
1Chapter 6 Jointly DistributedRandom Variables6.1 Joint distribution fun
tions� Joint 
umulative probability distribution fun
-tion of X and Y :F (a; b) = PfX � a; Y � bg �1 < a; b <1� FX(a) = PfX � ag = limb!1F (a; b) �F (a;1)� FY (b) = PfY � bg = lima!1F (a; b) �F (1; b)�Marginal distribution: FX(a); FY (b)� All joint probability statements about Xand Y 
an be answered in terms of theirjoint distribution fun
tion.� PfX > a; Y > bg = 1�FX(a)�FY (b)+F (a; b)� Pfa1 < X � a2; b1 < Y � b2g = F (a2; b2)+F (a1; b1)� F (a1; b2)� F (a2; b1)



Probability II{ Chap. 6: Jointly Distributed Random Variables 2� Joint probability mass fun
tion ofX and Y :pfx; yg = PfX = x; Y = yg{ pX(x) = PfX = xg = Xy p(x; y){ pY (y) = PfY = yg = Xx p(x; y)Example 6.1a. Suppose that 3 balls arerandomly sele
ted from an urn 
ontaining 3red, 4 white, and 5 blue balls.� If we let X and Y denote, respe
tively, thenumber of red and white balls 
hosen, thenthe joint probability mass fun
tion ofX andY , p(i; j) = PfX = i; Y = jg, is given byp(0; 0) = 0BBBB�531CCCCA=0BBBB�123 1CCCCA = 10220p(0; 1) = 0BBBB�411CCCCA0BBBB�521CCCCA=0BBBB�123 1CCCCA = 40220p(0; 2) = 0BBBB�421CCCCA0BBBB�511CCCCA=0BBBB�123 1CCCCA = 30220p(0; 3) = 0BBBB�431CCCCA=0BBBB�123 1CCCCA = 4220
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p(1; 0) = 0BBBB�311CCCCA0BBBB�521CCCCA=0BBBB�123 1CCCCA = 30220p(1; 1) = 0BBBB�311CCCCA0BBBB�411CCCCA0BBBB�511CCCCA=0BBBB�123 1CCCCA = 60220p(1; 2) = 0BBBB�311CCCCA0BBBB�421CCCCA=0BBBB�123 1CCCCA = 18220p(2; 0) = 0BBBB�321CCCCA0BBBB�511CCCCA=0BBBB�123 1CCCCA = 15220p(2; 1) = 0BBBB�321CCCCA0BBBB�411CCCCA)=0BBBB�123 1CCCCA = 12220p(2; 2) = 0BBBB�331CCCCA=0BBBB�123 1CCCCA = 1220� These probabilities 
an most easily be ex-pressed in tabular form as in Table 6.1� The reader should note that the probabilitymass fun
tion of X is obtained by 
omput-ing the row sums, whereas the probabilitymass fun
tion of Y is obtained by 
omput-ing the 
olumn sums.� As the individual probability mass fun
tions



Probability II{ Chap. 6: Jointly Distributed Random Variables 4of X and Y thus appear in the margin ofsu
h a table, they are often referred to asbeing the marginal probability mass fun
-tion of X and Y , respe
tively.Table 6.1 PfX = i; Y = jg0 1 2 3 Row sum =PfX = ig0 10220 40220 30220 4220 842201 30220 60220 18220 0 1082202 15220 12220 0 0 272203 1220 0 0 0 1220Column sum = 56220 112220 48220 4220PfY = jgExample 6.1b. Suppose that 15 per
ent ofthe families in a 
ertain 
ommunity have no
hildren, 20 per
ent have 1, 35 per
ent have 2,and 30 per
ent have 3; and suppose, further,that in ea
h family, ea
h 
hild is equally likelyto be a boy or a girl. If a family is 
hosenat random from this 
ommunity, the B, the



Probability II{ Chap. 6: Jointly Distributed Random Variables 5number of boys, and G, the number of girls, inthis family will have the joint probability massfun
tion shown in Table 6.2.� PfB = 0; G = 0g = Pfno 
hildreng = :15PfB = 0; G = 1g = Pf1 girl and total of 1 
hildg= Pf1 
hildgPf1 girl j 1 
hildg = (:20) 0�121APfB = 0; G = 2g = Pf2 girls and total of 2 
hildreng= Pf2 
hildrengPf2 girls j 2 
hildreng = (:35) 0�121A2� Table 6.2 PfB = i; G = jg Row sum =0 1 2 3 PfB = ig0 :15 :10 :0875 :0375 :37501 :10 :175 :1125 0 :38752 :0875 :1125 0 0 :20003 :0375 0 0 0 :0375Column sum =PfG = jg :375 :3875 :2000 :0375� Joint probability density fun
tion of X andY : f (x; y)� Pf(X < Y ) 2 Cg = Z Z(x;y)2C f (x; y)dxdy



Probability II{ Chap. 6: Jointly Distributed Random Variables 6� f (a; b) = �2�a�bF (a; b)Pfa < X < a + da; b < Y < b + dbg = Z d+dbb Z a+daa f(x; y)dxdy� f(a; b)dadb� PfX 2 Ag = PfX 2 A; Y 2 (�1;1)g= ZA Z1�1 f (x; y)dydx= ZA fX(x)dxwhere fX(x) = Z1�1 f (x; y)dy� fY (y) = Z1�1 f (x; y)dxExample 6.1
. The joint density fun
tionof X and Y is given byf (x; y) = 8>>>><>>>>: 2e�xe�2y 0 < x <1; 0 < y <10 otherwiseCompute (a) PfX > 1; Y < 1g, (b) PfX <Y g, and (
)PfX < ag(a) PfX > 1; Y < 1g = Z 10 Z11 2e�xe�2ydxdy



Probability II{ Chap. 6: Jointly Distributed Random Variables 7= Z 10 2e�2y(�e�xj11 )dy= e�1 Z 10 2e�2ydy= e�1(1� e�2)(b) PfX < Y g = Z Z(x;y):x<y 2e�xe�2ydxdy= Z10 Z y0 2e�xe�2ydxdy= Z10 2e�2y(1� e�y)dy= Z10 2e�2ydy � Z10 2e�3ydy= 1� 23= 13� (
) PfX < ag = Z a0 Z10 2e�2ye�xdydx= Z a0 e�xdx= 1� e�aExample 6.1d. Consider a 
ir
le of radiusR and suppose that a point within the 
ir
le is



Probability II{ Chap. 6: Jointly Distributed Random Variables 8randomly 
hosen in su
h a manner that all re-gions within the 
ir
le of equal area are equallylikely to 
ontain the point. (On other words,the point is uniformly distributed within the
ir
le.) If we let the 
enter of the 
ir
le denotethe origin and de�neX and Y to be the 
oordi-nates of the point 
hosen (Fig. 6.1), it follows,sin
e (X;Y ) is equally likely to be near ea
hpoint in the 
ir
le, that the joint density fun
-tion of X and Y is given byf (x; y) = 8>>>><>>>>: 
 if x2 + y2 � R20 if x2 + y2 > R2for some value of 
.(a) Determine 
.(b) Find the marginal density fun
tions of Xand Y .(
) Compute the probability that D, the dis-tan
e from the origin of the point sele
ted,id less than or equal to a.(d) Find E[D℄.
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ause Z1�1 Z1�1 f (x; y)dxdy = 1
 Z Zx2+y2�R2 dxdy = 1
 = 1�R2(b) fX(x) = Z1�1 f (x; y)dy= 1�R2 Zx2+y2�R2 dy= 1�R2 Z 
�
 dy 
 = sR2 � x2= 2�R2sR2 � x2 x2 � R2
fY (y) = 2�R2sR2 � y2 y2 � R2= 0 y2 > R2(
)D = pX2 + Y 2, for 0 � a � RFD(a) = PfsX2 + Y 2 � ag= PfX2 + Y 2 � a2g= Z Zx2+y2�a2 f (x; y)dydx= 1�R2 Z Zx2+y2�a2 dydx
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= �a2�R2= a2R2(d) From (
) we obtain that the density fun
tionof D is FD(a) = 2aR2 0 � a � RHen
e E[D℄ = 2R2 ZR0 a2da = 2R3Example 6.1e. The joint density of X andY is given byf (x; y) = 8>>>><>>>>: e�(x+y) 0 < x <1; 0 < y <10 otherwiseFind the density fun
tion of the random vari-able X=Y .� For a > 0,FX=Y (a) = P 8>>><>>>:XY � a9>>>=>>>;= Z Zx=y�a e�(x+y)dxdy= Z10 Z ay0 e�(x+y)dxdy



