>>><>>>>: 1� U U < pU U > p� E[Lp(U )℄ = Z 10 Lp(u)du= Z p0 (1� u)du + Z 1p udu= 12 � (1� p)22 + 12 � p22= 12 + p(1� p)� It is interesting to note that the expe
tedlength of the substi
k 
ontaining the pointp is maximized when p is the midpoint ofthe original sti
k.Example 5.2d. Suppose that if you are sminutes early for an appointment, then you in-
ur the 
ost 
s, and if you are s minutes late,then you in
ur the 
ost ks. Suppose that the



Probability I{ Chap. 5: Continuous Random Variables 12travel time from where you presently are tothe lo
ation of your appointment is a 
ontinu-ous random variable having probability densityfun
tion f . Determine the time at whi
h youshould depart if you want to minimize your ex-pe
ted 
ost.�X : The travel time.� If you leave t minutes before appointment,then your 
ost Ct(X) is given byCt(X) = 8>>>><>>>>: 
(t�X) if X � tk(X � t) if X � t� E[Ct(X)℄ = Z10 Ct(x)f (x)dx= Z t0 
(t� x)f (x)dx + Z1t k(x� t)f (x)dx= 
t Z t0 f (x)dx� 
 Z t0 xf (x)dx+k Z1t xf (x)dx� kt Z1t f (x)dx� The value of t that minimize E[Ct(X)℄ 
annow be obtained by 
al
ulus.



Probability I{ Chap. 5: Continuous Random Variables 13� ddtE[Ct(X)℄ = 
tf (t) + 
F (t)� 
tf (t)�ktf (t) + ktf (t)� k[1� f (t)℄= (k + 
)F (t)� k� Equating to zero shows that the minimalexpe
ted 
ost is obtained when you leave t�minutes before your appointment, where t�satis�es F (t�) = kk + 
Corollary 5.2.1: If a and b are 
onstants,then E[aX + b℄ = aE[X ℄ + b
� The varian
e of a 
ontinuous random vari-able is de�ned exa
tly as it is for a dis
reteone.� If E[X ℄ = �, then the varian
e of X :Var(X) = E[(X � �)2℄ = E[X2℄� �2



Probability I{ Chap. 5: Continuous Random Variables 14Example 5.2e. Find Var(X) forX as givenin Example 5.2a.� E[X2℄ = Z1�1 x2f (x)dx= Z 10 2x3dx= 12� Sin
e E[X ℄ = 23, we obtain thatVar(X) = 12 � 0BBB�231CCCA2 = 118For 
onstants a and b:Var(aX + b) = a2Var(X)The next few se
tions are devoted to a studyof some of important 
lasses of 
ontinuous ran-dom variables.5.3 The uniform random variable� A random variable is said to be uniformly



Probability I{ Chap. 5: Continuous Random Variables 15distributed over the interval (0, 1) if its prob-ability density fun
tion is given byf (x) = 8>>>><>>>>: 1 0 < x < 10 otherwise� For any 0 < a < b < 1,Pfa � X � bg = Z ba f (x)dx = b� a� The probability that X is in any parti
ularsubinterval of (0, 1) equals the length of thatsubinterval.� In general, we say that X is a uniform ran-dom variable on the interval (�; �) if itsprobability density fun
tion is given byf (x) = 8>>>>><>>>>>: 1��� if � < x < �0 otherwise� Distribution fun
tion:
F (a) = 8>>>>>>>>><>>>>>>>>>:

0 a � �a����� if � < a < �0 otherwise



Probability I{ Chap. 5: Continuous Random Variables 16Example 5.3a. Let X be uniformly dis-tributed over (�; �). Find (a) E[X ℄ and (b)Var(X).� (a) E[X ℄ = Z1�1 xf (x)dx= Z �� x� � �dx= �2 � �22(� � �)= � + �2(b){ To �nd Var(X), we �rst 
al
ulate E[X2℄.E[X2℄ = Z �� 1� � �x2dx= �3 � �33(� � �)= �2 + �� + �23



Probability I{ Chap. 5: Continuous Random Variables 17{ The varian
e of a random variable that isuniformly distributed over some intervalis the square of the length of that intervaldivided by 12.Var(X) = �2 + �� + �23 � (� + �)24= (� � �)212Example 5.3b. IfX is uniformly distributedover (0, 10), 
al
ulate the probability that (a)X < 3, (b) X > 6, and (
) 3 < X < 8.
� (a) PfX < 3g = Z 30 110dx = 310(b) PfX > 6g = Z 106 110dx = 410(
) Pf3 < X < 8g = Z 83 110dx = 12
Example 5.3
. Buses arrive at a spe
i�edstop at 15-minute intervals starting at 7 A.M.That is, they arrive at 7, 7:15, 7:30, 7:45, and



Probability I{ Chap. 5: Continuous Random Variables 18so on. If a passenger arrives at the stop at atime that is uniformly distributed between 7and 7:30, �nd the probability that he waits(a) less than 5 minutes for a bus;(b) more than 10 minutes for a bus.�X : The number of minutes past 7 that thepassenger arrives at the stop.(a) Sin
e X is a uniform random variable overthe interval (0, 30), it follows that the pas-senger will have to wait less than 5 minutesif (and only if) he arrives between 7:10 and7:15 or between 7:25 and 7:30.� The desired probability isPf10 < X < 15g + Pf25 < X < 30g= Z 1510 130dx + Z 3025 130dx = 13(b) He would have to wait more than 10 minutesif he arrives between 7 and 7:05 or between



