Chapter 6 Jointly Distributed
Random Variables

6.1 Joint distribution functions

e Joint cumulative probability distribution func-
tion of X and Y:

F(a,b) =P{X <a,Y <b} —0<a,b< oo

e Fiy(a) = P{X < a} = lim Fl(a,b) =
b—r00

F(a,00)

o Iy (b) = P{Y < b} = lim F(a,b)
F (00, b)

e Marginal distribution: F'y(a), Fy (b)

e All joint probability statements about X
and Y can be answered in terms of their
joint distribution function.

o P{X >a, Y >b} =1—Fx(a)— Fy(b)+
F(a,b)

o P{a1 < X < a9, bl <Y < 62} — F(ag,bg)—l—
F(ay,b1) — F(ay,b2) — F(as, by)
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e Joint probability mass tunction of X and Y:
ple, yy = P{X =z, Y =y}
~px(x) = P{X =} = T pl(z,y)
—py(y) = P{Y =y} =< p(z,y)

Example 6.1a. Suppose that 3 balls are
randomly selected from an urn containing 3

red, 4 white, and 5 blue balls.

o [f we let X and Y denote, respectively, the
number of red and white balls chosen, then

the joint probability mass function of X and
Y, pli,j) = P{X = i,Y = j}, is given by

p(0,0) = g/[f]:;%
p00 = [1ols) = 2
903 = [g'5] = g
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p(1,0) =
p(1,1) =
p(1,2) =
p(2,0) =
p(2,1) =

p(2,2) =

3

WD W W hH— WhH— W

N

O

— 2= ot T~ 2O

{

12) 30
/(3]:220
5) (12) 60
Hike=
12) 18
3] = 220
12) 15
3]~ 220
12 12
/5] = om0
12) 1
3]_220

e These probabilities can most easily be ex-
pressed in tabular form as in Table 6.1

e The reader should note that the probability
mass function of X is obtained by comput-
ing the row sums, whereas the probability
mass function of Y is obtained by comput-
ing the column sums.

e Asthe individual probability mass functions
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of X and Y thus appear in the margin of
such a table, they are often referred to as
being the marginal probability mass func-
tion of X and Y, respectively.

Table 6.1 P{X =i,Y = j}

01|23 |Rowsum =
P{X =i}
0 10140 30 [ 4 34
2201220 1 220 | 220 20
1 230 26200 21280 0 %lo
) b b Al b
2%0 29 2%0
SN ;| BV IR L
Column sum = 1990920 | 920 | 920
P{Y = j}

Example 6.1b. Suppose that 15 percent of
the families in a certain community have no
children, 20 percent have 1, 35 percent have 2,
and 30 percent have 3; and suppose, turther,
that in each family, each child is equally likely
to be a boy or a girl. If a family is chosen
at random from this community, the B, the



Probability II- Chap. 6: Jointly Distributed Random Variables 5

number of boys, and G, the number of girls, in
this family will have the joint probability mass
function shown in Table 6.2.

P{B =0,G =0} = P{no children} = .15
P{B =0,G =1} = P{1 girl and total of 1 child}

1
_ P{1 child}P{1 girl | 1 child} = (.20) (5)
P{B =0,G =2} = P{2girls and total of 2 children}
= P{2 children} P{2 girls | 2 children} = (.35) (

e Table 6.2 P{B =i,G = j}

Row sum =
0 1 2 3 P{B =i}

0 A5 | .10 |.0875.0375 3750
1 A0 | 175 | 1125 O 3875
2 0875].1125] 0 0 2000
3 0375 0 0 0 0375

Column sum =
P{G = j} 375 1.38751.2000 | .0375

e Joint probability density function of X and
Y flz,y)

o P{X < V) €C}=]pyec flx,y)drdy

1

2

)2
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2
o f(a,b) = 25 F(a,b)
Pla< X <a+da,b<Y < b+ db}

d+db ra+da
[T (a2, y)dady
f(a,b)dadb

&l

P{X e A} = P{X €AY €(—o0,00)}
= J4 /2% f(z,y)dydx
= Ja fx(z)dx
where fy(z) = /2% f(z,y)dy
o fy(y) = 2% f(z,y)dx

Example 6.1c. The joint density function
of X and Y is given by

Flay) = 2e Te W )< x < 00,0 <y <00
=0 otherwise

Compute (a) P{X > 1,Y < 1}, (b) P{X <
Y}, and (¢)P{X < a}

(a)
P{X >1,Y <1} = [} [ 2 Te Ydady
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1o —2 —
= Jp 2¢” (=" dy
e i 27 dy
— e l(1—e?

