
1Chapter 6 Jointly DistributedRandom Variables6.1 Joint distribution funtions� Joint umulative probability distribution fun-tion of X and Y :F (a; b) = PfX � a; Y � bg �1 < a; b <1� FX(a) = PfX � ag = limb!1F (a; b) �F (a;1)� FY (b) = PfY � bg = lima!1F (a; b) �F (1; b)�Marginal distribution: FX(a); FY (b)� All joint probability statements about Xand Y an be answered in terms of theirjoint distribution funtion.� PfX > a; Y > bg = 1�FX(a)�FY (b)+F (a; b)� Pfa1 < X � a2; b1 < Y � b2g = F (a2; b2)+F (a1; b1)� F (a1; b2)� F (a2; b1)



Probability II{ Chap. 6: Jointly Distributed Random Variables 2� Joint probability mass funtion ofX and Y :pfx; yg = PfX = x; Y = yg{ pX(x) = PfX = xg = Xy p(x; y){ pY (y) = PfY = yg = Xx p(x; y)Example 6.1a. Suppose that 3 balls arerandomly seleted from an urn ontaining 3red, 4 white, and 5 blue balls.� If we let X and Y denote, respetively, thenumber of red and white balls hosen, thenthe joint probability mass funtion ofX andY , p(i; j) = PfX = i; Y = jg, is given byp(0; 0) = 0BBBB�531CCCCA=0BBBB�123 1CCCCA = 10220p(0; 1) = 0BBBB�411CCCCA0BBBB�521CCCCA=0BBBB�123 1CCCCA = 40220p(0; 2) = 0BBBB�421CCCCA0BBBB�511CCCCA=0BBBB�123 1CCCCA = 30220p(0; 3) = 0BBBB�431CCCCA=0BBBB�123 1CCCCA = 4220



Probability II{ Chap. 6: Jointly Distributed Random Variables 3
p(1; 0) = 0BBBB�311CCCCA0BBBB�521CCCCA=0BBBB�123 1CCCCA = 30220p(1; 1) = 0BBBB�311CCCCA0BBBB�411CCCCA0BBBB�511CCCCA=0BBBB�123 1CCCCA = 60220p(1; 2) = 0BBBB�311CCCCA0BBBB�421CCCCA=0BBBB�123 1CCCCA = 18220p(2; 0) = 0BBBB�321CCCCA0BBBB�511CCCCA=0BBBB�123 1CCCCA = 15220p(2; 1) = 0BBBB�321CCCCA0BBBB�411CCCCA)=0BBBB�123 1CCCCA = 12220p(2; 2) = 0BBBB�331CCCCA=0BBBB�123 1CCCCA = 1220� These probabilities an most easily be ex-pressed in tabular form as in Table 6.1� The reader should note that the probabilitymass funtion of X is obtained by omput-ing the row sums, whereas the probabilitymass funtion of Y is obtained by omput-ing the olumn sums.� As the individual probability mass funtions



Probability II{ Chap. 6: Jointly Distributed Random Variables 4of X and Y thus appear in the margin ofsuh a table, they are often referred to asbeing the marginal probability mass fun-tion of X and Y , respetively.Table 6.1 PfX = i; Y = jg0 1 2 3 Row sum =PfX = ig0 10220 40220 30220 4220 842201 30220 60220 18220 0 1082202 15220 12220 0 0 272203 1220 0 0 0 1220Column sum = 56220 112220 48220 4220PfY = jgExample 6.1b. Suppose that 15 perent ofthe families in a ertain ommunity have nohildren, 20 perent have 1, 35 perent have 2,and 30 perent have 3; and suppose, further,that in eah family, eah hild is equally likelyto be a boy or a girl. If a family is hosenat random from this ommunity, the B, the



Probability II{ Chap. 6: Jointly Distributed Random Variables 5number of boys, and G, the number of girls, inthis family will have the joint probability massfuntion shown in Table 6.2.� PfB = 0; G = 0g = Pfno hildreng = :15PfB = 0; G = 1g = Pf1 girl and total of 1 hildg= Pf1 hildgPf1 girl j 1 hildg = (:20) 0�121APfB = 0; G = 2g = Pf2 girls and total of 2 hildreng= Pf2 hildrengPf2 girls j 2 hildreng = (:35) 0�121A2� Table 6.2 PfB = i; G = jg Row sum =0 1 2 3 PfB = ig0 :15 :10 :0875 :0375 :37501 :10 :175 :1125 0 :38752 :0875 :1125 0 0 :20003 :0375 0 0 0 :0375Column sum =PfG = jg :375 :3875 :2000 :0375� Joint probability density funtion of X andY : f (x; y)� Pf(X < Y ) 2 Cg = Z Z(x;y)2C f (x; y)dxdy



Probability II{ Chap. 6: Jointly Distributed Random Variables 6� f (a; b) = �2�a�bF (a; b)Pfa < X < a + da; b < Y < b + dbg = Z d+dbb Z a+daa f(x; y)dxdy� f(a; b)dadb� PfX 2 Ag = PfX 2 A; Y 2 (�1;1)g= ZA Z1�1 f (x; y)dydx= ZA fX(x)dxwhere fX(x) = Z1�1 f (x; y)dy� fY (y) = Z1�1 f (x; y)dxExample 6.1. The joint density funtionof X and Y is given byf (x; y) = 8>>>><>>>>: 2e�xe�2y 0 < x <1; 0 < y <10 otherwiseCompute (a) PfX > 1; Y < 1g, (b) PfX <Y g, and ()PfX < ag(a) PfX > 1; Y < 1g = Z 10 Z11 2e�xe�2ydxdy



Probability II{ Chap. 6: Jointly Distributed Random Variables 7= Z 10 2e�2y(�e�xj11 )dy= e�1 Z 10 2e�2ydy= e�1(1� e�2)(b) PfX < Y g = Z Z(x;y):x<y 2e�xe�2ydxdy= Z10 Z y0 2e�xe�2ydxdy= Z10 2e�2y(1� e�y)dy= Z10 2e�2ydy � Z10 2e�3ydy= 1� 23= 13� () PfX < ag = Z a0 Z10 2e�2ye�xdydx= Z a0 e�xdx= 1� e�aExample 6.1d. Consider a irle of radiusR and suppose that a point within the irle is



Probability II{ Chap. 6: Jointly Distributed Random Variables 8randomly hosen in suh a manner that all re-gions within the irle of equal area are equallylikely to ontain the point. (On other words,the point is uniformly distributed within theirle.) If we let the enter of the irle denotethe origin and de�neX and Y to be the oordi-nates of the point hosen (Fig. 6.1), it follows,sine (X;Y ) is equally likely to be near eahpoint in the irle, that the joint density fun-tion of X and Y is given byf (x; y) = 8>>>><>>>>:  if x2 + y2 � R20 if x2 + y2 > R2for some value of .(a) Determine .(b) Find the marginal density funtions of Xand Y .() Compute the probability that D, the dis-tane from the origin of the point seleted,id less than or equal to a.(d) Find E[D℄.