Probability II{ Chap. 6: Jointly Distributed Random Variables 11= Z10 (1� e�ay)e�ydy= 2666664�e�y + e�(a+1)ya + 1 3777775�����������10= 1� 1a� 1� The density fun
tion:f (x; y) = 1=(a + 1)2; 0 < a <1n random variables:� Joint 
umulative probability distribution fun
-tion:F (a1; a2; : : : ; an) = PfX1 � a1; X2 � a2; : : : ; Xn � ang� Joint probability density fun
tion:f(x1; x2; : : : ; xn) = �n�x1�x2 � � � �xnF (x1; x2; : : : ; xn)� Pf(X1; X2; : : : ; Xn) 2 Cg = Z Z � � � Z(x1;x2;:::;xn)2C f(x1; x2; : : : ; xn)dx1dx2 � � � dxn� PfX1 2 A1; X2 2 A2; : : : ; Xn 2 Ang = ZAn ZAn�1 � � � ZA1 f(x1; x2; : : : ; xn)dx1dx2 � � � dxnExample 6.1f.The multinomial distribution. One of the



Probability II{ Chap. 6: Jointly Distributed Random Variables 12most important joint distribution is the multi-nomial, whi
h arises when a sequen
e of n inde-pendent and identi
al experiments is performed.Suppose that ea
h experiment 
an result inany one of r possible out
omes, with respe
-tive probabilities p1; p2; : : : ; pr, rXi=1 pi = 1. Ifwe denote by Xi, the number of the n exper-iments that result in out
ome number i, thenPfX1 = n1; X2 = n2; : : : ; Xr = nrg = n!n1!n2! � � �nr!pn11 pn22 � � � pnrrwhenever rXi=1ni = n.
� Suppose that a fair die is rolled 9 times.� The probability that 1 appears three times,2 and 3 twi
e ea
h, 4 and 5 on
e ea
h, and6 not at all is 9!3!2!2!1!1!0! 0BBB�161CCCA96.2 Independent random variables� The random variables X and Y are said toindependent if for any two sets of real num-



Probability II{ Chap. 6: Jointly Distributed Random Variables 13bers A and B,PfX 2 A; Y 2 Bg = PfX 2 AgPfY 2 Bg� Equivalent 
ondition of independen
e:F (a; b) = FX(a)FY (b){WhenX and Y are dis
rete random vari-ables:p(x; y) = pX(x)pY (y) for all x; y{ In the jointly 
ontinuous 
ase:f (x; y) = fX(x)fY (y) for all x; y� Random variables that are not independentare said to be dependent.Example 6.2a. Suppose that n +m inde-pendent trials, having a 
ommon su

ess prob-ability p, are performed. If X is the numberof su

esses in the �rst n trials, and Y is thenumber of su

esses in the �nal m trials, thenX and Y are independent, sin
e knowing thenumber of su

esses in the �rst n trials doesnot a�e
t the distribution of the number of su
-
esses in the �nal m trials (by the assumption
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t, for integral xand y,PfX = x; Y = yg = 0B�nx1CApx(1� p)n�x0B�my 1CApy(1� p)m�y0 � x � n; 0 � y � m= PfX = xgPfY = ygOn the other hand, X and Z will be depen-dent, where Z is the total number of su

essesin the n +m trials. (Why is this?)Example 6.2b. Suppose that the numberof people that enter a post oÆ
e on a given dayis a Poisson random variable with parameter�. Show that if ea
h person that enters thepost oÆ
e is a male with probability p and afemale with probability 1�p, then the numberof males and females entering the post oÆ
eare independent Poisson random variables withrespe
tive parameters �p and �(1� p).� Condition on X + Y :PfX = i; Y = jg = PfX = i; Y = jjX + Y = i+ jgPfX + Y = i+ jg+ PfX = i; Y = jjX + Y 6= i+ jgPfX + Y 6= i+ jg



Probability II{ Chap. 6: Jointly Distributed Random Variables 15� Sin
e PfX = i; Y = jjX +Y 6= i+ jg = 0PfX = i; Y = jg = PfX = i; Y = jjX+Y = i+jgPfX+Y = i+jg(2:3)� PfX + Y = i + jg = e�� �i+j(i + j)! (2:4)� PfX = i; Y = jjX + Y = i + jg = 0B�i + ji 1CApi(1� p)j (2:5)� PfX = i; Y = jg = 0BBB�i + ji 1CCCApi(1� p)je�� �i+j(i+ j)!= e��(�p)ii!j! [�(1� p)℄j= e��p(�p)ii! e��(1�p) [�(1� p)℄ij! (2:6)� Hen
ePfX = ig = e��p(�p)ii! Xj e��(1�p) [�(1� p)j℄j! = e��p(�p)ii!(2:7)� PfY = jg = e��(1�p)[�(1� p)℄jj! (2:8)



Probability II{ Chap. 6: Jointly Distributed Random Variables 16Example 6.2
. A man and a woman de
ideto meet at a 
ertain lo
ation. If ea
h personindependently arrives at a time uniformly dis-tributed between 12 noon and 1 P.M., �nd theprobability that the �rst to arrive has to waitlonger than 10 minutes.�X and Y : The time past 12 that the manand woman arrive.�X and Y are independent random variables,ea
h of whi
h is uniform(0; 60).� The desired probability PfX + 10 < Y g+PfY + 10 < Xg.� By symmetryPfX + 10 < Y g = PfY + 10 < Xg2PfX + 10 < Y g = 2 Z Zx+10<y f (x; y) dxdy= 2 Z Zx+10<y fX(x)fY (y) dxdy= 2 Z 6010 Z y�100 0BBB� 1601CCCA2 dxdy



Probability II{ Chap. 6: Jointly Distributed Random Variables 17= 2(60)2 Z 6010 (y � 10) dy= 2536Example 6.2d. Bu�on's needle prob-lem. A table is ruled with equidistant paral-lel lines a distan
e D apart. A needle of lengthL, where L � D, is randomly thrown on thetable. What is the probability that the needlewill interse
t one of the lines (the other possi-bility being that the needle will be 
ompletely
ontained in the strip between two lines)?�X : The distan
e from the middle point ofthe needle to the nearest parallel line.� �: The angle between the needle and theproje
ted line of length X (Fig. 6.2).� The needle will interse
t a line if the hy-potenuse of the right triangle in Fig. 6.2 is
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os � < L2 or X < L2 
os ��X � uniform(0; D=2); � � uniform(0; �=2)� P 8>>><>>>:X < L2 
os �9>>>=>>>; = Z Zx<L=2 
os y fX(x)f�(y) dxdy= 4�D Z �=20 L2 
os y dy= 2L�D*Example 6.2e. Chara
terization of thenormal distribution. Let X and Y denotethe horizontal and verti
al miss distan
e whena bullet is �red at a target, and assume that1.X and Y are independent 
ontinuous ran-dom variables having di�erentiable densityfun
tions.2. The joint density f (x; y) = fX(x)fY (y) of