(b)
P{X <Y} = [ i )<y 26 e Le Y drdy
= [5° 1] 2 "e “2Ydxdy
= [7°2e7V(1 — e Y)dy

= (2 Wdy — [2°2e Y dy
2
—1-=
3
1

3
e (c)
P{X <a} = [ [*° 2 Ve Tdyda
= e Ydx

= 1—e ¢

Example 6.1d. Consider a circle of radius
R and suppose that a point within the circle is
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randomly chosen in such a manner that all re-
oions within the circle of equal area are equally
likely to contain the point. (On other words,
the point is uniformly distributed within the
circle.) If we let the center of the circle denote
the origin and define X and Y to be the coordi-
nates of the point chosen (Fig. 6.1), it follows,
since (X,Y) is equally likely to be near each
point in the circle, that the joint density func-
tion of X and Y is given by

cifa®+y? < R?
f<x7y)_ Olf$2+y2>R2
for some value of c.

(a) Determine c.

(b) Find the marginal density functions of X
and Y.

(c) Compute the probability that D, the dis-
tance from the origin of the point selected,
1d less than or equal to a.

(d) Find E[D].
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(a) Because [Z% [22% f(z,y)dzdy =1

C//x2+y2<R2 d:z:dy =1
_ 1
T TR?

(b)

fx(x) = 25 flz,y)dy
1
TRQ /x2+y2§R2 dy

1
rRQ/fcdy c:\/R2—x2
)
= IR —a? 2P <R

) = B2 —y? v <R

(c)D=vX?+Y2 for0<a<R
Fpla) = P{{X2+Y2 < a)
= P{X’+Y?<a?}

1
TR2 / /x2+y2§a2 dydx
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(d) From (c) we obtain that the density function
of D is Fp(a) = é% 0<a<R

29 _
Hence E|D] = R2 / a“da = o

Example 6.1e. The joint density of X and
Y is given by
—(z+y)
e <x<o00,0<y<oo
[, y) = [O otherwise

Find the density function of the random vari-
able X/Y.

e For a > 0,
X
FX/Y(a) = P{Y
— //a;/y<a _(x—i—y)dxdy
= [ Y e dady

<
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= (1—e"Y)e Ydy
—(a+1)y]|>

€

a+ 1 0

1
a— 1

— 1 —

e The density function:

Flz,y)=1/(a+1) 0<a<oo

n random variables:

e Joint cumulative probability distribution func-
tion:

F(al,ag,...,an) = P{Xl S al,Xg S CLQ,...,Xn S an}
e Joint probability density function:

-~ O0x10x9 -+ Oy

f($17$27"'7xn) F<$17x27"'7$n)

Example 6.1f.
The multinomaal distribution.  One of the
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most important joint distribution is the multi-
nomial, which arises when a sequence of n inde-
pendent and identical experiments is performed.
Suppose that each experiment can result in
any one of r possible outcomes, With respec-

tive probabilities p1, po, ..., pr, ,Z p; = 1. It

we denote by X;, the number of the n exper-
1ments that result in outcome number 7, then

n' n n
P{Xi=n;,Xo=mn9,...., X, =n,} = . ,p 1'pa? - pi
ni1ing:

.
whenever 'Zl n;, = n.

1=
e Suppose that a fair die is rolled 9 times.

e The probability that 1 appears three times,
2 and 3 twice each, 4 and 5 once each, and
6 not at all 1s

o] 1)\
31212111110 (6)

6.2 Independent random variables

e The random variables X and Y are said to
independent if for any two sets of real num-
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bers A and B,
P{X e AY €e B} = P{X € A}P{Y € B}

e Equivalent condition of independence:
F(a,b) = Fx(a)Fy(b)

— When X and Y are discrete random vari-
ables:

p(z,y) = px(z)py(y) forall z,y

— In the jointly continuous case:

flz,y) = fx(x)fy(y) forallz,y

e Random variables that are not independent
are sald to be dependent.