Probability II{ Chap. 6: Jointly Distributed Random Variables 9(a) Beause Z1�1 Z1�1 f (x; y)dxdy = 1 Z Zx2+y2�R2 dxdy = 1 = 1�R2(b) fX(x) = Z1�1 f (x; y)dy= 1�R2 Zx2+y2�R2 dy= 1�R2 Z � dy  = sR2 � x2= 2�R2sR2 � x2 x2 � R2
fY (y) = 2�R2sR2 � y2 y2 � R2= 0 y2 > R2()D = pX2 + Y 2, for 0 � a � RFD(a) = PfsX2 + Y 2 � ag= PfX2 + Y 2 � a2g= Z Zx2+y2�a2 f (x; y)dydx= 1�R2 Z Zx2+y2�a2 dydx
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= �a2�R2= a2R2(d) From () we obtain that the density funtionof D is FD(a) = 2aR2 0 � a � RHene E[D℄ = 2R2 ZR0 a2da = 2R3Example 6.1e. The joint density of X andY is given byf (x; y) = 8>>>><>>>>: e�(x+y) 0 < x <1; 0 < y <10 otherwiseFind the density funtion of the random vari-able X=Y .� For a > 0,FX=Y (a) = P 8>>><>>>:XY � a9>>>=>>>;= Z Zx=y�a e�(x+y)dxdy= Z10 Z ay0 e�(x+y)dxdy



Probability II{ Chap. 6: Jointly Distributed Random Variables 11= Z10 (1� e�ay)e�ydy= 2666664�e�y + e�(a+1)ya + 1 3777775�����������10= 1� 1a� 1� The density funtion:f (x; y) = 1=(a + 1)2; 0 < a <1n random variables:� Joint umulative probability distribution fun-tion:F (a1; a2; : : : ; an) = PfX1 � a1; X2 � a2; : : : ; Xn � ang� Joint probability density funtion:f(x1; x2; : : : ; xn) = �n�x1�x2 � � � �xnF (x1; x2; : : : ; xn)� Pf(X1; X2; : : : ; Xn) 2 Cg = Z Z � � � Z(x1;x2;:::;xn)2C f(x1; x2; : : : ; xn)dx1dx2 � � � dxn� PfX1 2 A1; X2 2 A2; : : : ; Xn 2 Ang = ZAn ZAn�1 � � � ZA1 f(x1; x2; : : : ; xn)dx1dx2 � � � dxnExample 6.1f.The multinomial distribution. One of the



Probability II{ Chap. 6: Jointly Distributed Random Variables 12most important joint distribution is the multi-nomial, whih arises when a sequene of n inde-pendent and idential experiments is performed.Suppose that eah experiment an result inany one of r possible outomes, with respe-tive probabilities p1; p2; : : : ; pr, rXi=1 pi = 1. Ifwe denote by Xi, the number of the n exper-iments that result in outome number i, thenPfX1 = n1; X2 = n2; : : : ; Xr = nrg = n!n1!n2! � � �nr!pn11 pn22 � � � pnrrwhenever rXi=1ni = n.
� Suppose that a fair die is rolled 9 times.� The probability that 1 appears three times,2 and 3 twie eah, 4 and 5 one eah, and6 not at all is 9!3!2!2!1!1!0! 0BBB�161CCCA96.2 Independent random variables� The random variables X and Y are said toindependent if for any two sets of real num-



Probability II{ Chap. 6: Jointly Distributed Random Variables 13bers A and B,PfX 2 A; Y 2 Bg = PfX 2 AgPfY 2 Bg� Equivalent ondition of independene:F (a; b) = FX(a)FY (b){WhenX and Y are disrete random vari-ables:p(x; y) = pX(x)pY (y) for all x; y{ In the jointly ontinuous ase:f (x; y) = fX(x)fY (y) for all x; y� Random variables that are not independentare said to be dependent.Example 6.2a. Suppose that n +m inde-pendent trials, having a ommon suess prob-ability p, are performed. If X is the numberof suesses in the �rst n trials, and Y is thenumber of suesses in the �nal m trials, thenX and Y are independent, sine knowing thenumber of suesses in the �rst n trials doesnot a�et the distribution of the number of su-esses in the �nal m trials (by the assumption



Probability II{ Chap. 6: Jointly Distributed Random Variables 14of independent trials). In fat, for integral xand y,PfX = x; Y = yg = 0B�nx1CApx(1� p)n�x0B�my 1CApy(1� p)m�y0 � x � n; 0 � y � m= PfX = xgPfY = ygOn the other hand, X and Z will be depen-dent, where Z is the total number of suessesin the n +m trials. (Why is this?)Example 6.2b. Suppose that the numberof people that enter a post oÆe on a given dayis a Poisson random variable with parameter�. Show that if eah person that enters thepost oÆe is a male with probability p and afemale with probability 1�p, then the numberof males and females entering the post oÆeare independent Poisson random variables withrespetive parameters �p and �(1� p).� Condition on X + Y :PfX = i; Y = jg = PfX = i; Y = jjX + Y = i+ jgPfX + Y = i+ jg+ PfX = i; Y = jjX + Y 6= i+ jgPfX + Y 6= i+ jg



Probability II{ Chap. 6: Jointly Distributed Random Variables 15� Sine PfX = i; Y = jjX +Y 6= i+ jg = 0PfX = i; Y = jg = PfX = i; Y = jjX+Y = i+jgPfX+Y = i+jg(2:3)� PfX + Y = i + jg = e�� �i+j(i + j)! (2:4)� PfX = i; Y = jjX + Y = i + jg = 0B�i + ji 1CApi(1� p)j (2:5)� PfX = i; Y = jg = 0BBB�i + ji 1CCCApi(1� p)je�� �i+j(i+ j)!= e��(�p)ii!j! [�(1� p)℄j= e��p(�p)ii! e��(1�p) [�(1� p)℄ij! (2:6)� HenePfX = ig = e��p(�p)ii! Xj e��(1�p) [�(1� p)j℄j! = e��p(�p)ii!(2:7)� PfY = jg = e��(1�p)[�(1� p)℄jj! (2:8)



Probability II{ Chap. 6: Jointly Distributed Random Variables 16Example 6.2. A man and a woman deideto meet at a ertain loation. If eah personindependently arrives at a time uniformly dis-tributed between 12 noon and 1 P.M., �nd theprobability that the �rst to arrive has to waitlonger than 10 minutes.�X and Y : The time past 12 that the manand woman arrive.�X and Y are independent random variables,eah of whih is uniform(0; 60).� The desired probability PfX + 10 < Y g+PfY + 10 < Xg.� By symmetryPfX + 10 < Y g = PfY + 10 < Xg2PfX + 10 < Y g = 2 Z Zx+10<y f (x; y) dxdy= 2 Z Zx+10<y fX(x)fY (y) dxdy= 2 Z 6010 Z y�100 0BBB� 1601CCCA2 dxdy



Probability II{ Chap. 6: Jointly Distributed Random Variables 17= 2(60)2 Z 6010 (y � 10) dy= 2536Example 6.2d. Bu�on's needle prob-lem. A table is ruled with equidistant paral-lel lines a distane D apart. A needle of lengthL, where L � D, is randomly thrown on thetable. What is the probability that the needlewill interset one of the lines (the other possi-bility being that the needle will be ompletelyontained in the strip between two lines)?�X : The distane from the middle point ofthe needle to the nearest parallel line.� �: The angle between the needle and theprojeted line of length X (Fig. 6.2).� The needle will interset a line if the hy-potenuse of the right triangle in Fig. 6.2 is