Probability I{ Chap. 5: Continuous Random Variables 197:15 and 7:20, and so the probability isPf0 < X < 5g + Pf15 < X < 20g = 13The next example was �rst 
onsidered by theFren
h mathemati
ian L. F. Bertrand in 1889and is often referred to as Bertrand's paradox.It is is a geometri
al probability problem.Example 5.3d. Consider a random 
hordof a 
ir
le. What is the probability that thelength of the 
hord will be greater than theside of the equilateral triangle ins
ribed in that
ir
le?� The �rst formulation is as follows:{ The position of the 
hord 
an be deter-mined by its distan
e from the 
enter ofthe 
ir
le.{ This distan
e 
an vary between 0 and r,the radius of the 
ir
le.{ The length of the 
hord will be greaterthan the side of the equilateral triangle



Probability I{ Chap. 5: Continuous Random Variables 20ins
ribed in the 
ir
le if its distan
e fromthe 
enter is less than r=2.{ Assume that a random 
hord is one whosedistan
e D from the 
enter is uniformlydistributed between 0 and r.{ The probability that it is greater than theside of an ins
ribed equilateral triangle isP 8><>:D < r29>=>; = r=2r = 12� The se
ond formulation of the problem 
on-sider an arbitrary 
hord of the 
ir
le; throughone end of the 
hord draw a tangent.{ The angle � between the 
hord and thetangent, whi
h 
an vary from 0Æ to 180Æ,determines the position of the 
hord (seeFig. 5.4).{ The length of the 
hord will be greaterthan the side of the ins
ribed equilateraltriangle if the angle � is between 60Æ and120Æ.{ Assume that a random 
hord is one whose



Probability I{ Chap. 5: Continuous Random Variables 21angle � is uniformly distributed between0Æ and 180Æ.{ The desired answer in this formulation isPf60 < � < 120g = 120� 60180 = 135.4 Normal random variables�X is a normal random variable, or simplythatX is normally distributed, with param-eters � and �2 if the density of X is givenbyf (x) = 1p2��e�(x��)2=2�2 �1 < x <1� The density fun
tion is a bell-shaped 
urvethat is symmetri
 about �. (see Fig. 5.5).� The normal distribution was introdu
ed bythe Fren
h mathemati
ian Abraham deMoivrein 1733 and was used by him to approximateprobabilities asso
iated with binomial ran-dom variables when the binomial parametern is large.



Probability I{ Chap. 5: Continuous Random Variables 22� This result was later extended by Lapla
eand others and now is en
ompassed in prob-ability theorem known as the 
entral limittheorem.� The 
entral limit theorem (Chap. 8), one ofthe two most important results in probabil-ity theory, gives a theoreti
al base to the of-ten noted empiri
al observation that manyrandom phenomena obey, at least approx-imately, a normal probability distribution.(The strong law of large number)� Some examples of this behavior are the heightof a man, the velo
ity in any dire
tion of amole
ule in gas, and the error made in mea-suring a physi
al quantity.� To prove that f (x) is indeed a probabilitydensity fun
tion, we need to show that1p2�� Z1�1 e�(x��)2=2�2dx=1
{ By making the substitution y = (x �



Probability I{ Chap. 5: Continuous Random Variables 23�)=�, we see that1p2�� Z1�1 e�(x��)2=2�2dx = 1p2� Z1�1 e�y2=2dy
{ Let I = Z1�1 e�y2=2dy. ThenI2 = Z1�1 e�y2=2dy Z1�1 e�x2=2dx= Z1�1 Z1�1 e�(y2+x2)=2dydx= Z10 Z 2�0 er2=2rd�dr= 2� Z10 re�r2=2dr= �2�e�r2=2j10= 2�{ I = p2�.Example 5.4a. Find (a)E[X ℄ and (b) Var(X)when X is a random variable with parameters� and �2.� (a)E[X ℄ = 1p2�� Z1�1 xe�(x��)2=2�2dx



Probability I{ Chap. 5: Continuous Random Variables 24= 1p2�� Z1�1[(x� �) + �℄e�(x��)2=2�2dx= 1p2�� Z1�1(x� �)e�(x��)2=2�2dx+� 1p2�� Z1�1 e�(x��)2=2�2dx= 1p2�� Z1�1 ye�y2=2�2dy + � Z1�1 f (x)dx= � Z1�1 f (x)dx= �(b)Var(X) = E[(X � �)2℄= 1p2�� Z1�1(x� �)2e�(x��)2=2�2dx
= �2p2� Z1�1 y2e�y2=2dy
= �2p2� 264�ye�y2=2j1�1 + Z1�1 e�y2=2dy375= �2 1p2� Z1�1 e�y2=2dy= �2