Example 6.2a. Suppose that n + m inde-
pendent trials, having a common success prob-
ability p, are performed. If X is the number
of successes in the first n trials, and Y is the
number of successes in the final m trials, then
X and Y are independent, since knowing the
number of successes in the first n trials does
not affect the distribution of the number of suc-
cesses in the final m trials (by the assumption
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of independent trials). In fact, for integral x
and v,

P{X=uY =y} = (Z)p‘”(l —p)" (T;)py(l —p)"
0<z<n0<y<m
= P{X =x2;P{Y =y}

On the other hand, X and Z will be depen-

dent, where Z is the total number of successes
in the n 4+ m trials. (Why is this?)

Example 6.2b. Suppose that the number
of people that enter a post office on a given day
15 a Poisson random variable with parameter
A. Show that if each person that enters the
post office is a male with probability p and a
female with probability 1 — p, then the number
of males and females entering the post office
are independent Poisson random variables with
respective parameters Ap and A\(1 — p).

e Condition on X + Y

P{X=i,Y=j} = PIX=4,Y=§|X+Y =i+j}P{X+Y =i+j}
+ P{X=4Y=j|X+Y £i+j}P{X+Y #£i+j}
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e Since P{X =4,V =j|X+Y #i+j} =0
P{X =i,V = j} = P{X =i,Y = j|X+Y = i+j}P{X+Y = i+j}

(2.3)
o
\ )\Z"’]
Pi{IX+Y=14+9t=€ 2.4
{(X+Y=i+j}=c¢ i) (2.4)
o
P{X:i,Y:j|X+Y:i+j}:(Z:])pi(l—p)j (2.5)
o
P (N A IR R A\
P{X=uY =3} =1 . [p(1-p)e it )
)\ 7
AP -
_ € /\p<)\p>16_/\(1_p)[)\<1 _p>]2(26)
7! g
e Hence |
P{X _ Z} _ G_Ap(/\f'?)l %:e—)\(l—p) [)\(1]_']9)]] _ e—)\p<)‘22'9)z
(2.7)
o
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Example 6.2c. A man and a woman decide
to meet at a certain location. If each person
independently arrives at a time uniformly dis-
tributed between 12 noon and 1 P.M., find the
probability that the first to arrive has to wait
longer than 10 minutes.

e X and Y: The time past 12 that the man
and woman arrive.

e X and Y are independent random variables,
each of which is uniform(0, 60).

e The desired probability P{X +10 < Y} +
P{Y +10 < X }.

e By symmetry
P{X+10<Y}=P{Y+10< X}

2P{X +10 <Y} = 2/ [py10<y f(2,y) dudy
2 [ fp+10<y [x(2) fy (y) dzd;

) [0 - 10(10)2dxdy
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2
= (60)2/1600@ —10) dy

25
36

Example 6.2d. Buffon’s needle prob-
lem. A table is ruled with equidistant paral-
lel lines a distance D apart. A needle of length
L, where L < D, is randomly thrown on the
table. What 1s the probability that the needle
will intersect one of the lines (the other possi-
bility being that the needle will be completely
contained in the strip between two lines)?

e X: The distance from the middle point of
the needle to the nearest parallel line.

e #: The angle between the needle and the
projected line of length X (Fig. 6.2).

e The needle will intersect a line if the hy-
potenuse of the right triangle in Fig. 6.2 is
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less than L /2, i.e.

X L L
— X < —cosf
<5 O < -, cos
e X ~ uniform(0, D/2); 6 ~ uniform(0, 7w /2)
[ J
L
4 gL
= b5 cosy dy
e
7D

*Example 6.2e. Characterization of the
normal distribution. Let X and Y denote
the horizontal and vertical miss distance when

a bullet is fired at a target, and assume that

1. X and Y are independent continuous ran-
dom variables having differentiable density
functions.

2. The joint density f(z,y) = fx(x)fy(y) of
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X and Y depends on (x,y) only through
72+ .

e Assumptions 1 and 2 imply that X and Y
are normally distributed random variables.

flz,y) = fx(@)fy(y) = g(z* + y*)
(@) fy(y) = 22g' (2% + y*)
fi(a) _ 2zg'(2” + )
fx(x)  gla®+y?)
(@) _ g +y°)
2efx(x)  gla?+y?)