Probability II{ Chap. 6: Jointly Distributed Random Variables 19X and Y depends on (x; y) only throughx2 + y2.� Assumptions 1 and 2 imply that X and Yare normally distributed random variables.f (x; y) = fX(x)fY (y) = g(x2 + y2)f 0X(x)fY (y) = 2xg0(x2 + y2)f 0X(x)fX(x) = 2xg0(x2 + y2)g(x2 + y2)f 0X(x)2xfX(x) = g0(x2 + y2)g(x2 + y2)� Consider x21 + y21 = x22 + y22, thenf 0X(x)xfX(x) = 
ddx(log fX(x)) = 
xfX(x) = ke
x2=2fX(x) = 1p2��e�x2=2�2
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ontinuous (dis-
rete) random variables X and Y are inde-pendent if and only if their joint probabilitydensity (mass) fun
tion 
an be expressed asfX;Y (x; y) = h(x)g(y) �1 < x; y <1
Example 6.2f. If the �rst instan
e, the jointdensity fun
tion of X and Y isf (x; y) = 6e�2xe�3y 0 < x; y <1and is equal to 0 outside this region, are therandom variables independent? What if thejoint density fun
tion isf (x; y) = 24xy 0 < x; y < 1; 0 < x + y < 1and is equal to 0 otherwise?� I(x; y) = 8>><>>: 1 if 0 < x; y < 1; 0 < x + y < 10 otherwise� f (x; y) = 24xyI(x; y)



Probability II{ Chap. 6: Jointly Distributed Random Variables 21� They are dependent sin
e the above 
annotfa
tor into a part depending only on x andanother depending only on y.Example 6.2g. How 
an a 
omputer
hoose a random subset? Most 
omput-ers are able to generate the value of, or simu-late, a uniform (0,1) random variable by meansof a built-in subroutine that (to a high de-gree of approximation) produ
es su
h "randomnumbers." As a result, it is quite easy for the
omputer to simulate an indi
ator (that is, aBernoulli) random variable.� Suppose I is an indi
ator variable su
h thatPfI = 1g = p = 1� PfI = 0g� The 
omputer 
an simulate I by 
hoosinga uniform(0,1) random number U and thenletting I = 8>>>><>>>>: 1 if U < p0 if U � p



Probability II{ Chap. 6: Jointly Distributed Random Variables 22� Suppose that we are interested in having the
omputer sele
t k of the numbers, 1; 2; : : : ; nin su
h a way that ea
h of the  nk! subsets ofsize k is equally likely to be 
hosen.� Simulate n indi
ator variables I1; : : : ; In, ofwhi
h exa
tly k will equal 1.� Those i for whi
h Ii = 1 will then 
onstitutethe desired subset.� Ik: If k is sele
ted.� Simulate n independent uniform(0; 1) ran-dom variables U1; U2; : : : ; Un.I1 = 8>>>><>>>>: 1 if U1 < k=n0 otherwiseIi+1 = 8>>>>><>>>>>: 1 if Ui+1 < k�(I1+���+Ii)n�i0 otherwise� At the i + 1 stage we set Ii+1 equal to 1with a probability equal to the remainingnumber of pla
es in the subset divided by



Probability II{ Chap. 6: Jointly Distributed Random Variables 23the remaining number of possibilities.PfI1 = 1g = knPfIi+1 = 1 j I1; : : : ; Iig = k � Pij=1 Ijn� i� Indu
tion on k + n.� It is easy to see that k + n = 2 is true.� Suppose that i1 < i2 < � � � < ik su
h thatIi1 = � � � = Iik = 1.� Case i1 = 1:PfI1 = Ii2 = � � � = Iik = 1; Ij = 0 otherwiseg= PfI1 = 1gPfIi2 = � � � = Iik = 1; Ij = 0 otherwisejI1 = 1g= kn 1�n�1k�1� = 1�nk�� Case i1 6= 1:PfI1 = Ii2 = � � � = Iik = 1; Ij = 0 otherwiseg= PfI1 = 0gPfIi1 = Ii2 = � � � = Iik = 1; Ij = 0 otherwisejI1 = 0g= 0�1� kn1A 1�n�1k � = 1�nk�Remark.



Probability II{ Chap. 6: Jointly Distributed Random Variables 24� The foregoing method for generating a ran-dom subset has a very low memory require-ment.� A faster algorithm that requires somewhatmore memory is presented in Se
. 10.1. Ituses the last k elements of a random permu-tation of (1; 2; : : : ; n).Example 6.2h. LetX;Y; Z be independentand uniformly distributed over (0,1). ComputePfX � Y Zg.� fX;Y;Z(x; y; z) = fX(x)fY (y)fZ(z) = 1 0 � x; y; z �1� PfX � Y Zg = Z Z Zx�yz fX;Y;Z(x; y; z) dxdydz= Z 10 Z 10 Z 1yz dxdydz= Z 10 Z 10 (1� yz) dydz= Z 10 0B�1� z21CA dz= 34



Probability II{ Chap. 6: Jointly Distributed Random Variables 25Example 6.2i. Probability interpreta-tion of half-life. LetN (t) denote the num-ber of nu
lei 
ontained in a radioa
tive mass ofmaterial at time t. The 
on
ept of half-life isoften de�ned in a deterministi
 fashion by stat-ing that it is an empiri
al fa
t that for somevalue h, 
alled the half-life,N (t) = 2�t=hN (0) t > 0[Note that N (h) = N (0)=2.℄� Sin
e the above implies that for any non-negative s and t,N (t + s) = 2�(s+t)=hN (0) = 2�t=hN (s)it follows that no matter how mu
h time shas already elapsed, in an additional time tthe number of existing nu
lei will de
reaseby the fa
tor 2�t=h.Probabilisti
 interpretation of the half-life h:� The deterministi
 relationship given above
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tive masses
ontaining huge numbers of nu
lei.�We 
an assume that the individual nu
leia
t independently and with a memorylesslife distribution.� The unique life distribution whi
h is mem-oryless is the exponential distribution.� The lifetimes of the individual nu
lei are in-dependent random variables having a lifedistribution that is exponential with medianequal to h.� L: The lifetime of a given ne
leus.PfL < tg = 1� 2�t=h = 1� exp 8>>><>>>:�tlog 2h 9>>>=>>>;� Protons de
ay with a half-life of about h =1030 years.� The number of de
ays predi
ted by the de-terministi
 model:N (0)�N (
) = h(1� 2�
=h)
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= 1� 2�
=h1=h� limx!0 1� 2�
xx= 
 log 2 � :6931
� Sin
e there is a huge number of independentprotons, ea
h of whi
h will have a very smallprobability of de
aying within this time pe-riod, it follows that the number of protonsthat de
ay will have a Poisson distributionwith parameter equal to h(1 � 2�
=h) �
 log 2.Pf0 de
aysg = e�
 log 2 = 12
Pfn de
aysg = 2�
[
 log 2℄nn!Remark. Independen
e is a symmetri
 rela-tion.Example 6.2j. If the initial throw of thedi
e in the game of 
raps results in the sum of
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e equaling 3, then the player will 
on-tinue to throw the di
e until the sum is either3 or 7. If this sum is 3, then the player wins,and if it is 7, then the player loses.� Let N denote the number of throws neededuntil either 3 or 7 appears, and letX denotethe value (either 3 or 7) of the �nal throw.� IsN independent ofX? That is, does know-ing whi
h of 3 or 7 o

urs �rst a�e
t thedistribution of the number of throws neededuntil that number appears?�Most people do not �nd the answer to thisquestion to be intuitively obvious.� However, suppose that we turn it aroundand ask whether X is independent of N .That is, dose knowing how many throws ittakes to obtain a sum of either 3 or 7.� Does this a�e
t the probability that thatsum is equal to 3?