Probability II{ Chap. 6: Jointly Distributed Random Variables 18less than L=2, i.e.Xos � < L2 or X < L2 os ��X � uniform(0; D=2); � � uniform(0; �=2)� P 8>>><>>>:X < L2 os �9>>>=>>>; = Z Zx<L=2 os y fX(x)f�(y) dxdy= 4�D Z �=20 L2 os y dy= 2L�D*Example 6.2e. Charaterization of thenormal distribution. Let X and Y denotethe horizontal and vertial miss distane whena bullet is �red at a target, and assume that1.X and Y are independent ontinuous ran-dom variables having di�erentiable densityfuntions.2. The joint density f (x; y) = fX(x)fY (y) of



Probability II{ Chap. 6: Jointly Distributed Random Variables 19X and Y depends on (x; y) only throughx2 + y2.� Assumptions 1 and 2 imply that X and Yare normally distributed random variables.f (x; y) = fX(x)fY (y) = g(x2 + y2)f 0X(x)fY (y) = 2xg0(x2 + y2)f 0X(x)fX(x) = 2xg0(x2 + y2)g(x2 + y2)f 0X(x)2xfX(x) = g0(x2 + y2)g(x2 + y2)� Consider x21 + y21 = x22 + y22, thenf 0X(x)xfX(x) = ddx(log fX(x)) = xfX(x) = kex2=2fX(x) = 1p2��e�x2=2�2



Probability II{ Chap. 6: Jointly Distributed Random Variables 20Proposition 2.1: The ontinuous (dis-rete) random variables X and Y are inde-pendent if and only if their joint probabilitydensity (mass) funtion an be expressed asfX;Y (x; y) = h(x)g(y) �1 < x; y <1
Example 6.2f. If the �rst instane, the jointdensity funtion of X and Y isf (x; y) = 6e�2xe�3y 0 < x; y <1and is equal to 0 outside this region, are therandom variables independent? What if thejoint density funtion isf (x; y) = 24xy 0 < x; y < 1; 0 < x + y < 1and is equal to 0 otherwise?� I(x; y) = 8>><>>: 1 if 0 < x; y < 1; 0 < x + y < 10 otherwise� f (x; y) = 24xyI(x; y)



Probability II{ Chap. 6: Jointly Distributed Random Variables 21� They are dependent sine the above annotfator into a part depending only on x andanother depending only on y.Example 6.2g. How an a omputerhoose a random subset? Most omput-ers are able to generate the value of, or simu-late, a uniform (0,1) random variable by meansof a built-in subroutine that (to a high de-gree of approximation) produes suh "randomnumbers." As a result, it is quite easy for theomputer to simulate an indiator (that is, aBernoulli) random variable.� Suppose I is an indiator variable suh thatPfI = 1g = p = 1� PfI = 0g� The omputer an simulate I by hoosinga uniform(0,1) random number U and thenletting I = 8>>>><>>>>: 1 if U < p0 if U � p



Probability II{ Chap. 6: Jointly Distributed Random Variables 22� Suppose that we are interested in having theomputer selet k of the numbers, 1; 2; : : : ; nin suh a way that eah of the  nk! subsets ofsize k is equally likely to be hosen.� Simulate n indiator variables I1; : : : ; In, ofwhih exatly k will equal 1.� Those i for whih Ii = 1 will then onstitutethe desired subset.� Ik: If k is seleted.� Simulate n independent uniform(0; 1) ran-dom variables U1; U2; : : : ; Un.I1 = 8>>>><>>>>: 1 if U1 < k=n0 otherwiseIi+1 = 8>>>>><>>>>>: 1 if Ui+1 < k�(I1+���+Ii)n�i0 otherwise� At the i + 1 stage we set Ii+1 equal to 1with a probability equal to the remainingnumber of plaes in the subset divided by



Probability II{ Chap. 6: Jointly Distributed Random Variables 23the remaining number of possibilities.PfI1 = 1g = knPfIi+1 = 1 j I1; : : : ; Iig = k � Pij=1 Ijn� i� Indution on k + n.� It is easy to see that k + n = 2 is true.� Suppose that i1 < i2 < � � � < ik suh thatIi1 = � � � = Iik = 1.� Case i1 = 1:PfI1 = Ii2 = � � � = Iik = 1; Ij = 0 otherwiseg= PfI1 = 1gPfIi2 = � � � = Iik = 1; Ij = 0 otherwisejI1 = 1g= kn 1�n�1k�1� = 1�nk�� Case i1 6= 1:PfI1 = Ii2 = � � � = Iik = 1; Ij = 0 otherwiseg= PfI1 = 0gPfIi1 = Ii2 = � � � = Iik = 1; Ij = 0 otherwisejI1 = 0g= 0�1� kn1A 1�n�1k � = 1�nk�Remark.



Probability II{ Chap. 6: Jointly Distributed Random Variables 24� The foregoing method for generating a ran-dom subset has a very low memory require-ment.� A faster algorithm that requires somewhatmore memory is presented in Se. 10.1. Ituses the last k elements of a random permu-tation of (1; 2; : : : ; n).Example 6.2h. LetX;Y; Z be independentand uniformly distributed over (0,1). ComputePfX � Y Zg.� fX;Y;Z(x; y; z) = fX(x)fY (y)fZ(z) = 1 0 � x; y; z �1� PfX � Y Zg = Z Z Zx�yz fX;Y;Z(x; y; z) dxdydz= Z 10 Z 10 Z 1yz dxdydz= Z 10 Z 10 (1� yz) dydz= Z 10 0B�1� z21CA dz= 34



Probability II{ Chap. 6: Jointly Distributed Random Variables 25Example 6.2i. Probability interpreta-tion of half-life. LetN (t) denote the num-ber of nulei ontained in a radioative mass ofmaterial at time t. The onept of half-life isoften de�ned in a deterministi fashion by stat-ing that it is an empirial fat that for somevalue h, alled the half-life,N (t) = 2�t=hN (0) t > 0[Note that N (h) = N (0)=2.℄� Sine the above implies that for any non-negative s and t,N (t + s) = 2�(s+t)=hN (0) = 2�t=hN (s)it follows that no matter how muh time shas already elapsed, in an additional time tthe number of existing nulei will dereaseby the fator 2�t=h.Probabilisti interpretation of the half-life h:� The deterministi relationship given above



Probability II{ Chap. 6: Jointly Distributed Random Variables 26results from observations of radioative massesontaining huge numbers of nulei.�We an assume that the individual nuleiat independently and with a memorylesslife distribution.� The unique life distribution whih is mem-oryless is the exponential distribution.� The lifetimes of the individual nulei are in-dependent random variables having a lifedistribution that is exponential with medianequal to h.� L: The lifetime of a given neleus.PfL < tg = 1� 2�t=h = 1� exp 8>>><>>>:�tlog 2h 9>>>=>>>;� Protons deay with a half-life of about h =1030 years.� The number of deays predited by the de-terministi model:N (0)�N () = h(1� 2�=h)



Probability II{ Chap. 6: Jointly Distributed Random Variables 27
= 1� 2�=h1=h� limx!0 1� 2�xx=  log 2 � :6931� Sine there is a huge number of independentprotons, eah of whih will have a very smallprobability of deaying within this time pe-riod, it follows that the number of protonsthat deay will have a Poisson distributionwith parameter equal to h(1 � 2�=h) � log 2.Pf0 deaysg = e� log 2 = 12Pfn deaysg = 2�[ log 2℄nn!Remark. Independene is a symmetri rela-tion.Example 6.2j. If the initial throw of thedie in the game of raps results in the sum of



Probability II{ Chap. 6: Jointly Distributed Random Variables 28the die equaling 3, then the player will on-tinue to throw the die until the sum is either3 or 7. If this sum is 3, then the player wins,and if it is 7, then the player loses.� Let N denote the number of throws neededuntil either 3 or 7 appears, and letX denotethe value (either 3 or 7) of the �nal throw.� IsN independent ofX? That is, does know-ing whih of 3 or 7 ours �rst a�et thedistribution of the number of throws neededuntil that number appears?�Most people do not �nd the answer to thisquestion to be intuitively obvious.� However, suppose that we turn it aroundand ask whether X is independent of N .That is, dose knowing how many throws ittakes to obtain a sum of either 3 or 7.� Does this a�et the probability that thatsum is equal to 3?