o Consider 2§ + yf = x5 4 3, then

fx(x) _
] rfx(r)
%(bg fx(z)) = cx
Fx(x) = ke /2
fx(z) = L —a?/20°
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Proposition 2.1: The continuous (dis-
crete) random variables X and Y are inde-
pendent if and only if their joint probability
density (mass) function can be expressed as

fxy(zy =hx)gly) —oo<zy<oo

Example 6.2f. If the first instance, the joint
density function of X and Y is

Flo,y) =6e e ™Y (0< 2,y < oo

and 1s equal to 0 outside this region, are the
random variables independent? What if the
joint density function is

fle,y) =242y O0<z,y<l,0<z4+y<l
and is equal to 0 otherwise?

lif0<z,y<1l,0<ox+y<1
0 otherwise

o f(x,y) = 24xyl(x,y)

[(%,y) —
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e They are dependent since the above cannot
factor into a part depending only on x and
another depending only on y.

Example 6.2g. How can a computer
choose a random subset? Most comput-
ers are able to generate the value of, or simu-
late, a uniform (0,1) random variable by means
of a built-in subroutine that (to a high de-
gree of approximation) produces such "random
numbers.” As a result, it is quite easy for the
computer to simulate an indicator (that is, a
Bernoulli) random variable.

e Suppose [ is an indicator variable such that
P{I=1}=p=1- P{I =0}

e The computer can simulate I by choosing
a uniform(0,1) random number U and then

letting .
11 <p

I'= 0ifU >p
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e Suppose that we are interested in having the
computer select k of the numbers, 1,2,...,n
in such a way that each of the (Z’) subsets of
size k 1s equally likely to be chosen.

e Simulate n indicator variables I1, ..., I, of
which exactly k will equal 1.

e Those ¢ for which I; = 1 will then constitute
the desired subset.

o [;.: It k is selected.

e Simulate n independent uniform(0, 1) ran-
dom variables Uy, Uo, ..., Up.

b |0 otherwise
po o (LU < A
i+l = |
|0 otherwise

e At the ¢ + 1 stage we set [; 1 equal to 1
with a probability equal to the remaining
number of places in the subset divided by
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the remaining number of possibilities.

k
Pili=1} = —
{11 =1} N
k—EZ':ll'
P{lip1=1|1,....1;} = niz /

e [nduction on k + n.
e [t is easy to see that £ +n = 2 is true.

e Suppose that 17 < 49 < -+ < 4z such that

Iy =--=1; =1
e Case 11 = 1:
P{Il = ]ig == ]Zk = 17Ij =0 otherwise}
= P{Il = 1}P{IZQ = = ]Zk = 17Ij =0 otherwise|]1 = 1}
k1
n (o) ()
e Case 11 # 1
P{lL=1,=---=1; =1,1; = 0 otherwise }
= P{Il = O}P{Izl = ]ig == ]Zk = 17Ij =0 0therwise|]1 = O}

::@‘®<55:@

Remark.
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e The foregoing method for generating a ran-
dom subset has a very low memory require-
ment.

e A faster algorithm that requires somewhat
more memory 1s presented in Sec. 10.1. It
uses the last k& elements of a random permu-
tation of (1,2,...,n).

Example 6.2h. Let X,Y, Z be independent
and uniformly distributed over (0,1). Compute
P{X >YZ}.

® fxvz(z,y,2) = fx(@)fy(y)fz(z) =1 0<z,y,2 <
1

o
P{X > YZ} = ///nyz fX,Y,Z(xawa) drdydz

= 3 1o ly» dadydz
=y (1 - yz)dydz
_ {1 _~
= 1 2) dz

§

4
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Example 6.2i. Probability interpreta-
tion of half-life. Let N(t) denote the num-
ber of nuclei contained in a radioactive mass of
material at time ¢. The concept of half-life is
often defined in a deterministic fashion by stat-
ing that it is an empirical fact that for some

value h, called the half-life,
N@#) =2"""N@©) ¢t>0
[Note that N(h) = N(0)/2.]