Probability I{ Chap. 5: Continuous Random Variables 25� If X is normally distributed with parame-ters � and �2, then Y = �X + � is nor-mally distributed with parameters �� + �and �2�2.� To show this, suppose � > 0. (The veri�
a-tion when � < 0 is similar.){ FY , the 
umulative distribution fun
tionof the random variable Y , is given byFY (a) = Pf�X + � � ag= P 8>>><>>>:X � a� �� 9>>>=>>>;= FX 0BBB�a� �� 1CCCA{ Di�erentiation yields that the density fun
-tion of Y isfY (a) = 1�fX 0BBB�a� �� 1CCCA
= 1p2��� exp 8>>>>><>>>>>:� 0BBB�a� �� � �1CCCA2 =2�29>>>>>=>>>>>;= 1p2��� expf�(a� � � ��)2=2(��)2g



Probability I{ Chap. 5: Continuous Random Variables 26� If X is normally distributed with param-eters � and �2, then Z = (X � �)=� isnormally distributed with parameters 0 and1.� Su
h a random variable Z is said to havethe standard, or unit, normal distribution.� The 
umulative distribution fun
tion of astandard normal random variable:�(x) = 1p2� Z x�1 e�y2=2dy� The value of �(x) for nonnegative x aregiven in Table 5.1.� For negative values of x,�(�x) = 1� �(x) �1 < x <1� If Z is a standard normal random variable,thenPfZ � �xg = PfZ > xg �1 < x <1� Sin
e Z = (X � �)=� is a standard normalrandom variable whenever X is normally



Probability I{ Chap. 5: Continuous Random Variables 27distributed with parameters � and �2, it fol-lows that the distribution fun
tion of X 
anbe expressed asFX(a) = PfX � ag= P 0BBB�X � �� � a� �� 1CCCA= � 0BB�a� �� 1CCA
Example 5.4b. If X is a normal randomvariable with parameters � = 3 and �2 = 9,�nd(a) Pf2 < X < 5g;(b) PfX > 0g;(
) PfjX � 3j > 6g.� (a)Pf2 < X < 5g = P 8>>><>>>:2� 33 < X � 33 < 5� 33 9>>>=>>>;= P 8>>><>>>:�13 < Z < 239>>>=>>>;



Probability I{ Chap. 5: Continuous Random Variables 28= � 0BBB�231CCCA� � 0BBB��131CCCA= � 0BBB�231CCCA� 266641� � 0BBB�131CCCA37775 � :3779(b)PfX > 0g = P 8>>><>>>:X � 33 > 0� 33 9>>>=>>>;= PfZ > �1g= 1� �(�1)= �(1) � :8413
(
)PfjX � 3j > 6g = PfX > 9g + PfX < �3g= P 8>>><>>>:X � 33 > 9� 33 9>>>=>>>;+P 8>>><>>>:X � 33 < �3� 33 9>>>=>>>;= PfZ > 2g + PfZ < �2g= 1� �(2) + �(�2)= 2[1� �(2)℄ � :0456



Probability I{ Chap. 5: Continuous Random Variables 29Example 5.4
. An examination is often re-garded as being good (in the sense of deter-mining a valid grade spread for those takingit) if the test s
ores of those taking the exami-nation 
an be approximated by a normal den-sity fun
tion. (In order words, a graph of thefrequen
y of grade s
ores should have approxi-mately the bell-shaped form of the normal den-sity.) The instru
tor often uses the test s
oresto estimate the normal parameters � and �2and then assigns the letter grade A to thosewhose test s
ore is greater than � + �, B tothose whose s
ore is between � and � + �, Cto those whose s
ore is between � � � and �,D to those whose s
ore is between �� 2� and� � �, and F to those getting a s
ore below��2�. (This is sometimes referred to as grad-ing "on the 
urve.") Sin
e� PfX > � + �g = P 8>>><>>>:X � �� > 19>>>=>>>;



Probability I{ Chap. 5: Continuous Random Variables 30= 1� �(1) � :1587� Pf� < X < � + �g = P 8>>><>>>:0 < X � �� < 19>>>=>>>;= �(1)� �(0) � :3413� Pf�� � < X < �g = P 8>>><>>>:�1 < X � �� < 09>>>=>>>;= �(0)� �(�1) � :3413� Pf�� 2� < X < �� �g = P 8<:�2 < X � �� < �19=;= �(2)� �(1) � :1359� PfX < �� 2�g = P 8>>><>>>:X � �� < �29>>>=>>>;= �(�2) � :0228� Approximately 16 per
ent of the 
lass willre
eive an A grade on the examination, 34per
ent a B grade, 34 per
ent a C grade, and14 per
ent a D grade; 2 per
ent will fail.