Probability II{ Chap. 6: Jointly Distributed Random Variables 29� For instane, suppose we know that it takesn throws of the die to obtain a sum either3 or 7.� Does this a�et the probability distributionof the �nal sum?� Clearly not, sine all that is important isthat its values is either 3 or 7, and the fatthat none of the �rst n�1 throws were either3 or 7 does not hange the probabilities forthe nth throw.� Thus we an onlude that X is indepen-dent of N , or equivalently, that N is inde-pendent of X .� Another example: Reord value problem{X1; X2; : : : ; Xn are iid ontinuous ran-dom variables.{ Suppose that we observe these randomvariables in sequene.{ If Xn > Xi for eah i = 1; : : : ; n � 1,then we say that Xn is a reord value.



Probability II{ Chap. 6: Jointly Distributed Random Variables 30{ An: The event that Xn is a reord value.{ P (AnjAn+1) = P (An) = 1n{ Then An and An+1 are independent.6.3 Sum of independent random vari-ables� Suppose thatX and Y are independent on-tinuous random variables with density fun-tions fX and fY .� CDF of X + Y :FX+Y (a) = PfX + Y � ag= Z Zx+y�a fX(x)fY (y) dxdy= Z1�1 Z a�y�1 fX(x)fY (y) dxdy= Z1�1FX(a� y)fY (y) dy� PDF of X + Y :fX+Y (a) = dda Z1�1FX(a� y)fY (y) dy= Z1�1 ddaFX(a� y)fY (y) dy= Z1�1 fX(a� y)fY (y) dy



Probability II{ Chap. 6: Jointly Distributed Random Variables 31Example 6.3a. Sum of two independentuniform random variables. If X and Y areindependent random variables, both uniformlydistributed on (0,1), alulate the probabilitydensity of X + Y .� fX(a) = fY (a) = 8>>>><>>>>: 1 0 < a < 10 otherwise� fX+Y (a) = Z a0 fX(a� y) dy� For 0 � a � 1, this yieldsfX+Y (a) = Z a0 dy = a� For 1 < a < 2, we getfX+Y (a) = Z 1a�1 dy = 2� a� HenefX+Y (a) = 8>>>>>>>>><>>>>>>>>>: a 0 � a � 12� a 1 < a < 20 otherwise� Beause of the shape of its density funtion,the random variable X + Y is said to havea triangular distribution.



Probability II{ Chap. 6: Jointly Distributed Random Variables 32Density funtion of Gamma(t; �)f (y) = �e��y(�y)t�1�(t) 0 < y <1
Proposition 3.1: If X and Y are inde-pendent gamma random variables with respe-tive parameters (s; �) and (t; �), then X + Yis a gamma random variable with parameters(s + t; �).If Xi's are independent gamma(ti; �), thennXi=1Xi � gamma 0BB� nXi=1 ti; �1CCA
Example 6.3b. Let X1; X2; : : : ; Xn be nindependent exponential random variables eahhaving parameter �. Then, as an exponen-tial random variable with parameter � is thesame as a gamma random variable with param-eters (1,�), we see from Proposition 3.1 thatX1; X2; : : : ; Xn is a gamma random variablewith parameters (n; �).



Probability II{ Chap. 6: Jointly Distributed Random Variables 33Chi-squared distribution:� If Z1; Z2; : : : ; Zn are independent unit nor-mal random variables, then Y � nXi=1Z2iis said to have the hi-squared distributionwith n degrees of freedom.� If n = 1, thenfZ2(y) = 12py [fZ(py) + fZ(�py)℄= 12py 2p2�e�y=2= e�y=2(y=2)1=2�1(1=2)p�Y is gamma(1=2; 1=2).� Thus for any n, Y is gamma(n=2; 1=2) andfY (y) = e�y=2(y=2)n=2�1(1=2)�(n=2)�When n is an even integer,�(n=2) = [(n=2)� 1℄!



Probability II{ Chap. 6: Jointly Distributed Random Variables 34�When n is an odd integer,�(n=2) = [(n=2)� 1℄ � � � (1=2)p�1. The hi-squared distribution often arises inpratie as being the distribution of the squareof the error involved when one attempts tohit a target in n-dimensional spae when theoordinate errors are taken to be indepen-dent unit normal random variables.2. It is also important in statistial analysis.Proposition 3.2: If Xi; i = 1; : : : ; n areindependent random variables that are nor-mally distributed with respetive parameters�i; �2i ; 1; : : : ; n, then nXi=1Xi is normally dis-tributed with parameters nXi=1�i and nXi=1�2i .
� Assume X � N (0; �2) and Y � N (0; 1)are independent.� Show that X + Y � N (0; 1 + �2).



Probability II{ Chap. 6: Jointly Distributed Random Variables 35�Xi � N (�i; �2i )�X1 +X2 = �2 0�X1��1�1 + X2��2�2 1A + �1 + �2� X1��1�1 � N (0; �21=�22) and X2��2�2 � N (0; 1)� Then X1 +X2 � N (�1 + �2; �21 + �22).Example 6.3. A lub basketball team willplay a 44-game season. Twenty-six of thesegames are against lass A teams and 18 areagainst lass B teams. Suppose that the teamwill win eah game against a lass A team withprobability .4, and will win eah game against alass B team with probability .7. Assume alsothat the results of the di�erent games are in-dependent. Approximate the probability that(a) the team wins 25 games or more;(b) the team wins more games against lass Ateams than it does against lass B teams.� (a)



Probability II{ Chap. 6: Jointly Distributed Random Variables 36{XA; XB: The number of games the teamwins against lass A and against lass B.{XA and XB: Independent binomial ran-dom variables.{ E[XA℄ = 26(:4) = 10:4 Var(XA) =26(:4)(:6) = 6:24{ E[XA℄ = 18(:7) = 12:6 Var(XB) =18(:7)(:3) = 3:78{ Normal approximation gives thatXA andXB are approximately independent nor-mal random variables.{ PfXA +XB � 25g = PfXA +XB � 24:5g= P 8><>:XA +XB � 23p10:02 � 24:5� 23p10:02 9>=>;� P 8><>:Z � 1:5p10:029>=>;� 1� PfZ < :4739g� :3178� (b)PfXA �XB � 1g = PfXA �XB � :5g= P 8><>:XA �XB + 2:2p10:02 � :5 + 2:2p10:02 9>=>;



Probability II{ Chap. 6: Jointly Distributed Random Variables 37� P 8><>:Z � 2:7p10:029>=>;� 1� PfZ < :8530g� :1968Example 6.3d. Sums of independent Pois-son random variables. If X and Y are in-dependent Poisson random variables with re-spetive parameters �1 and �2, ompute thedistribution of X + Y .
PfX + Y = ng = nXk=0PfX = k; Y = n� kg= nXk=0PfX = kgPfY = n� kg