e Since the above implies that for any non-
negative s and ¢,

N(t+s) =2~ /N () = 27H/h N (s)

it follows that no matter how much time s
has already elapsed, in an additional time ¢
the number of existing nuclei will decrease

by the factor -t/
Probabilistic interpretation of the halt-life h:

e The deterministic relationship given above
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results from observations of radioactive masses
containing huge numbers of nuclei.

e We can assume that the individual nuclei
act independently and with a memoryless
life distribution.

e The unique life distribution which is mem-
oryless is the exponential distribution.

e The lifetimes of the individual nuclei are in-
dependent random variables having a life
distribution that is exponential with median
equal to h.

e [.: The lifetime of a given necleus.

log 2
P{L <t} =1-2"t/h_ 1—exp{—toi}

e Protons decay with a half-life of about h =
105V years.

e The number of decays predicted by the de-
terministic model:

N(0) = N(¢) = h(1 —2-¢/M
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1 L 2—C/h
- 1/h
1 L 2—6:13
~ lim
—0 €T

= clog?2 =~ .6931c

e Since there is a huge number of independent
protons, each of which will have a very small
probability of decaying within this time pe-
riod, it follows that the number of protons
that decay will have a Poisson distribution
with parameter equal to h(1 — 27¢/h) ~
clog 2.

1
P{0 decays} = e~ ¢log? = 50
27 ¢clog2]"

P{n decays} = '
n!

Remark. Independence is a symmetric rela-
t1on.

Example 6.2j. If the initial throw of the
dice in the game of craps results in the sum of
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the dice equaling 3, then the player will con-
tinue to throw the dice until the sum is either
3 or 7. If this sum is 3, then the player wins,
and if it is 7, then the player loses.

e Let NV denote the number of throws needed
until either 3 or 7 appears, and let X denote
the value (either 3 or 7) of the final throw.

e [s IV independent of X7 That is, does know-
ing which of 3 or 7 occurs first affect the
distribution of the number of throws needed
until that number appears?

e Most people do not find the answer to this
question to be intuitively obvious.

e However, suppose that we turn it around
and ask whether X is independent of V.
That is, dose knowing how many throws it
takes to obtain a sum of either 3 or 7.

e Does this affect the probability that that
sum is equal to 37
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e For instance, suppose we know that it takes
n throws of the dice to obtain a sum either

3or 7.

e Does this affect the probability distribution
of the final sum?

e Clearly not, since all that is important is
that its values is either 3 or 7, and the fact
that none of the first n—1 throws were either
3 or 7 does not change the probabilities for
the nth throw.

e Thus we can conclude that X is indepen-
dent of NV, or equivalently, that N is inde-
pendent of X .

e Another example: Record value problem

— X1,X9,..., X, are iid continuous ran-
dom variables.

— Suppose that we observe these random
variables in sequence.

-t X,, > X, foreach: =1,...,n — 1,
then we say that X, is a record value.
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— A,,: The event that X, is a record value.

- P(An|An+1) — P(An> =2

n
— Then Aj, and A, are independent.

6.3 Sum of independent random vari-
ables

e Suppose that X and Y are independent con-
tinuous random variables with density func-

tions fx and fy-.
e CDF of X + Y
Fyyyla) = P{X +Y <a)
= [ fery<a fx(7) [y (y) dzdy

= %% 255 Fx () fy (y) dady
= 5 Fx(a—y)fy(y) dy
e PDF of X +Y:
d
fxiy(a) = %/—Oooo Fx(a—y)fy(y)dy
d

= /2% S Ex(a—y)fy(y)dy
= P50 fx(a—y)fy(y)dy
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Example 6.3a. Sum of two independent
uniform random variables. It X and Y are
independent random variables, both uniformly
distributed on (0,1), calculate the probability
density of X + Y.

1 0<a<1
fx(a) = fyla) = 0 otherwise

o fxyy(a) = fx(a—y)dy
e For 0 < a < 1, this yields
fxiy(a)=f dy=a
e For 1 < a < 2, we get
fxiv(a) =1 dy=2—a

e Hence
a 0<a<l

fX+Y(CL): 2—al<a<?
\O otherwise

e Because of the shape of its density function,
the random variable X + Y is said to have
a triangular distribution.
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Density function of Gamma/(t, \)
Ae M \y)t1

['()

fly) =

0<y<oo

Proposition 3.1: If X and Y are inde-
pendent gamma random variables with respec-
tive parameters (s, \) and (£, A), then X +Y
1s a gamma random variable with parameters
(s 4+ 1, ).