Probability I{ Chap. 5: Continuous Random Variables 31Example 5.4d. An expert witness in a pa-ternity suit testi�es that the length (in days) ofpregnan
y (that is, the time from impregnationto the delivery of the 
hild) is approximatelynormally distributed with parameters � = 270and �2 = 100. The defendant in the suit isable to prove that he was out of the 
ountryduring a period that began 290 days before thebirth of the 
hild and ended 240 days before thebirth. If the defendant was, in fa
t, the fatherof the 
hild, what is the probability that themother 
ould have had the very long or veryshort pregnan
y indi
ated by the testimony?�X : The length of the pregnan
y.� Assume that the defendant is the father.� The probability that the birth 
ould o

urwithin the indi
ated period isPfX > 290 or X < 240g= PfX > 290g + PfX < 240g= P 8<:X�27010 > 29=; + P 8<:X�27010 < �39=;



Probability I{ Chap. 5: Continuous Random Variables 32= 1� �(2) + 1� �(3)� :0241Example 5.4e.� Suppose that a binary message{ either 0 or1{must be transmitted by write from lo
a-tion A to lo
ation B.� The data sent over the write are subje
t to a
hannel noise disturban
e, so to redu
e thepossibility of error, the value 2 is sent overthe wire when the message is 1 and the value�2 is sent when the message is 0.� If x, x � 2, is the value sent at lo
ation A,then R, the value re
eived at lo
ation B, isgiven byR = x+N , whereN is the 
hannelnoise disturban
e.�When the message is re
eived at lo
ationB the re
eiver de
odes it a

ording to thefollowing rule:If R � :5; then 1 is 
on
luded.



Probability I{ Chap. 5: Continuous Random Variables 33If R < :5; then 0 is 
on
luded.� As the 
hannel noise is often normally dis-tributed, we will determine the error prob-abilities when N is a unit normal randomvariable.� There are two types of errors that 
an o

ur:{ One is that the message 1 
an be in
or-re
tly 
on
luded to be 0.{ The other that 0 is 
on
luded to be 1.� The �rst type of error will o

ur if the mes-sage is 1 and 2 + N < :5, whereas these
ond will o

ur if the message is 0 and�2 +N � :5.� Pferrorjmessage is 1g = PfN < �1:5g= 1� �(1:5) � :0668� Pferrorjmessage is 0g = PfN � 2:5g= 1� �(2:5) � :0062



Probability I{ Chap. 5: Continuous Random Variables 34� The following inequality for �(x) is of the-oreti
al importan
e:1p2� 0BBB�1x � 1x31CCCA e�x2=2 < 1��(x) < 1p2� 1xe�x2=2for all x > 0 (4.4)� To prove inequality (4.4){ Note the obvious inequality(1�3y�4)e�y2=2 < e�y2=2 < (1+y�2)e�y2=2Z1x (1�3y�4)e�y2=2dy < Z1x e�y2=2dy <Z1x (1 + y�2)e�y2=2dyddy [(y�1�y�3)e�y2=2℄ = �(1�3y�4)e�y2=2ddy [y�1e�y2=2℄ = �(1 + y�2)e�y2=2for x > 0,�(y�1 � y�3)e�y2=2j1x < Z 1x e�y2=2dy < �y�1e�y2=2j1xor (x�1 � x�3)e�y2=2 < Z 1x e�y2=2dy < x�1e�x2=2



Probability I{ Chap. 5: Continuous Random Variables 35� 1� �(x) � 1xp2�e�x2=2 for large x.5.4.1 The normal approximation to thebinomial distribution� The DEMoivre-Lapla
e limit theorem statesthat when n is large, a binomial randomvariable with parameters n and p will haveapproximately the same distribution as thenormal random variable with the same meanand varian
e as the binomial.� This result was proved originally for the spe-
ial 
ase p = 1=2 by DeMoivre in 1733 andwas then extended to general p by Lapla
ein 1812.



Probability I{ Chap. 5: Continuous Random Variables 36The DeMoivre-Lapla
e limit theo-rem: If Sn denotes the number of su

essesthat o

ur when n independent trials, ea
h re-sulting in a su

ess with probability p, are per-formed then, for any a < b,P 8>>>><>>>>:a � Sn � npsnp(1� p) � b9>>>>=>>>>; ! �(b)� �(a)as n!1.� Poisson approximation and normal approx-imation.� The normal approximation will, in general,be quite good for values of n satisfying np(1�p) � 10.Example 5.4f. Let X be the number oftimes that a fair 
oin, 
ipped 40 times, landsheads. Find the probability that X = 20. Usethe normal approximation and then 
ompare itto the exa
t solution.



Probability I{ Chap. 5: Continuous Random Variables 37� PfX = 20g = Pf19:5 � X < 20:5g= P 8<:19:5� 20p10 < X � 20p10 < 20:5� 20p10 9=;� P 8<:�:16 < X � 20p10 < :169=;� �(:16)� �(�:16)g � :1272� The exa
t result:PfX = 20g = 0BBBB�40201CCCCA 0BBB�121CCCA40 � :1254
Example 5.4g. The ideal size of a �rst-year
lass at a parti
ular 
ollege is 150 students.The 
ollege, knowing from past experien
e thaton the average only 30 per
ent of those a
-
epted for admission will a
tually attend, usesa poli
y of approving the appli
ations of 450students. Compute the probability that morethan 150 �rst-year students attend this 
ollege.�X : The number of students that attend.�X is a binomial(450; :3).