= nXk=0 e��1�k1k! e��2 �n�k2(n� k)!= e�(�1+�2) nXk=0 �k1�n�k2k!(n� k)!= e�(�1+�2)n! (�1 + �2)n



Probability II{ Chap. 6: Jointly Distributed Random Variables 38Example 6.3e. Sums of independent bino-mial random variables. Let X and Y be in-dependent binomial random variables with re-spetive parameters (n; p) and (m; p). Calu-late the distribution of X + Y .� PfX + Y = kg = nXi=0PfX = i; Y = k � ig= nXi=0PfX = igPfY = k � ig= nXi=0 0BBBB�ni 1CCCCApiqn�i0BBBB� mk � i1CCCCApk�iqm�k+iwhere q = 1 � p and where  rj! = 0 whenj > r.� HenePfX + Y = kg = pkqn+m�k nXi=0 0BBBB�ni 1CCCCA0BBBB� mk � i1CCCCA= 0BBBB�n +mk 1CCCCApkqn+m�k6.4 Conditional distributions: disretease



Probability II{ Chap. 6: Jointly Distributed Random Variables 39� The onditional probability of E given F :P (EjF ) = P (EF )P (F )� The onditional probability mass funtionof X given Y = y:pXjY (xjy) = PfX = x; Y = ygPfY = yg = p(x; y)pY (y)� The onditional probability distribution fun-tion of X given Y = y:FXjY (xjy) = PfX � x j Y = ygPfY = yg= Xa�x pXjY (ajy)� If X and Y are independent, thenpXjY (xjy) = PfX = xgExample 6.4a. Suppose that p(x; y), thejoint probability mass funtion of X and Y , isgiven byp(0; 0) = :4 p(0; 1) = :2 p(1; 0) = :1 p(1; 1) = :3



Probability II{ Chap. 6: Jointly Distributed Random Variables 40Calulate the onditional probability mass fun-tion of X , given that Y = 1.� pY (1) = Xx p(x; 1) = p(0; 1) + p(1; 1) = :5� PXjY (0j1) = p(0;1)pY (1) = 25� PXjY (1j1) = p(1;1)pY (1) = 35Example 6.4b. If X and Y are indepen-dent Poisson random variables with respetiveparameters �1 and �2, alulate the onditionaldistribution of X , given that X + Y = n.� PfX = kjX + Y = ng = PfX = k;X + Y = ngPfX + Y = ng= PfX = k; Y = n� kgPfX + Y = ng= PfX = kgPfY = n� kgPfX + Y = ng�X + Y � Poisson(�1 + �2)� PfX = kjX + Y = ng = e��1�k1k! e��2�n�k2(n� k)! 264e�(�1+�2)(�1 + �2)nn! 375�1



Probability II{ Chap. 6: Jointly Distributed Random Variables 41= n!(n� k)!k! �k1�n�k2(�1 + �2)n= 0B�nk1CA 0� �1�1 + �21Ak 0� �2�1 + �21An�k
6.5 Conditional distributions: ontin-uous ase� Conditional probability density funtion:fXjY (xjy) = f (x; y)fY (y)� PfX 2 A j Y = yg = ZA fXjY (xjy)dx� FXjY (ajy) = PfX � a j Y = yg =Z a�1 fXjY (xjy) dxExample 6.5a. The joint density of X andY is given byf (x; y) = 8>>>><>>>>: 152 x(2� x� y) 0 < x; y < 10 otherwiseCompute the onditional density of X , giventhat Y = y, where 0 < y < 1.



Probability II{ Chap. 6: Jointly Distributed Random Variables 42� For 0 < x < 1; 0 < y < 1, we havefXjY (xjy) = f (x; y)fY (y)= f (x; y)R1�1 f (x; y) dx= x(2� x� y)R10 x(2� x� y) dx= x(2� x� y)23 � y=2= 6x(2� x� y)4� 3yExample 6.5b. Suppose that the joint den-sity of X and Y is given by
f (x; y) = 8>>>>>><>>>>>>: e�x=ye�yy 0 < x; y <10 otherwiseFind PfX > 1jY = yg.� The onditional density of X , given that



Probability II{ Chap. 6: Jointly Distributed Random Variables 43Y = yfXjY (xjy) = f (x; y)fY (y)= e�x=ye�y=ye�y R10 (1=y)e�x=y dx= 1ye�x=y� HenePfX > 1jY = yg = Z11 1ye�x=y dx= �e�x=y ������11= e�1=y
If X and Y are independent ontinuous ran-dom variables, the onditional density of X ,given Y = y, is just the unonditional densityof X .Suppose that X is a ontinuous random vari-able having density funtion f and N is a dis-rete random variable.



Probability II{ Chap. 6: Jointly Distributed Random Variables 44The onditional density of X given that N =n: Pfx < X < x+ dxjN = ngdx = PfN = njx < X < x+ dxgPfN = ng Pfx < X < x+ dxgdxlimdx!0 Pfx < X < x+ dxjN = ngdx = PfN = njX = xgPfN = ng f(x)
fXjN (xjn) = PfN = njX = xgPfN = ng f (x)

Example 6.5. Consider n+m trials hav-ing a ommon probability of suess. Suppose,however, that this suess probability is not�xed in advane but is hosen from a uniform(0; 1) population. What is the onditional dis-tribution of the suess probability given thatthe n +m trails result in n suesses?�X � uniform(0; 1): The trial suess prob-ability.� N � binomial(n + m;x): The number ofsuess.



Probability II{ Chap. 6: Jointly Distributed Random Variables 45� The onditional density ofX given thatN =n: Beta(n + 1;m + 1)fXjN(xjn) = PfN = njX = xgfX(x)PfN = ng=  n+mn !xn(1� x)mPfN = ng 0 < x < 1= xn(1� x)m� The onditional density is that of a beta ran-dom variable with parameters n+1;m+1.*6.6 Order statistis�X1; X2; : : : ; Xn are n independent and iden-tially distributed, ontinuous random vari-ables having a ommon density f and dis-tribution funtion F .X(1) = smallest of X1; X2; : : : ; XnX(2) = seond smallest of X1; X2; : : : ; Xn...X(j) = jth smallest of X1; X2; : : : ; Xn



Probability II{ Chap. 6: Jointly Distributed Random Variables 46...X(n) = largest of X1; X2; : : : ; Xn�Order statistis: X(1) � X(2) � � � � �X(n)� The order statistisX(1); X(2); � � � ; X(n) willtake on the values x1 � x2 � � � � � xn ifand only if for some permutation (i1; i2; : : : ; in)of (1; 2; : : : ; n)X1 = xi1; X2 = xi2; : : : ; Xn = xinP (xi1 � �2 < X1 < xi1 + �2; : : : ; xin � �2 < Xn < xin + �2)� �nfX1;X2;:::;Xn(xi1; xi2; : : : ; xin)= �nf(x1) � � � f(xn)P (x1 � �2 < X1 < x1 + �2; : : : ; xn � �2 < Xn < xn + �2)� n!�nf(x1) � � � f(xn)
� Joint density funtion of order statistis:fX(1);:::;X(n)(x1; : : : ; xn) = n!f(x1) � � � f(xn) x1 < � � � < xnExample 6.6a. Along a road 1 mile longare 3 people "distributed at random." Find the