Probability II{ Chap. 6: Jointly Distributed Random Variables 29� For instan
e, suppose we know that it takesn throws of the di
e to obtain a sum either3 or 7.� Does this a�e
t the probability distributionof the �nal sum?� Clearly not, sin
e all that is important isthat its values is either 3 or 7, and the fa
tthat none of the �rst n�1 throws were either3 or 7 does not 
hange the probabilities forthe nth throw.� Thus we 
an 
on
lude that X is indepen-dent of N , or equivalently, that N is inde-pendent of X .� Another example: Re
ord value problem{X1; X2; : : : ; Xn are iid 
ontinuous ran-dom variables.{ Suppose that we observe these randomvariables in sequen
e.{ If Xn > Xi for ea
h i = 1; : : : ; n � 1,then we say that Xn is a re
ord value.



Probability II{ Chap. 6: Jointly Distributed Random Variables 30{ An: The event that Xn is a re
ord value.{ P (AnjAn+1) = P (An) = 1n{ Then An and An+1 are independent.6.3 Sum of independent random vari-ables� Suppose thatX and Y are independent 
on-tinuous random variables with density fun
-tions fX and fY .� CDF of X + Y :FX+Y (a) = PfX + Y � ag= Z Zx+y�a fX(x)fY (y) dxdy= Z1�1 Z a�y�1 fX(x)fY (y) dxdy= Z1�1FX(a� y)fY (y) dy� PDF of X + Y :fX+Y (a) = dda Z1�1FX(a� y)fY (y) dy= Z1�1 ddaFX(a� y)fY (y) dy= Z1�1 fX(a� y)fY (y) dy



Probability II{ Chap. 6: Jointly Distributed Random Variables 31Example 6.3a. Sum of two independentuniform random variables. If X and Y areindependent random variables, both uniformlydistributed on (0,1), 
al
ulate the probabilitydensity of X + Y .� fX(a) = fY (a) = 8>>>><>>>>: 1 0 < a < 10 otherwise� fX+Y (a) = Z a0 fX(a� y) dy� For 0 � a � 1, this yieldsfX+Y (a) = Z a0 dy = a� For 1 < a < 2, we getfX+Y (a) = Z 1a�1 dy = 2� a� Hen
efX+Y (a) = 8>>>>>>>>><>>>>>>>>>: a 0 � a � 12� a 1 < a < 20 otherwise� Be
ause of the shape of its density fun
tion,the random variable X + Y is said to havea triangular distribution.
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tion of Gamma(t; �)f (y) = �e��y(�y)t�1�(t) 0 < y <1
Proposition 3.1: If X and Y are inde-pendent gamma random variables with respe
-tive parameters (s; �) and (t; �), then X + Yis a gamma random variable with parameters(s + t; �).If Xi's are independent gamma(ti; �), thennXi=1Xi � gamma 0BB� nXi=1 ti; �1CCA
Example 6.3b. Let X1; X2; : : : ; Xn be nindependent exponential random variables ea
hhaving parameter �. Then, as an exponen-tial random variable with parameter � is thesame as a gamma random variable with param-eters (1,�), we see from Proposition 3.1 thatX1; X2; : : : ; Xn is a gamma random variablewith parameters (n; �).



Probability II{ Chap. 6: Jointly Distributed Random Variables 33Chi-squared distribution:� If Z1; Z2; : : : ; Zn are independent unit nor-mal random variables, then Y � nXi=1Z2iis said to have the 
hi-squared distributionwith n degrees of freedom.� If n = 1, thenfZ2(y) = 12py [fZ(py) + fZ(�py)℄= 12py 2p2�e�y=2= e�y=2(y=2)1=2�1(1=2)p�Y is gamma(1=2; 1=2).� Thus for any n, Y is gamma(n=2; 1=2) andfY (y) = e�y=2(y=2)n=2�1(1=2)�(n=2)�When n is an even integer,�(n=2) = [(n=2)� 1℄!



Probability II{ Chap. 6: Jointly Distributed Random Variables 34�When n is an odd integer,�(n=2) = [(n=2)� 1℄ � � � (1=2)p�1. The 
hi-squared distribution often arises inpra
ti
e as being the distribution of the squareof the error involved when one attempts tohit a target in n-dimensional spa
e when the
oordinate errors are taken to be indepen-dent unit normal random variables.2. It is also important in statisti
al analysis.Proposition 3.2: If Xi; i = 1; : : : ; n areindependent random variables that are nor-mally distributed with respe
tive parameters�i; �2i ; 1; : : : ; n, then nXi=1Xi is normally dis-tributed with parameters nXi=1�i and nXi=1�2i .
� Assume X � N (0; �2) and Y � N (0; 1)are independent.� Show that X + Y � N (0; 1 + �2).



Probability II{ Chap. 6: Jointly Distributed Random Variables 35�Xi � N (�i; �2i )�X1 +X2 = �2 0�X1��1�1 + X2��2�2 1A + �1 + �2� X1��1�1 � N (0; �21=�22) and X2��2�2 � N (0; 1)� Then X1 +X2 � N (�1 + �2; �21 + �22).Example 6.3
. A 
lub basketball team willplay a 44-game season. Twenty-six of thesegames are against 
lass A teams and 18 areagainst 
lass B teams. Suppose that the teamwill win ea
h game against a 
lass A team withprobability .4, and will win ea
h game against a
lass B team with probability .7. Assume alsothat the results of the di�erent games are in-dependent. Approximate the probability that(a) the team wins 25 games or more;(b) the team wins more games against 
lass Ateams than it does against 
lass B teams.� (a)



Probability II{ Chap. 6: Jointly Distributed Random Variables 36{XA; XB: The number of games the teamwins against 
lass A and against 
lass B.{XA and XB: Independent binomial ran-dom variables.{ E[XA℄ = 26(:4) = 10:4 Var(XA) =26(:4)(:6) = 6:24{ E[XA℄ = 18(:7) = 12:6 Var(XB) =18(:7)(:3) = 3:78{ Normal approximation gives thatXA andXB are approximately independent nor-mal random variables.{ PfXA +XB � 25g = PfXA +XB � 24:5g= P 8><>:XA +XB � 23p10:02 � 24:5� 23p10:02 9>=>;� P 8><>:Z � 1:5p10:029>=>;� 1� PfZ < :4739g� :3178� (b)PfXA �XB � 1g = PfXA �XB � :5g= P 8><>:XA �XB + 2:2p10:02 � :5 + 2:2p10:02 9>=>;



Probability II{ Chap. 6: Jointly Distributed Random Variables 37� P 8><>:Z � 2:7p10:029>=>;� 1� PfZ < :8530g� :1968Example 6.3d. Sums of independent Pois-son random variables. If X and Y are in-dependent Poisson random variables with re-spe
tive parameters �1 and �2, 
ompute thedistribution of X + Y .
PfX + Y = ng = nXk=0PfX = k; Y = n� kg= nXk=0PfX = kgPfY = n� kg