Probability I{ Chap. 5: Continuous Random Variables 38� The normal approximation yields thatPfX � 150:5g = P 8>><>>:X � (450)(:3)r450(:3)(:7) � 150:5� (450)(:3)r450(:3)(:7) 9>>=>>;� 1� �(1:59)� :0559
Example 5.4h. To determine the e�e
tive-ness of a 
ertain diet in redu
ing the amount of
holesterol in the bloodstream, 100 people areput on the diet. After they have been on thediet for a suÆ
ient length of time, their 
holes-terol 
ount will be taken. The nutritionist run-ning this experiment has de
ided to endorse thediet if at least 65 per
ent of the people have alower 
holesterol 
ount after going on the diet.What is the probability that the nutritionistendorses the new diet if, in fa
t, it has no ef-fe
t on the 
holesterol level?�X : The number of people whose 
ount islowered.



Probability I{ Chap. 5: Continuous Random Variables 39�X is a B(100; 1=2).� The probability that the nutritionist will en-dorse the diet when it a
tually has no e�e
ton the 
holesterol 
ount:100Xi=65 0BBBB�100i 1CCCCA 0BBB�121CCCA100 = PfX � 64:5g
= P 8>>>>>><>>>>>>:X � (100)(12)vuut100(12)(12) � 2:99>>>>>>=>>>>>>;� 1� �(2:9)� :0019:Histori
al notes 
on
erning the normal distri-bution:� Abraham De Moire (1733).� Karl Griedri
h Gauss (1777-1855).5.5 Exponential random variables� A 
ontinuous random variable whose prob-ability density fun
tion is given, for some



Probability I{ Chap. 5: Continuous Random Variables 40� > 0, byf (x) = 8>>>><>>>>: �e��x if x � 00 if x < 0is said to be an exponential random variable(or, more simply, is said to be exponentiallydistributed) with parameter �.� The 
umulative distribution fun
tion F (a)of an exponential random variable:F (a) = PfX � ag= Z a0 �e��xdx= �e��xja0= 1� e��a a � 0� Note that F (1) = Z10 �e��xdx = 1.Example 5.5a. Let X be an exponentialrandom variable with parameter �. Cal
ulate(a) E[X ℄ and (b) Var(X).� (a)
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tion is given byf (x) = 8>>>><>>>>: �e��x x � 00 x < 0{ E[X ℄ = Z10 x�e��xdx= �xe��x������10 + Z10 e��xdx= 0� e��x� �����������10= 1�� (b){ E[X2℄ = Z10 x2�e��xdx= �x2e��xj10 + Z10 2xe��xdx= 0 + 2�E[X ℄= 2�2{ Var(X) = 2�2 � 0BBB�1�1CCCA2



Probability I{ Chap. 5: Continuous Random Variables 42= 1�2� The exponential distribution often arises, inpra
ti
e, as being the distribution of theamount of the time until some spe
i�
 evento

urs.� The amount of time starting from now un-til an earthquake o

urs, or until a new warbreaks out, or until a telephone 
all you re-
eive turns out to be a wrong number areall random variables that tend in pra
ti
eto have exponential distributions.Example 5.5b. Suppose that the length ofa phone 
all in minutes is an exponential ran-dom variable with parameter � = 110. If some-one arrive immediately ahead of you at a publi
telephone booth, �nd the probability that youwill have to wait(a) more than 10 minutes;



Probability I{ Chap. 5: Continuous Random Variables 43(b) between 10 and 20 minutes.�X : The length of the 
all made by the per-son in the booth.(a) PfX > 10g = 1� F (10)= e�1 � :368(b) Pf10 < X < 20g = F (20)� F (10)= e�1 � e�2 � :233Memoryless property:� A nonnegative random variable X is mem-oryless ifPfX > s + tjX > tg = PfX > sg for all s, t � 0 (5:1)� If we think ofX as being the lifetime of someinstrument, Eq. (5.1) states that the prob-ability that the instrument survives for atleast s+ t hours, given that it has survived



Probability I{ Chap. 5: Continuous Random Variables 44t hours, is that same as the initial probabil-ity that it survives for at least s hours.� In other words, if the instrument is aliveat age t, the distribution of the remainingamount of time that it survives is the sameas the original lifetime distribution (that is,it is as if the instrument does not rememberthat it has already been in use for a time t).� The 
ondition (5.1) is equivalent toPfX > s + t;X > tgPfX > tg = PfX > sgorPfX > s + tg = PfX > sgPfX > tg(5:2)Example 5.5
. Consider a post oÆ
e thatis sta�ed by two 
lerks. Suppose that whenMr. Smith enters the system, he dis
overs thatMs. Jones is being served by one of the 
lerksand Mr. Brown by the other. Suppose alsothat Mr. Smith is told that his servi
e will be-



Probability I{ Chap. 5: Continuous Random Variables 45gin as soon as either Jones or Brown leaves. Ifthe amount of time that a 
lerk spends with a
ustomer is exponentially distributed with pa-rameter �, what is the probability that, of thethree 
ustomers, Mr. Smith is the last to leavethe post oÆ
e?� The answer is obtained by reasoning as fol-lows: Consider the time at whi
h Mr. Smith�rst �nds a free 
lerk. At this point eitherMs. Jones or Mr. Brown would have justleft and the other one would still be in ser-vi
e.� However, by the la
k of memory of the expo-nential, it follows that the additional amountof time that this other person (either Jonesor Brown) would still have to spend in thepost oÆ
e is exponentially distributed withparameter �,� That is, it is the same as if servi
e for thisperson were just starting at this point. Hen
e,