Probability II{ Chap. 6: Jointly Distributed Random Variables 47probability that no 2 people are less than adistane of d miles apart, when d � 12.�Xi's are independent uniform(0; 1).� fX(1);X(2);X(3)(x1; x2; x3) = 3! 0 < x1 <x2 < x3 < 1� If Xi denotes the position of the ith person,the desired probability isPfX(i) > X(i�1) + d; i = 2; 3gPfX(i) > X(i�1) + d; i = 2; 3g = Z Z Zxi>xi�1+d i=2;3 fX(1);X(2);X(3)(x1; x2; x3)dx1dx2dx3= 3! Z 1�2d0 Z 1�dx1+d Z 1x2+d dx3dx2dx1= 6 Z 1�2d0 Z 1�dx1+d(1� d� x2)dx2dx1= 6 Z 1�2d0 Z 1�2d�x10 y2dy2dx1where y2 = 1� d� x2.� Hene = 3 Z 1�2d0 (1� 2d� x1)2dx1= 3 Z 1�2d0 y21dy1= (1� 2d)3



Probability II{ Chap. 6: Jointly Distributed Random Variables 48� The same method an be used to prove thatwhen there are n people distributed at ran-dom over the unit interval the desired prob-ability is[1� (n� 1)d℄n when d � 1n� 1The density funtion of X(j):fX(j)(x) = n!(n� j)!(j � 1)![F (x)℄j�1[1� F (x)℄n�jf(x)
0BBBB� nj � 1; n� j; 11CCCCA = n!(n� j)!(j � 1)!Example 6.6b. When a sample of 2n + 1random variables (that is, when 2n + 1 inde-pendent and identially distribute random vari-ables) are observed, the (n + 1)st smallest isalled the sample median. If a sample ofsize 3 from a uniform distribution over (0,1) isobserved, �nd the probability that the samplemedian is between 14 and 34.



Probability II{ Chap. 6: Jointly Distributed Random Variables 49� fX(2)(x) = 3!1!1!x(1� x) 0 < x < 1� HeneP 8>>><>>>:14 < X(2) < 349>>>=>>>; = 6 Z 3=41=4 x(1� x)dx
= 6 8>>>>><>>>>>:x22 � x33 9>>>>>=>>>>>;�����������x=3=4x=1=4 = 1116

FX(j)(y) = Z y�1 n!(n� j)!(j � 1)![F (x)℄j�1[1� F (x)℄n�jf(x)dxFX(j)(y) = Pfj or more of Xi's are � yg= nXk=j 0�nk1AF k(y)[1� F (y)℄n�kfX(i);X(j)(xi; xj) = n!(i� 1)!(j � i� 1)!(n� j)!(j � 1)! �[F (xi)℄i�1[F (xj)� F (xi)℄j�i�1[1� F (xj)℄n�jf(xi)f(xj)
Example 6.6. Distribution of the rangeof a random sample. Suppose that n in-dependent and identially distributed randomvariables X1; X2; : : : ; Xn are observed.� R = X(n) � X(1): The range of the ob-served random variables.



Probability II{ Chap. 6: Jointly Distributed Random Variables 50� If the random variablesXi have distributionfuntion F and density funtion f , then thedistribution of R an be obtained from Eq.(6.6) as follows: a � 0.PfR � ag = PfX(n) �X(1) � ng= Z Zxn�x1�a fX(1);X(n)(x1; xn)dx1dxn= Z 1�1 Z x1+ax1 n!(n� 2)![F (xn)� F (x1)℄n�2f(x1)f(xn)dxndx1�Making the hange of variable y = F (xn)�F (x1),dy = f (xn)dxn, yieldsZ x1+ax1 [F (xn)� F (x1)℄n�2f(xn)dxn = Z F (x1+a)�F (x1)0 yn�2dy= 1n� 1[F (x1 + a)� F (x1)℄n�1and thusPfR � ag = n Z 1�1[F (x1+ a)�F (x1)℄n�1f(x1)dx1(6:7)�When the Xi's are all uniformly distributedon (0; 1):PfR < ag = n Z 10 [F (x1 + a)� F (x1)℄n�1f(x1)dx1= n Z 1�a0 an�1dx1 + n Z 11�a(1� x1)n�1dx1= n(1� a)an�1 + an



Probability II{ Chap. 6: Jointly Distributed Random Variables 51� The density funtion of the range:fR(a) = 8>>>><>>>>: n(n� 1)an�2(1� a) 0 � a � 10 otherwise� The range of n independent uniform(0; 1)random variables is a Beta(n� 1; 2).6.7 Joint probability distribution of fun-tions of random variables� The joint probability density funtion fX1;X2.� Y1 = g1(X1; X2) and Y2 = g2(X1; X2).� Assume that g1 and g2 satisfy the followingondition:1. The equation y1 = g1(x1; x2) and y2 =g2(x1; x2) an be uniquely solved for x1and x2 in terms of y1 and y2 with solu-tions given by x1 = h1(y1; y2) and x2 =h2(y1; y2).2. The funtions g1 and g2 have ontinuouspartial derivatives at all points (x1; x2)



Probability II{ Chap. 6: Jointly Distributed Random Variables 52and are suh that the following 2� 2 de-terminantJ(x1; x2) = ����������� �g1�x1 �g1�x2�g2�x1 �g2�x2
����������� 6= 0at all points (x1; x2).The joint density funtion of Y1 and Y2:fY1Y2(y1; y2) = fX1X2(x1; x2)jJ(x1; x2)j�1

Example 6.7a. Let X1 and X2 be jointlyontinuous random variables with probabilitydensity funtion fX1;X2. Let Y1 = X1+X2; Y2 =X1�X2. Find the joint density funtion of Y1and Y2 in terms of fX1;X2.� g1(x1; x2) = x1+ x2 and g2(x1; x2) = x1�x2. ThenJ(x1; x2) = ���������� 1 11 �1 ���������� = �2
� fY1;Y2(y1; y2) = 12fX1;X2(y1+y22 ; y1�y22 )



Probability II{ Chap. 6: Jointly Distributed Random Variables 53� IfX1 andX2 are independent uniform(0; 1),thenfY1;Y2(y1; y2) = 8><>: 12 0 � y1 + y2 � 2; 0 � y1 � y2 � 20 otherwise� IfX1 andX2 are independent exp(�1); exp(�2),then fY1;Y2(y1; y2)= 8><>: �1�22 expf��1(y1+y22 )� �2(y1�y22 )g y1 + y2 � 0; y1 � y2 � 00 otherwise� If X1 and X2 are independent unit normalrandom variables, then Y1 and Y2 are inde-pendent N (0; 2).fY1;Y2(y1; y2) = 14�e�[(y1+y2)2=8+(y1�y2)2=8℄= 14�e�(y21+y22)=4= 1p4�e�y21=4 1p4�e�y22=4Example 6.7b. Let (X;Y ) denote a ran-dom point in the plane and assume that theretangular oordinates X and Y are indepen-dent unit normal random variables. We are in-terested in the joint distribution of R, �, the



Probability II{ Chap. 6: Jointly Distributed Random Variables 54polar oordinate representation of this point(See Fig. 6.4).� r = g1(x; y) = sx2 + y2 and � = g2(x; y) =tan�1 y=x, 0 < r <1; 0 < � < 2�.� �g1�x = xpx2+y2 and �g1�y = ypx2+y2.� �g2�x = �yx2+y2 and �g2�y = xx2+y2.� J(x; y) = 1px2+y2 = 1r� f (x; y) = 12�e�(x2+y2)=2� f (r; �) = 12�re�r2=2� R and � are independent.� R isRayleigh distribution. � is uniform(0; 2�).� The joint distribution of R2 and �:{ d = g1 = x2 + y2 and � = g2(x; y) =tan�1 y=x, 0 < d <1; 0 < � < 2�.{ J = 2 and f (d; �) = 12e�d=2 12�.