= nXk=0 e��1�k1k! e��2 �n�k2(n� k)!= e�(�1+�2) nXk=0 �k1�n�k2k!(n� k)!= e�(�1+�2)n! (�1 + �2)n



Probability II{ Chap. 6: Jointly Distributed Random Variables 38Example 6.3e. Sums of independent bino-mial random variables. Let X and Y be in-dependent binomial random variables with re-spe
tive parameters (n; p) and (m; p). Cal
u-late the distribution of X + Y .� PfX + Y = kg = nXi=0PfX = i; Y = k � ig= nXi=0PfX = igPfY = k � ig= nXi=0 0BBBB�ni 1CCCCApiqn�i0BBBB� mk � i1CCCCApk�iqm�k+iwhere q = 1 � p and where  rj! = 0 whenj > r.� Hen
ePfX + Y = kg = pkqn+m�k nXi=0 0BBBB�ni 1CCCCA0BBBB� mk � i1CCCCA= 0BBBB�n +mk 1CCCCApkqn+m�k6.4 Conditional distributions: dis
rete
ase



Probability II{ Chap. 6: Jointly Distributed Random Variables 39� The 
onditional probability of E given F :P (EjF ) = P (EF )P (F )� The 
onditional probability mass fun
tionof X given Y = y:pXjY (xjy) = PfX = x; Y = ygPfY = yg = p(x; y)pY (y)� The 
onditional probability distribution fun
-tion of X given Y = y:FXjY (xjy) = PfX � x j Y = ygPfY = yg= Xa�x pXjY (ajy)� If X and Y are independent, thenpXjY (xjy) = PfX = xgExample 6.4a. Suppose that p(x; y), thejoint probability mass fun
tion of X and Y , isgiven byp(0; 0) = :4 p(0; 1) = :2 p(1; 0) = :1 p(1; 1) = :3



Probability II{ Chap. 6: Jointly Distributed Random Variables 40Cal
ulate the 
onditional probability mass fun
-tion of X , given that Y = 1.� pY (1) = Xx p(x; 1) = p(0; 1) + p(1; 1) = :5� PXjY (0j1) = p(0;1)pY (1) = 25� PXjY (1j1) = p(1;1)pY (1) = 35Example 6.4b. If X and Y are indepen-dent Poisson random variables with respe
tiveparameters �1 and �2, 
al
ulate the 
onditionaldistribution of X , given that X + Y = n.� PfX = kjX + Y = ng = PfX = k;X + Y = ngPfX + Y = ng= PfX = k; Y = n� kgPfX + Y = ng= PfX = kgPfY = n� kgPfX + Y = ng�X + Y � Poisson(�1 + �2)� PfX = kjX + Y = ng = e��1�k1k! e��2�n�k2(n� k)! 264e�(�1+�2)(�1 + �2)nn! 375�1



Probability II{ Chap. 6: Jointly Distributed Random Variables 41= n!(n� k)!k! �k1�n�k2(�1 + �2)n= 0B�nk1CA 0� �1�1 + �21Ak 0� �2�1 + �21An�k
6.5 Conditional distributions: 
ontin-uous 
ase� Conditional probability density fun
tion:fXjY (xjy) = f (x; y)fY (y)� PfX 2 A j Y = yg = ZA fXjY (xjy)dx� FXjY (ajy) = PfX � a j Y = yg =Z a�1 fXjY (xjy) dxExample 6.5a. The joint density of X andY is given byf (x; y) = 8>>>><>>>>: 152 x(2� x� y) 0 < x; y < 10 otherwiseCompute the 
onditional density of X , giventhat Y = y, where 0 < y < 1.



Probability II{ Chap. 6: Jointly Distributed Random Variables 42� For 0 < x < 1; 0 < y < 1, we havefXjY (xjy) = f (x; y)fY (y)= f (x; y)R1�1 f (x; y) dx= x(2� x� y)R10 x(2� x� y) dx= x(2� x� y)23 � y=2= 6x(2� x� y)4� 3yExample 6.5b. Suppose that the joint den-sity of X and Y is given by
f (x; y) = 8>>>>>><>>>>>>: e�x=ye�yy 0 < x; y <10 otherwiseFind PfX > 1jY = yg.� The 
onditional density of X , given that



Probability II{ Chap. 6: Jointly Distributed Random Variables 43Y = yfXjY (xjy) = f (x; y)fY (y)= e�x=ye�y=ye�y R10 (1=y)e�x=y dx= 1ye�x=y� Hen
ePfX > 1jY = yg = Z11 1ye�x=y dx= �e�x=y ������11= e�1=y
If X and Y are independent 
ontinuous ran-dom variables, the 
onditional density of X ,given Y = y, is just the un
onditional densityof X .Suppose that X is a 
ontinuous random vari-able having density fun
tion f and N is a dis-
rete random variable.



Probability II{ Chap. 6: Jointly Distributed Random Variables 44The 
onditional density of X given that N =n: Pfx < X < x+ dxjN = ngdx = PfN = njx < X < x+ dxgPfN = ng Pfx < X < x+ dxgdxlimdx!0 Pfx < X < x+ dxjN = ngdx = PfN = njX = xgPfN = ng f(x)
fXjN (xjn) = PfN = njX = xgPfN = ng f (x)

Example 6.5
. Consider n+m trials hav-ing a 
ommon probability of su

ess. Suppose,however, that this su

ess probability is not�xed in advan
e but is 
hosen from a uniform(0; 1) population. What is the 
onditional dis-tribution of the su

ess probability given thatthe n +m trails result in n su

esses?�X � uniform(0; 1): The trial su

ess prob-ability.� N � binomial(n + m;x): The number ofsu

ess.



Probability II{ Chap. 6: Jointly Distributed Random Variables 45� The 
onditional density ofX given thatN =n: Beta(n + 1;m + 1)fXjN(xjn) = PfN = njX = xgfX(x)PfN = ng=  n+mn !xn(1� x)mPfN = ng 0 < x < 1= 
xn(1� x)m� The 
onditional density is that of a beta ran-dom variable with parameters n+1;m+1.*6.6 Order statisti
s�X1; X2; : : : ; Xn are n independent and iden-ti
ally distributed, 
ontinuous random vari-ables having a 
ommon density f and dis-tribution fun
tion F .X(1) = smallest of X1; X2; : : : ; XnX(2) = se
ond smallest of X1; X2; : : : ; Xn...X(j) = jth smallest of X1; X2; : : : ; Xn



Probability II{ Chap. 6: Jointly Distributed Random Variables 46...X(n) = largest of X1; X2; : : : ; Xn�Order statisti
s: X(1) � X(2) � � � � �X(n)� The order statisti
sX(1); X(2); � � � ; X(n) willtake on the values x1 � x2 � � � � � xn ifand only if for some permutation (i1; i2; : : : ; in)of (1; 2; : : : ; n)X1 = xi1; X2 = xi2; : : : ; Xn = xinP (xi1 � �2 < X1 < xi1 + �2; : : : ; xin � �2 < Xn < xin + �2)� �nfX1;X2;:::;Xn(xi1; xi2; : : : ; xin)= �nf(x1) � � � f(xn)P (x1 � �2 < X1 < x1 + �2; : : : ; xn � �2 < Xn < xn + �2)� n!�nf(x1) � � � f(xn)
� Joint density fun
tion of order statisti
s:fX(1);:::;X(n)(x1; : : : ; xn) = n!f(x1) � � � f(xn) x1 < � � � < xnExample 6.6a. Along a road 1 mile longare 3 people "distributed at random." Find the