Probability I{ Chap. 5: Continuous Random Variables 46by symmetry, the probability that the re-maining person �nishes before Smith mustequal 12.Uniqueness of memoryless property:F (x) = PfX > xgF (s + t) = F (s)F (t)F (x) = e��xExample 5.5d. Suppose that the numberof miles that a 
ar run before its battery wearsout is exponentially distributed with an aver-age value of 10,000 miles. If a person desiresto take a 5000-mile trip, what is the probabil-ity that he or she will be able to 
omplete thetrip without having to repla
e the 
ar battery?What 
an be said when the distribution is notexponential?� It follows by the memoryless property of theexponential distribution that the remaininglifetime (in thousands of miles) of the bat-



Probability I{ Chap. 5: Continuous Random Variables 47tery is exponential with parameter � = 110.� The desired probability isPfremaining lifetime > 5g = 1� F (5) = e�5�= e�1=2 � :604� If the lifetime distribution F is not expo-nential, then the relevant probability isPflifetime > t+5jlifetime > tg = 1� F (t + 5)1� F (t)where t is the number of miles that the bat-tery had been in use prior to the start of thetrip.Lapla
e distribution: (Double exponentialdistribution)� The distribution of a random variable thatis equally likely to be either positive or neg-ative and jXj � exp(�).� The density fun
tion:f (x) = 12�e��jxj �1 < x <1
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tion:F (x) = 8>>>>>>>><>>>>>>>>: 12 Z x�1 �e�xdx x < 012 Z 0�1 �e�xdx + 12 Z x0 �e��xdx x > 0= 8>>>><>>>>: 12e�x x < 01� 12e��x x > 0Example 5.5e. Let us re
onsider Example5.4e, whi
h suppose that a binary message is tobe transmitted from A to B, with the value 2being sent when the message is 1 and �2 whenit is 0. However, suppose now that rather thanbeing a standard normal random variable, the
hannel noiseN is a Lapla
ian random variablewith parameter � = 1. Again suppose that ifR is the value re
eived at lo
ation B, then themessage is de
oded as follows:If R � :5, then 1 is 
on
luded.If R < :5, then 0 is 
on
luded.� The noise is Lapla
e with parameter � = 1.



Probability I{ Chap. 5: Continuous Random Variables 49� The 2 types of errors will have probabilitiesgiven byPferror j message 1 is sentg = PfN < �1:5g= 12e�1:5 � :1116Pferror j message 0 is sentg = PfN � 2:5g= 12e�2:5 � :041� The error probabilities are higher when thenoise is Lapla
ian with � = 1 than when itis a standard normal variable.5.5.1 Hazard rate fun
tions� Consider a positive 
ontinuous random vari-able X that we interpret as being the life-time of some item, having distribution fun
-tion F and density f .� The hazard rate (sometimes 
alled the fail-ure rate) fun
tion �(t) of F is de�ned by�(t) = f (t)F (t) F = 1� F



Probability I{ Chap. 5: Continuous Random Variables 50� PfX 2 (t; t + dt)jX > tg = PfX 2 (t; t + dt); X > tgPfX > tg= PfX 2 (t; t + dt)gPfX > tg� f(t)F (t)dt� �(t) represents the 
onditional probabilityintensity that a t-unit-old item will fail.� Suppose that the lifetime distribution is ex-ponential. Then, by the memoryless prop-erty, it follows that the distribution of re-maining life for a t-year-old item is the sameas for a new item. Hen
e �(t) should be 
on-stant. �(t) = f (t)F (t)= �e��te��t= �The parameter � is often referred to as therate of the distribution.
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tion �(t) uniquely de-termines the distribution F .� Note that by de�nition�(t) = ddtF (t)1� F (t)log(1� F (t)) = � Z t0 �(t)dt + kor 1� F (t) = ekexpf� Z t0 �(t)dtg� Letting t = 0 shows that k = 0 and thusF (t) = 1� expf� Z t0 �(t)dtg� If �(t) = a + bt:{ F (t) = 1� e�at�bt2=2{ f (t) = (a + bt)e�at�bt2=2; t � 0{ The Rayleigh density fun
tion if a = 0.Example 5.5f. One often hears that thedeath rate of a person who smokes is, at ea
hage, twi
e that of a nonsmoker. What does