Probability II{ Chap. 6: Jointly Distributed Random Variables 55{ R2 and � are independent with R2 hav-ing an exponential distribution with pa-rameter 1/2.� The above result an be used to simulatenormal random variables by making a suit-able transformation on uniform random vari-ables.{ U1 and U2 are independent uniform(0; 1).{ R2 � �2 logU1 is an exponential distri-bution with parameter 1/2.{ � � 2�U2 is a uniform(0; 2�).{X1 = R os� = p�2 logU1 os(2�U2){X2 = R sin� = p�2 logU1 sin(2�U2)Example 6.7. If X and Y are indepen-dent gamma random variables with parame-ters (�; �) and (�; �), respetively, omputethe joint density of U = X + Y and V =X=(X + Y ).



Probability II{ Chap. 6: Jointly Distributed Random Variables 56� The joint density of X and Y is given byfX;Y (x; y) = �e��x(�x)(��1)�(�) �e��y(�y)(��1)�(�)= ��+��(�)�(�)e��(x+y)x��1y��1
� u = g1(x; y) = x+y; v = g2(x; y) = x=(x+y), then�g1�x = �g1�y = 1 �g2�x = y(x + y)2 �g2�y = � x(x + y)2� J(x; y) = ����������� 1 1y(x+y)2 �x(x+y)2

����������� = � 1x + y� x = uv, and y = u(1� v)fU;V (u; v) = fX;Y [uv; u(1� v)℄u= �e��u(�u)�+��1�(� + �) v��1(1� v)��1�(� + �)�(�)�(�)� U and V are independent gamma(� + �)and beta(�; �).� Suppose that there are n + m jobs to beperformed, with eah taking an exponential



Probability II{ Chap. 6: Jointly Distributed Random Variables 57amount of time with rate � for performane,and suppose that we have two workers toperform these jobs.�Worker I will do jobs 1; : : : ; n, and workerII will do the remaining m jobs.� If we let X and Y denote the total workingtimes of workers I and II, respetively, thenX and Y will be independent gamma(n; �)and gamma(m;�).� Then the above result yields that indepen-dently of the working time needed to om-plete all n +m jobs, the proportion of thiswork that will be performed by worker I hasa beta(n;m).The joint density funtion of the n randomvariables X1; X2; : : : ; Xn:



Probability II{ Chap. 6: Jointly Distributed Random Variables 58� Yi = gi(X1; X2; : : : ; Xn); i = 1; 2; : : : ; n
J =

���������������������
�g1�x1 �g1�x2 � � � �g1�xn�g2�x1 �g2�x2 � � � �g2�xn...�gn�x1 �gn�x2 � � � �gn�xn

���������������������yi = gi(x1; x2; : : : ; xn); i = 1; 2; : : : ; n� fY1;:::;Yn(y1; : : : ; yn) = fX1;:::;Xn(x1; : : : ; xn)jJ j�1 wherexi = hi(y1; y2; : : : ; yn); i = 1; 2; : : : ; nExample 6.7d. Let X1; X2 and X3 be in-dependent unit normal random variables. IfY1 = X1 + X2 + X3; Y2 = X1 � X2; Y3 =X1 � X3, ompute the joint density funtionof Y1; Y2; Y3.�
J = ���������������

1 1 11 �1 01 0 �1
��������������� = 3

�X1 = Y1+Y2+Y33



Probability II{ Chap. 6: Jointly Distributed Random Variables 59�X2 = Y1�2Y2+Y33�X3 = Y1+Y2�2Y33� fY1;Y2;Y3(y1; y2; y3) = 13fX1;X2;X3  y1 + y2 + y33 ; y1 � 2y2 + y33 ; y1 + y2 � 2y33 !
� fX1;X2;X3(x1; x2; x3) = 1(2�)3=2e� P3i=1 x2i=2� fY1;Y2;Y3(y1; y2; y3) = 13(2�)3=2e�Q(y1;y2;y3)=2whereQ(y1; y2; y3) =  y1 + y2 + y33 !2 +  y1 � 2y2 + y33 !2 +  y1 + y2 � 2y33 !2= y213 + 23y22 + 23y23 � 23y2y3
Example 6.7e. Let X1; X2; : : : ; Xn be in-dependent and identially distributed exponen-tial random variables with rate �. LetYi = X1 + � � � +Xi i = 1; : : : ; n(a) Find the joint density funtion of Y1; : : : ; Yn.(b) Use the result of part (a) to �nd the densityof Yn.



Probability II{ Chap. 6: Jointly Distributed Random Variables 60(a) Y1 = X1; Y2 = X1 + X2; : : : ; Yn = X1 +� � � +Xn
J(x1; : : : ; xn) =

������������������������������

1 0 0 0 � � � 01 1 0 0 � � � 01 1 0 0 � � � 0� � � � � �� � � � � �1 1 1 1 � � � 1

������������������������������� fY1;:::;Yn(y1; y2; : : : ; yn) = fX1;:::;Xn(y1; y2 � y1; : : : ; yi � yi�1; : : : ; yn � yn�1)= �n expf��[y1 + nXi=2(yi � yi�1)℄g= �ne��yn 0 < y1; 0 < yi � yi�1; i = 2; : : : ; n= �ne��yn 0 < y1 < y2 < � � � < yn� (b)fY2;:::;Yn(y2; : : : ; yn) = Z y20 �ne��yndy1= �ny2e��yn 0 < y2 < y3 < � � � < yn� fY3;:::;Yn(y3; : : : ; yn) = Z y30 �ny2e��yndy2= �ny232 e��yn 0 < y3 < y4 < � � � < yn� fY4;:::;Yn(y4; : : : ; yn) = �ny243! e��yn 0 < y4 < � � � < yn



Probability II{ Chap. 6: Jointly Distributed Random Variables 61� Yn is gamma(n; �)fYn(yn) = �n yn�1n(n� 1)!e��yn 0 < yn
*6.8 Exhangeable random variables� The random variables X1; : : : ; Xn are saidto exhangeable if for every permutation i1; : : : ; inof the integers 1; : : : ; nPfXi1 � x1; : : : ; Xin � xng = PfX1 � x1; : : : ; Xn � xng� Disrete random variables will be exhange-able ifPfXi1 = x1; : : : ; Xin = xng = PfX1 = x1; : : : ; Xn = xngExample 6.8a. Suppose that balls are with-drawn one at a time and without replaementfrom an urn that initially ontains n balls, ofwhih k are onsidered speial, in suh a man-ner that eah withdrawal is equally likely to beany of the balls that remain in the urn at thetime. Let Xi = 1 if the ith ball withdrawn is aspeial and let it be 0 otherwise. We will show