Probability II{ Chap. 6: Jointly Distributed Random Variables 47probability that no 2 people are less than adistan
e of d miles apart, when d � 12.�Xi's are independent uniform(0; 1).� fX(1);X(2);X(3)(x1; x2; x3) = 3! 0 < x1 <x2 < x3 < 1� If Xi denotes the position of the ith person,the desired probability isPfX(i) > X(i�1) + d; i = 2; 3gPfX(i) > X(i�1) + d; i = 2; 3g = Z Z Zxi>xi�1+d i=2;3 fX(1);X(2);X(3)(x1; x2; x3)dx1dx2dx3= 3! Z 1�2d0 Z 1�dx1+d Z 1x2+d dx3dx2dx1= 6 Z 1�2d0 Z 1�dx1+d(1� d� x2)dx2dx1= 6 Z 1�2d0 Z 1�2d�x10 y2dy2dx1where y2 = 1� d� x2.� Hen
e = 3 Z 1�2d0 (1� 2d� x1)2dx1= 3 Z 1�2d0 y21dy1= (1� 2d)3



Probability II{ Chap. 6: Jointly Distributed Random Variables 48� The same method 
an be used to prove thatwhen there are n people distributed at ran-dom over the unit interval the desired prob-ability is[1� (n� 1)d℄n when d � 1n� 1The density fun
tion of X(j):fX(j)(x) = n!(n� j)!(j � 1)![F (x)℄j�1[1� F (x)℄n�jf(x)
0BBBB� nj � 1; n� j; 11CCCCA = n!(n� j)!(j � 1)!Example 6.6b. When a sample of 2n + 1random variables (that is, when 2n + 1 inde-pendent and identi
ally distribute random vari-ables) are observed, the (n + 1)st smallest is
alled the sample median. If a sample ofsize 3 from a uniform distribution over (0,1) isobserved, �nd the probability that the samplemedian is between 14 and 34.



Probability II{ Chap. 6: Jointly Distributed Random Variables 49� fX(2)(x) = 3!1!1!x(1� x) 0 < x < 1� Hen
eP 8>>><>>>:14 < X(2) < 349>>>=>>>; = 6 Z 3=41=4 x(1� x)dx
= 6 8>>>>><>>>>>:x22 � x33 9>>>>>=>>>>>;�����������x=3=4x=1=4 = 1116

FX(j)(y) = Z y�1 n!(n� j)!(j � 1)![F (x)℄j�1[1� F (x)℄n�jf(x)dxFX(j)(y) = Pfj or more of Xi's are � yg= nXk=j 0�nk1AF k(y)[1� F (y)℄n�kfX(i);X(j)(xi; xj) = n!(i� 1)!(j � i� 1)!(n� j)!(j � 1)! �[F (xi)℄i�1[F (xj)� F (xi)℄j�i�1[1� F (xj)℄n�jf(xi)f(xj)
Example 6.6
. Distribution of the rangeof a random sample. Suppose that n in-dependent and identi
ally distributed randomvariables X1; X2; : : : ; Xn are observed.� R = X(n) � X(1): The range of the ob-served random variables.



Probability II{ Chap. 6: Jointly Distributed Random Variables 50� If the random variablesXi have distributionfun
tion F and density fun
tion f , then thedistribution of R 
an be obtained from Eq.(6.6) as follows: a � 0.PfR � ag = PfX(n) �X(1) � ng= Z Zxn�x1�a fX(1);X(n)(x1; xn)dx1dxn= Z 1�1 Z x1+ax1 n!(n� 2)![F (xn)� F (x1)℄n�2f(x1)f(xn)dxndx1�Making the 
hange of variable y = F (xn)�F (x1),dy = f (xn)dxn, yieldsZ x1+ax1 [F (xn)� F (x1)℄n�2f(xn)dxn = Z F (x1+a)�F (x1)0 yn�2dy= 1n� 1[F (x1 + a)� F (x1)℄n�1and thusPfR � ag = n Z 1�1[F (x1+ a)�F (x1)℄n�1f(x1)dx1(6:7)�When the Xi's are all uniformly distributedon (0; 1):PfR < ag = n Z 10 [F (x1 + a)� F (x1)℄n�1f(x1)dx1= n Z 1�a0 an�1dx1 + n Z 11�a(1� x1)n�1dx1= n(1� a)an�1 + an



Probability II{ Chap. 6: Jointly Distributed Random Variables 51� The density fun
tion of the range:fR(a) = 8>>>><>>>>: n(n� 1)an�2(1� a) 0 � a � 10 otherwise� The range of n independent uniform(0; 1)random variables is a Beta(n� 1; 2).6.7 Joint probability distribution of fun
-tions of random variables� The joint probability density fun
tion fX1;X2.� Y1 = g1(X1; X2) and Y2 = g2(X1; X2).� Assume that g1 and g2 satisfy the following
ondition:1. The equation y1 = g1(x1; x2) and y2 =g2(x1; x2) 
an be uniquely solved for x1and x2 in terms of y1 and y2 with solu-tions given by x1 = h1(y1; y2) and x2 =h2(y1; y2).2. The fun
tions g1 and g2 have 
ontinuouspartial derivatives at all points (x1; x2)



Probability II{ Chap. 6: Jointly Distributed Random Variables 52and are su
h that the following 2� 2 de-terminantJ(x1; x2) = ����������� �g1�x1 �g1�x2�g2�x1 �g2�x2
����������� 6= 0at all points (x1; x2).The joint density fun
tion of Y1 and Y2:fY1Y2(y1; y2) = fX1X2(x1; x2)jJ(x1; x2)j�1

Example 6.7a. Let X1 and X2 be jointly
ontinuous random variables with probabilitydensity fun
tion fX1;X2. Let Y1 = X1+X2; Y2 =X1�X2. Find the joint density fun
tion of Y1and Y2 in terms of fX1;X2.� g1(x1; x2) = x1+ x2 and g2(x1; x2) = x1�x2. ThenJ(x1; x2) = ���������� 1 11 �1 ���������� = �2
� fY1;Y2(y1; y2) = 12fX1;X2(y1+y22 ; y1�y22 )



Probability II{ Chap. 6: Jointly Distributed Random Variables 53� IfX1 andX2 are independent uniform(0; 1),thenfY1;Y2(y1; y2) = 8><>: 12 0 � y1 + y2 � 2; 0 � y1 � y2 � 20 otherwise� IfX1 andX2 are independent exp(�1); exp(�2),then fY1;Y2(y1; y2)= 8><>: �1�22 expf��1(y1+y22 )� �2(y1�y22 )g y1 + y2 � 0; y1 � y2 � 00 otherwise� If X1 and X2 are independent unit normalrandom variables, then Y1 and Y2 are inde-pendent N (0; 2).fY1;Y2(y1; y2) = 14�e�[(y1+y2)2=8+(y1�y2)2=8℄= 14�e�(y21+y22)=4= 1p4�e�y21=4 1p4�e�y22=4Example 6.7b. Let (X;Y ) denote a ran-dom point in the plane and assume that there
tangular 
oordinates X and Y are indepen-dent unit normal random variables. We are in-terested in the joint distribution of R, �, the



Probability II{ Chap. 6: Jointly Distributed Random Variables 54polar 
oordinate representation of this point(See Fig. 6.4).� r = g1(x; y) = sx2 + y2 and � = g2(x; y) =tan�1 y=x, 0 < r <1; 0 < � < 2�.� �g1�x = xpx2+y2 and �g1�y = ypx2+y2.� �g2�x = �yx2+y2 and �g2�y = xx2+y2.� J(x; y) = 1px2+y2 = 1r� f (x; y) = 12�e�(x2+y2)=2� f (r; �) = 12�re�r2=2� R and � are independent.� R isRayleigh distribution. � is uniform(0; 2�).� The joint distribution of R2 and �:{ d = g1 = x2 + y2 and � = g2(x; y) =tan�1 y=x, 0 < d <1; 0 < � < 2�.{ J = 2 and f (d; �) = 12e�d=2 12�.