Probability I{ Chap. 5: Continuous Random Variables 52this mean? Does it mean that a nonsmokerhas twi
e the probability of surviving a givennumber of years as does a smoker of the sameage?� �s(t) denote the hazard rate of a smoker ofage t and �n(t) that of a nonsmoker of aget, then �s(t) = 2�n(t)� The probability that anA-year-old nonsmokerwill survive until age B, A < B, isPfA-year-old nonsmoker rea
hes age Bg= Pfnonsmoker's lifetime > Bj nonsmoker's lifetime > A g= 1� Fnon(B)1� Fnon(A)= expf� ZB0 �n(t)dtgexpf� Z A0 �n(t)dtg= expf� ZBA �n(t)dtgwhereas the 
orresponding probability for asmoker is, by the same reasoning,
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hes age Bg= exp 8<:� ZBA �s(t)dt9=;= exp 8<:�2 ZBA �n(t)dt9=;= 24exp 8<:� ZBA �n(t)dt9=;352� Two people of the same age, one of whomis a smoker and the other a nonsmoker, theprobability that the smoker survives to anygiven age is the square of the 
orrespondingprobability for a nonsmoker.5.6 Other 
ontinuous distributions5.6.1 The Gamma distribution� A random variable is said to have a gammadistribution with parameters (t; �), � > 0,and t > 0 if its density fun
tion is given by
f (x) = 8>>>>>><>>>>>>: �e��x(�x)t�1�(t) x � 00 x < 0
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alled the gamma fun
tion, isde�ned as �(t) = Z10 e�yyt�1dy� The integration by parts of �(t),�(t) = �e�yyt�1j10 + Z10 e�y(t� 1)yt�2dy= (t� 1) Z10 e�yyt�2dy= (t� 1)�(t� 1)� For integral values of t, say t = n,�(n) = (n� 1)�(n� 1)= (n� 1)(n� 2)�(n� 2)= � � �= (n� 1)(n� 2) � � � 3 � 2�(1)� Sin
e �(1) = Z10 e�xdx = 1, it follows thatfor integral values of n,�(n) = (n� 1)!� If the events are o

urring randomly in timeand in a

ordan
e with three axioms of Se
.4.8, then it turns out that the amount of
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urred will be a gamma random vari-able with parameters (n; �).� Tn: The time at whi
h the nth event o

urs.PfTn � tg = PfN (t) � ng= 1Xj=nPfN (t) = jg
= 1Xj=n e��t(�t)jj!� The density fun
tion of Tn:f (t) = 1Xj=n e��tj(�t)j�1�j! � 1Xj=n �e��tj(�t)jj!= 1Xj=n �e��t(�t)j�1(j � 1)! � 1Xj=n �e��t(�t)jj!= �e��t(�t)n�1(n� 1)!This distribution is often referred to in theliterature as the n-Erlang distribution.� If n = 1, it is exp(�).� If � = 1=2 and t = n=2, it is �2n.



Probability I{ Chap. 5: Continuous Random Variables 56� The 
hi-squared distribution often arises inpra
ti
e as being the distribution of the er-ror involved in attempting to hit a target inn dimensional spa
e when ea
h 
oordinateerror is normally distributed.Example 5.6a. LetX be a gamma randomvariable with parameters t and �. Cal
ulate (a)E[X ℄ and (b) Var(X).� (a)E[X ℄ = 1�(t) Z10 �xe��x(�x)t�1dx= 1��(t) Z10 �e��x(�x)tdx
= �(t + 1)��(t)= t�(b) E[X2℄ = t(t + 1)=�2Var(X) = t�2



Probability I{ Chap. 5: Continuous Random Variables 575.6.2 The Weibull distribution� The Weibull distribution is widely used inengineering pra
ti
e due to its versatility.� It was originally proposed for interpretationof fatigue data, but now its use has extendedto many other engineering problems.� It is widely used, in the �eld of life phe-nomena, as the distribution of the lifetimeof some obje
t.� The Weibull distribution fun
tion:F (x) = 8>>>><>>>>: 0 x � v1� expf�(x�v� )�g x > v(6:2)� A random variable whose 
umulative distri-bution fun
tion is given by Eq. (6.2) is saidto be a Weibull random variable with pa-rameters v, �, and �.



Probability I{ Chap. 5: Continuous Random Variables 58� Di�erentiation yields that the density isf (x) = 8>>>><>>>>: 0 x � v��(x�v� )��1 � expf�(x�v� )�g x > v5.6.3 The Cau
hy distribution� A random variable is said to have a Cau
hydistribution with parameter �, �1 < � <1, if its density is given byf (x) = 1� 11 + (x� �)2 �1 < � <1
Example 5.6b. Suppose that a narrow beam
ashlight is spun around its 
enter, whi
h is lo-
ated a unit distan
e from the x-axis (see Fig.5.7). When the 
ashlight has stopped spinning,
onsider the point X at whi
h the beam inter-se
ts the x-axis. (If the beam is not pointingtoward the x-axis, repeat the experiment.)� As indi
ated in Fig. 5.7, the point X is de-termined by the angle � between the 
ash-
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h from the phys-i
al situation appears to be uniformly dis-tributed between ��=2 and �=2.� The distribution fun
tion of X is thus givenby F (x) = PfX � xg= Pftan � � xg= Pf� � tan�1 xg= 12 + 1� tan�1 xwhere the last equality follows sin
e �, beinguniform over (��=2; �=2), yields thatPf� � ag = a� (��=2)� = 12+a� ��2 < a < �2� The density fun
tion of X is given byf (x) = ddxF (x) = 1�(1 + x2) �1 < x <1�X has the Cau
hy distribution.5.6.4 The Beta distribution