Probability II{ Chap. 6: Jointly Distributed Random Variables 62that the random variables X1; : : : ; Xn are ex-hangeable.� Let (x1; : : : ; xn) be a vetor onsisting of kones and n� k zeros.� However, before onsidering the joint massfuntion evaluated at (x1; : : : ; xn), let us tryto gain some insight by onsidering a �xedsuh vetor-for instane, onsider the vetor(1; 1; 0; 1; 0; : : : ; 0; 1), whih is assumed tohave k ones and n� k zeros.� Thenp(1; 1; 0; 1; 0; : : : ; 0; 1) = knk � 1n� 1n� kn� 2 k � 2n� 3n� k � 1n� 4 � � � 1211whih follows sine the probability that the�rst ball is speial is k=n, the onditionalprobability that the next one is speial is(k � 1)=(n � 1), the onditional probabil-ity that the next one is not speial is (n �k)=(n� 2), and so on.� By the same argument, it follows that



Probability II{ Chap. 6: Jointly Distributed Random Variables 63p(x1; : : : ; xn) an be expressed as the prod-ut of n frations.� The suessive denominator terms of thesefrations will go from n down to 1.� The numerator term at the loation wherethe vetor (x1; : : : ; xn) is 1 for the ith timeis k � (i � 1), and where it is 0 for the ithtime it is n� k � (i� 1).� Hene, sine the vetor (x1; : : : ; xn) onsistsof k ones and n � k ones and n � k zeros,we obtain thatp(x1; : : : ; xn) = k!(n� k)!n! xi = 0; 1; nXi=1xi = k� Sine this is a symmetri funtion of (x1; : : : ; xn),it follows that the random variables are ex-hangeable.If X1; X2; : : : ; Xn are exhangeable, it easilyfollows that eah Xi has the same probabilitydistribution. If X and Y are exhangeable dis-rete random variables, then
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PfX = xg = Xy PfX = x; Y = yg = Xy PfX = y; Y = xg = PfY = xg
Example 6.8b. In Example 6.8a, let Y1 de-note the seletion number of the �rst speialball withdrawn, let Y2 denote the additionalnumber that are then withdrawn until the se-ond speial ball appears, and in general, letYi denote the additional number of balls with-drawn after the (i�1)st speial ball is seleteduntil the ith is seleted, i = 1; : : : ; k.� For instane, if n = 4; k = 2 and X1 =1; X2 = 0; X3 = 0; X4 = 1 then Y1 =1; Y2 = 3.� Sine Y1 = i1; Y2 = i2; : : : ; Yk = ik ,Xi1 = Xi1+i2 = � � � = Xi1+���+ik = 1; Xj =0, otherwise; we obtain from the joint massfuntion of the Xi thatPfY1 = i1; Y2 = i2; : : : ; Yk = ikg = k!(n� k)!n! i1+� � �+ik � n



Probability II{ Chap. 6: Jointly Distributed Random Variables 65� Hene we see that the random variables Y1; : : : ; Ykare exhangeable.� For instane, it follows from this that thenumber of ards one must selet from a well-shu�ed dek until an ae appears has thesame distribution as the number of addi-tional ards one must selet after the �rstae appears until the next one does, and soon.Example 6.8. The following is known asPolya's urn model. Suppose that an urn ini-tially ontains n red andm blue balls. At eahstage a ball is randomly hosen, its olor isnoted, and it is then replaed along with an-other ball of the same olor. Let Xi = 1 ifthe ith ball seleted is red and let it equal 0 ofthe ith ball is blue, i � 1. To obtain a feelingfor the joint probabilities of these Xi, note thefollowing speial ases.



Probability II{ Chap. 6: Jointly Distributed Random Variables 66� PfX1 = 1; X2 = 1; X3 = 0; X4 = 1; X5 = 0g= nn +m n + 1n +m + 1 mn +m + 2 n + 2n +m + 3 m + 1n +m + 4= n(n + 1)(n + 2)m(m + 1)(n +m)(n +m + 1)(n +m + 2)(n +m + 3)(n +m + 4)� PfX1 = 0; X2 = 1; X3 = 0; X4 = 1; X5 = 1g= mn +m nn +m + 1 m + 1n +m + 2 n + 1n +m + 3 n + 2n +m + 4= n(n + 1)(n + 2)m(m + 1)(n +m)(n +m + 1)(n +m + 2)(n +m + 3)(n +m + 4)� PfX1 = x1; : : : ;Xk = xkgn(n+ 1) � � � (n + r � 1)m(m + 1) � � � (m + k � r � 1)(n +m) � � � (n+m + k � 1)� The random variables X1; : : : ; Xk are ex-hangeable.Example 6.8d. Let X1; X2; : : : ; Xn be in-dependent uniform (0,1) random variables, andlet X(1); : : : ; X(n) denote their order statistis.That is,X(j) is the jth smallest ofX1; X2; : : : ; Xn.Also, letY1 = X(1);Yi = X(i) �X(i�1); i = 2; : : : ; nShow that Y1; : : : ; Yn are exhangeable.



Probability II{ Chap. 6: Jointly Distributed Random Variables 67� y1 = x1; : : : ; yi = xi � xi�1 i = 2; : : : ; n� xi = y1 + � � � + yi i = 1; : : : ; n� fY1;:::;Yn(y1; y2; : : : ; yn) = f(y1; y1+y2; : : : ; y1+ � � �+yn)� fY1;:::;Yn(y1; y2; : : : ; yn) = n!0 < y1 < y1+y2 < � � � < y1+ � � �+yn < 1� fY1;:::;Yn(y1; y2; : : : ; yn) = n!0 < yi < 1; i = 1; : : : ; n y1+ � � �+yn < 1Summary� Joint umulative probability distribution fun-tion: F (x; y) = PfX � x; Y � yg{ FX(x) = limy!1 F (x; y){ FY (y) = limx!1F (x; y)� Joint probability mass funtion:p(i; j) = PfX = i; Y = jg{ PfX = ig = Xj p(i; j)



Probability II{ Chap. 6: Jointly Distributed Random Variables 68{ PfY = jg = Xi p(i; j)� Joint probability density funtion: f (x; y){ Pf(X;Y ) 2 Cg = Z ZC f (x; y) dxdy{ fX(x) = Z1�1 f (x; y) dy{ fY (y) = Z1�1 f (x; y) dx� IndependenePfX 2 A; Y 2 Bg = PfX 2 AgPfY 2 BgPfX1 2 A1; : : : ; Xn 2 Ang = PfX1 2 A1g � � �PfXn 2 Ang� The distribution funtion of X + Y :FX+Y (a) = Z1�1F (a� y)fY (y) dy� If Xi's are independent N (�i; �2i ), thennXi Xi � N (nXi �i; nXi �2i )� If Xi's are independent Poisson(�i), thennXi Xi � Poisson(nXi �i)� If Xi's are independent gamma(�i; �), thennXi Xi � gamma(nXi �i; �)



Probability II{ Chap. 6: Jointly Distributed Random Variables 69� IfXi's are independent binomial(ni; p), thennXi Xi � binomial(nXi ni; p)� The onditional probability mass funtionof X given that Y = y:PfX = xjY = yg = p(x; y)pY (y)� The onditional probability density funtionof X given that Y = y:fXjY (xjy) = f (x; y)fY (y)� The density funtion of order statisti:f(x1; : : : ; xn) = n!f(x1) � � � f(xn) x1 � x2 � � � � � xn� The random variables X1; : : : ; Xn are ex-hangeable if the joint distribution ofXi1; : : : ; Xinis the same for every permutation i1; : : : ; inof 1; : : : ; n.