Probability II{ Chap. 6: Jointly Distributed Random Variables 55{ R2 and � are independent with R2 hav-ing an exponential distribution with pa-rameter 1/2.� The above result 
an be used to simulatenormal random variables by making a suit-able transformation on uniform random vari-ables.{ U1 and U2 are independent uniform(0; 1).{ R2 � �2 logU1 is an exponential distri-bution with parameter 1/2.{ � � 2�U2 is a uniform(0; 2�).{X1 = R 
os� = p�2 logU1 
os(2�U2){X2 = R sin� = p�2 logU1 sin(2�U2)Example 6.7
. If X and Y are indepen-dent gamma random variables with parame-ters (�; �) and (�; �), respe
tively, 
omputethe joint density of U = X + Y and V =X=(X + Y ).



Probability II{ Chap. 6: Jointly Distributed Random Variables 56� The joint density of X and Y is given byfX;Y (x; y) = �e��x(�x)(��1)�(�) �e��y(�y)(��1)�(�)= ��+��(�)�(�)e��(x+y)x��1y��1
� u = g1(x; y) = x+y; v = g2(x; y) = x=(x+y), then�g1�x = �g1�y = 1 �g2�x = y(x + y)2 �g2�y = � x(x + y)2� J(x; y) = ����������� 1 1y(x+y)2 �x(x+y)2

����������� = � 1x + y� x = uv, and y = u(1� v)fU;V (u; v) = fX;Y [uv; u(1� v)℄u= �e��u(�u)�+��1�(� + �) v��1(1� v)��1�(� + �)�(�)�(�)� U and V are independent gamma(� + �)and beta(�; �).� Suppose that there are n + m jobs to beperformed, with ea
h taking an exponential



Probability II{ Chap. 6: Jointly Distributed Random Variables 57amount of time with rate � for performan
e,and suppose that we have two workers toperform these jobs.�Worker I will do jobs 1; : : : ; n, and workerII will do the remaining m jobs.� If we let X and Y denote the total workingtimes of workers I and II, respe
tively, thenX and Y will be independent gamma(n; �)and gamma(m;�).� Then the above result yields that indepen-dently of the working time needed to 
om-plete all n +m jobs, the proportion of thiswork that will be performed by worker I hasa beta(n;m).The joint density fun
tion of the n randomvariables X1; X2; : : : ; Xn:



Probability II{ Chap. 6: Jointly Distributed Random Variables 58� Yi = gi(X1; X2; : : : ; Xn); i = 1; 2; : : : ; n
J =

���������������������
�g1�x1 �g1�x2 � � � �g1�xn�g2�x1 �g2�x2 � � � �g2�xn...�gn�x1 �gn�x2 � � � �gn�xn

���������������������yi = gi(x1; x2; : : : ; xn); i = 1; 2; : : : ; n� fY1;:::;Yn(y1; : : : ; yn) = fX1;:::;Xn(x1; : : : ; xn)jJ j�1 wherexi = hi(y1; y2; : : : ; yn); i = 1; 2; : : : ; nExample 6.7d. Let X1; X2 and X3 be in-dependent unit normal random variables. IfY1 = X1 + X2 + X3; Y2 = X1 � X2; Y3 =X1 � X3, 
ompute the joint density fun
tionof Y1; Y2; Y3.�
J = ���������������

1 1 11 �1 01 0 �1
��������������� = 3

�X1 = Y1+Y2+Y33



Probability II{ Chap. 6: Jointly Distributed Random Variables 59�X2 = Y1�2Y2+Y33�X3 = Y1+Y2�2Y33� fY1;Y2;Y3(y1; y2; y3) = 13fX1;X2;X3  y1 + y2 + y33 ; y1 � 2y2 + y33 ; y1 + y2 � 2y33 !
� fX1;X2;X3(x1; x2; x3) = 1(2�)3=2e� P3i=1 x2i=2� fY1;Y2;Y3(y1; y2; y3) = 13(2�)3=2e�Q(y1;y2;y3)=2whereQ(y1; y2; y3) =  y1 + y2 + y33 !2 +  y1 � 2y2 + y33 !2 +  y1 + y2 � 2y33 !2= y213 + 23y22 + 23y23 � 23y2y3
Example 6.7e. Let X1; X2; : : : ; Xn be in-dependent and identi
ally distributed exponen-tial random variables with rate �. LetYi = X1 + � � � +Xi i = 1; : : : ; n(a) Find the joint density fun
tion of Y1; : : : ; Yn.(b) Use the result of part (a) to �nd the densityof Yn.



Probability II{ Chap. 6: Jointly Distributed Random Variables 60(a) Y1 = X1; Y2 = X1 + X2; : : : ; Yn = X1 +� � � +Xn
J(x1; : : : ; xn) =

������������������������������

1 0 0 0 � � � 01 1 0 0 � � � 01 1 0 0 � � � 0� � � � � �� � � � � �1 1 1 1 � � � 1

������������������������������� fY1;:::;Yn(y1; y2; : : : ; yn) = fX1;:::;Xn(y1; y2 � y1; : : : ; yi � yi�1; : : : ; yn � yn�1)= �n expf��[y1 + nXi=2(yi � yi�1)℄g= �ne��yn 0 < y1; 0 < yi � yi�1; i = 2; : : : ; n= �ne��yn 0 < y1 < y2 < � � � < yn� (b)fY2;:::;Yn(y2; : : : ; yn) = Z y20 �ne��yndy1= �ny2e��yn 0 < y2 < y3 < � � � < yn� fY3;:::;Yn(y3; : : : ; yn) = Z y30 �ny2e��yndy2= �ny232 e��yn 0 < y3 < y4 < � � � < yn� fY4;:::;Yn(y4; : : : ; yn) = �ny243! e��yn 0 < y4 < � � � < yn



Probability II{ Chap. 6: Jointly Distributed Random Variables 61� Yn is gamma(n; �)fYn(yn) = �n yn�1n(n� 1)!e��yn 0 < yn
*6.8 Ex
hangeable random variables� The random variables X1; : : : ; Xn are saidto ex
hangeable if for every permutation i1; : : : ; inof the integers 1; : : : ; nPfXi1 � x1; : : : ; Xin � xng = PfX1 � x1; : : : ; Xn � xng� Dis
rete random variables will be ex
hange-able ifPfXi1 = x1; : : : ; Xin = xng = PfX1 = x1; : : : ; Xn = xngExample 6.8a. Suppose that balls are with-drawn one at a time and without repla
ementfrom an urn that initially 
ontains n balls, ofwhi
h k are 
onsidered spe
ial, in su
h a man-ner that ea
h withdrawal is equally likely to beany of the balls that remain in the urn at thetime. Let Xi = 1 if the ith ball withdrawn is aspe
ial and let it be 0 otherwise. We will show