Probability I{ Chap. 5: Continuous Random Variables 60� A random variable is said to have a betadistribution if its density is given byf (x) = 8>>>>><>>>>>: 1B(a;b)xa�1(1� x)b�1 0 < x < 10 otherwisewhereB(a; b) = Z 10 xa�1(1� x)b�1dx�When a = b, the beta density is symmetri
about 1/2, giving more and more weight toregions about 1/2 as the 
ommon value ain
reases.�When b > a, the density is skewed to theleft, and it is skewed to the right when a >b.� The relationship between the beta fun
tionand the gamma fun
tion:B(a; b) = �(a)�(b)�(a + b)E[X ℄ = aa + b



Probability I{ Chap. 5: Continuous Random Variables 61Var(X) = ab(a + b)2(a + b + 1)5.7 The distribution of a fun
tion of arandom variable� Suppose that we know the distribution ofXand want to �nd the distribution of g(X).� To do so, it is ne
essary to express the eventthat g(X) � y in terms of X being in someset.Example 5.7a.� Let X be uniformly distributed over (0, 1).We obtain the distribution of the randomvariable Y , de�ned by Y = Xn, as follows:For 0 � y � 1,FY (y) = PfY � yg= PfXn � yg= PfX � y1=ng
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tion of Y is given by
fY (y) = 8>>>>>>><>>>>>>>: 1ny1=n�1 0 � y � 10 otherwiseExample 5.7b.� If X is a 
ontinuous random variable withprobability density fX , then the distribu-tion of Y = X2 is obtained as follows: Fory � 0,FY (y) = PfY � yg= PfX2 � yg= Pf�py � X � pyg= FX(py)� FX(�py)� Di�erentiation yieldsfY (y) = 12py [fX(py) + fX(�py)℄
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.� IfX has a probability density fX , then Y =jXj has a density fun
tion that is obtainedas follows: For y � 0,FY (y) = PfY � yg= PfjXj � yg= Pf�y � X � yg= FX(y)� FX(�y)� On di�erentiation,fY (y) = fX(y) + fX(�y) y � 0
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ontinuous ran-dom variable having probability density fun
-tion fX . Suppose that g(x) is a stri
tly mono-tone (in
reasing or de
reasing), di�erentiable(and thus 
ontinuous) fun
tion of x. Then therandom variable Y de�ned by Y = g(X) hasa probability density fun
tion given byfY (y) = 8><>: fX [g�1(y)℄j ddyg�1(y)j if y = g(x) for some x0 if y 6= g(x) for all xwhere g�1(y) is de�ned to equal that value ofx su
h that g(x) = y.Proof:�When g(x) is an in
reasing fun
tion.� Suppose that y = g(x) for some x. Then,with Y = g(X)FY (y) = Pfg(X) � yg= PfX � g�1(y)g= FX(g�1(y))� Di�erentiation gives thatfY (y) = fX(g�1(y)) ddyg�1(y)
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ase fY (y) = 0.Example 5.7d. LetX be a 
ontinuous non-negative random variable with density fun
tionf , and let Y = Xn. Find fY , the probabilitydensity fun
tion of Y .� If g(x) = xn, theng�1(y) = y1=nand ddyfg�1(y)g = 1ny1=n�1
� From Theorem 7.1,fY (y) = 1ny1=n�1f (y1=n)� If n = 2, fY (y) = 12pyf (py)whi
h (sin
e X � 0) is in agreement withthe result of Example 5.7b.
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alled 
ontinuous ifthere is a nonnegative fun
tion f , 
alled theprobability density fun
tion ofX , su
h thatfor any BPfX 2 Bg = ZB f (x)dx� IfX is 
ontinuous, then its distribution fun
-tion F will be di�erentiable andddxF (x) = f (x)� Expe
ted value of X :E[X ℄ = Z1�1 xf (x)dx� E[g(X)℄ = Z1�1 g(x)f (x)dx� Var(X) = E[(X � E[X ℄)2℄ = E[X2℄ �(E[X ℄)2� Uniform(a; b):f (x) = 8>>>><>>>>: 1b�a if a � x � b;0 otherwise.



Probability I{ Chap. 5: Continuous Random Variables 67E[X ℄ = (a+b)2 Var(X) = (b�a)212� N (�; �2):f (x) = 1p2��e�(x��)2=2�2 �1 < x <1� = E[X ℄ �2 = Var(X)� IfX � N (�; �2), thenZ = X��� � N (0; 1).� If X � N (�; �2), then Z = aX + b �N (a� + b; a2�2).� Exp(�):f (x) = 8>>>><>>>>: �e��x if x � 0;0 otherwise.E[X ℄ = 1� Var(X) = 1�2� An exponential random variable has themem-oryless property,PfX > s + t j X > tg = PfX > sg� Hazard rate:�(t) = f (t)1� F (t) t � 0



Probability I{ Chap. 5: Continuous Random Variables 68� If F is the exponential distribution with pa-rameter �, then �(t) = �.� Gamma(t; �):f (x) = �e��x(�x)t�1�(t) x � 0E[X ℄ = t� Var(X) = t�2� Beta(a; b):f (x) = 1B(a; b)xa�1(1�x)b�1 0 � x � 1
E[X ℄ = aa+b Var(X) = ab(a+b)2(a+b+1)