Probability II{ Chap. 6: Jointly Distributed Random Variables 62that the random variables X1; : : : ; Xn are ex-
hangeable.� Let (x1; : : : ; xn) be a ve
tor 
onsisting of kones and n� k zeros.� However, before 
onsidering the joint massfun
tion evaluated at (x1; : : : ; xn), let us tryto gain some insight by 
onsidering a �xedsu
h ve
tor-for instan
e, 
onsider the ve
tor(1; 1; 0; 1; 0; : : : ; 0; 1), whi
h is assumed tohave k ones and n� k zeros.� Thenp(1; 1; 0; 1; 0; : : : ; 0; 1) = knk � 1n� 1n� kn� 2 k � 2n� 3n� k � 1n� 4 � � � 1211whi
h follows sin
e the probability that the�rst ball is spe
ial is k=n, the 
onditionalprobability that the next one is spe
ial is(k � 1)=(n � 1), the 
onditional probabil-ity that the next one is not spe
ial is (n �k)=(n� 2), and so on.� By the same argument, it follows that



Probability II{ Chap. 6: Jointly Distributed Random Variables 63p(x1; : : : ; xn) 
an be expressed as the prod-u
t of n fra
tions.� The su

essive denominator terms of thesefra
tions will go from n down to 1.� The numerator term at the lo
ation wherethe ve
tor (x1; : : : ; xn) is 1 for the ith timeis k � (i � 1), and where it is 0 for the ithtime it is n� k � (i� 1).� Hen
e, sin
e the ve
tor (x1; : : : ; xn) 
onsistsof k ones and n � k ones and n � k zeros,we obtain thatp(x1; : : : ; xn) = k!(n� k)!n! xi = 0; 1; nXi=1xi = k� Sin
e this is a symmetri
 fun
tion of (x1; : : : ; xn),it follows that the random variables are ex-
hangeable.If X1; X2; : : : ; Xn are ex
hangeable, it easilyfollows that ea
h Xi has the same probabilitydistribution. If X and Y are ex
hangeable dis-
rete random variables, then
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PfX = xg = Xy PfX = x; Y = yg = Xy PfX = y; Y = xg = PfY = xg
Example 6.8b. In Example 6.8a, let Y1 de-note the sele
tion number of the �rst spe
ialball withdrawn, let Y2 denote the additionalnumber that are then withdrawn until the se
-ond spe
ial ball appears, and in general, letYi denote the additional number of balls with-drawn after the (i�1)st spe
ial ball is sele
teduntil the ith is sele
ted, i = 1; : : : ; k.� For instan
e, if n = 4; k = 2 and X1 =1; X2 = 0; X3 = 0; X4 = 1 then Y1 =1; Y2 = 3.� Sin
e Y1 = i1; Y2 = i2; : : : ; Yk = ik ,Xi1 = Xi1+i2 = � � � = Xi1+���+ik = 1; Xj =0, otherwise; we obtain from the joint massfun
tion of the Xi thatPfY1 = i1; Y2 = i2; : : : ; Yk = ikg = k!(n� k)!n! i1+� � �+ik � n



Probability II{ Chap. 6: Jointly Distributed Random Variables 65� Hen
e we see that the random variables Y1; : : : ; Ykare ex
hangeable.� For instan
e, it follows from this that thenumber of 
ards one must sele
t from a well-shu�ed de
k until an a
e appears has thesame distribution as the number of addi-tional 
ards one must sele
t after the �rsta
e appears until the next one does, and soon.Example 6.8
. The following is known asPolya's urn model. Suppose that an urn ini-tially 
ontains n red andm blue balls. At ea
hstage a ball is randomly 
hosen, its 
olor isnoted, and it is then repla
ed along with an-other ball of the same 
olor. Let Xi = 1 ifthe ith ball sele
ted is red and let it equal 0 ofthe ith ball is blue, i � 1. To obtain a feelingfor the joint probabilities of these Xi, note thefollowing spe
ial 
ases.



Probability II{ Chap. 6: Jointly Distributed Random Variables 66� PfX1 = 1; X2 = 1; X3 = 0; X4 = 1; X5 = 0g= nn +m n + 1n +m + 1 mn +m + 2 n + 2n +m + 3 m + 1n +m + 4= n(n + 1)(n + 2)m(m + 1)(n +m)(n +m + 1)(n +m + 2)(n +m + 3)(n +m + 4)� PfX1 = 0; X2 = 1; X3 = 0; X4 = 1; X5 = 1g= mn +m nn +m + 1 m + 1n +m + 2 n + 1n +m + 3 n + 2n +m + 4= n(n + 1)(n + 2)m(m + 1)(n +m)(n +m + 1)(n +m + 2)(n +m + 3)(n +m + 4)� PfX1 = x1; : : : ;Xk = xkgn(n+ 1) � � � (n + r � 1)m(m + 1) � � � (m + k � r � 1)(n +m) � � � (n+m + k � 1)� The random variables X1; : : : ; Xk are ex-
hangeable.Example 6.8d. Let X1; X2; : : : ; Xn be in-dependent uniform (0,1) random variables, andlet X(1); : : : ; X(n) denote their order statisti
s.That is,X(j) is the jth smallest ofX1; X2; : : : ; Xn.Also, letY1 = X(1);Yi = X(i) �X(i�1); i = 2; : : : ; nShow that Y1; : : : ; Yn are ex
hangeable.



Probability II{ Chap. 6: Jointly Distributed Random Variables 67� y1 = x1; : : : ; yi = xi � xi�1 i = 2; : : : ; n� xi = y1 + � � � + yi i = 1; : : : ; n� fY1;:::;Yn(y1; y2; : : : ; yn) = f(y1; y1+y2; : : : ; y1+ � � �+yn)� fY1;:::;Yn(y1; y2; : : : ; yn) = n!0 < y1 < y1+y2 < � � � < y1+ � � �+yn < 1� fY1;:::;Yn(y1; y2; : : : ; yn) = n!0 < yi < 1; i = 1; : : : ; n y1+ � � �+yn < 1Summary� Joint 
umulative probability distribution fun
-tion: F (x; y) = PfX � x; Y � yg{ FX(x) = limy!1 F (x; y){ FY (y) = limx!1F (x; y)� Joint probability mass fun
tion:p(i; j) = PfX = i; Y = jg{ PfX = ig = Xj p(i; j)



Probability II{ Chap. 6: Jointly Distributed Random Variables 68{ PfY = jg = Xi p(i; j)� Joint probability density fun
tion: f (x; y){ Pf(X;Y ) 2 Cg = Z ZC f (x; y) dxdy{ fX(x) = Z1�1 f (x; y) dy{ fY (y) = Z1�1 f (x; y) dx� Independen
ePfX 2 A; Y 2 Bg = PfX 2 AgPfY 2 BgPfX1 2 A1; : : : ; Xn 2 Ang = PfX1 2 A1g � � �PfXn 2 Ang� The distribution fun
tion of X + Y :FX+Y (a) = Z1�1F (a� y)fY (y) dy� If Xi's are independent N (�i; �2i ), thennXi Xi � N (nXi �i; nXi �2i )� If Xi's are independent Poisson(�i), thennXi Xi � Poisson(nXi �i)� If Xi's are independent gamma(�i; �), thennXi Xi � gamma(nXi �i; �)



Probability II{ Chap. 6: Jointly Distributed Random Variables 69� IfXi's are independent binomial(ni; p), thennXi Xi � binomial(nXi ni; p)� The 
onditional probability mass fun
tionof X given that Y = y:PfX = xjY = yg = p(x; y)pY (y)� The 
onditional probability density fun
tionof X given that Y = y:fXjY (xjy) = f (x; y)fY (y)� The density fun
tion of order statisti
:f(x1; : : : ; xn) = n!f(x1) � � � f(xn) x1 � x2 � � � � � xn� The random variables X1; : : : ; Xn are ex-
hangeable if the joint distribution ofXi1; : : : ; Xinis the same for every permutation i1; : : : ; inof 1; : : : ; n.