If X,;’s are independent gamma(t;, A), then

§ ts, A)

n
>
— 1=1

1XZ- ~ gamma(
1=

Example 6.3b. Let X1, Xo,...,X,, ben
independent exponential random variables each
having parameter A. Then, as an exponen-
tial random variable with parameter A is the
same as a gamma random variable with param-
eters (1,A\), we see from Proposition 3.1 that
X1,X9,...,X, 18 a gamma random variable
with parameters (n, \).
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Chi-squared distribution:

oIf 71,75, ..., 7, are independent unit nor-
mal random variables, then Y = ,%1 ZZ-2
1=

18 sald to have the chi-squared distribution
with n degrees of freedom.

e [fn=1, then

fry) = \/_[fz(\/_)Jer(—\/@)]

I
2,/y\/2m
e Py )1 2)
ﬁ

Y is gamma(1/2,1/2).
e Thus for any n, Y is gamma(n/2,1/2) and
e~V (y/2)" 27 (1/2)

[(n/2)

e When n is an even integer,

[(n/2) = [(n/2) = 1]

fy(y) =
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e When n is an odd integer,

[(n/2) =[(n/2) =1]--- (1/2)v/7

1. The chi-squared distribution often arises in
practice as being the distribution of the square
of the error involved when one attempts to
hit a target in n-dimensional space when the
coordinate errors are taken to be indepen-
dent unit normal random variables.

2. It 1s also important in statistical analysis.

Proposition 3.2: If X;,: = 1,...,n are
independent random variables that are nor-
mally distributed with respective parameters

n . .
[L, 07;2, 1,...,n, then '21 X; 1s normally dis-
1=
. . n n
tributed with parameters ‘Zl (t; and ‘Zl 02-2 .
1= 1=

o Assume X ~ N(0,0%) and Y ~ N(0,1)
are independent.

e Show that X +Y ~ N(0,1 + o?).
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o X;~ N(u,07)

X — _
o X1+ Xy = og (FLoH 4 A22) gy g
X,— Xo—
Q%NN(O,J%/J%) and%'ﬂwN(O, 1)

e Then X + X9 ~ N(ug —|—M2,0'% —I—U%).

Example 6.3c. A club basketball team will
play a 44-game season. Twenty-six of these
cames are against class A teams and 18 are
against class B teams. Suppose that the team
will win each game against a class A team with
probability .4, and will win each game against a
class B team with probability .7. Assume also
that the results of the different games are in-
dependent. Approximate the probability that

(a) the team wins 25 games or more;

(b) the team wins more games against class A
teams than 1t does against class B teams.

* (a)
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— X 4, Xp: The number of games the team
wins against class A and against class B.

— X 4 and X p: Independent binomial ran-
dom variables.

—E[X 4] = 26(.4) = 104 Var(Xy) =
26(.4)(.6) = 6.24

— E[X 4] = 18(.7)
18(.7)(.3) = 3.78

— Normal approximation gives that X 4 and
X p are approximately independent nor-
mal random variables.

126 Var(Xp) =

P{X4+ Xp>25} = P{X4+Xp>245)
{XA + Xp—23 _ 245— 23}

>
V10.02 T 4/10.02
1.5
PlZ>
{ - \/10.02}
| — P{Z < A739}
3178

&

€

e (b)
P{Xy—Xp>1} = P{X4— Xp> 5}
X4—Xp+22 D+ 2.2

- Py /10.02 Zm}
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&

2.7
rlz >

{ = \/10.02}
1 — P{Z < .8530}
1968

€

Example 6.3d. Sums of independent Pois-
son random variables. It X and Y are in-
dependent Poisson random variables with re-
spective parameters Ay and Ao, compute the
distribution of X 4+ Y.

P{X+Y =n} = IEOP{X:/{,Y:n—k}

= éo P{X =k}P{Y =n—k}
- —k
= 5 e_)‘l)\]fe_)‘Q A
k=0 k! (n — k)!

—k
~(Artdo) L AN
k=0 k!(n — k)!
6_<)‘1+)‘2>
=it A)"

— €
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Example 6.3e. Sums of independent bino-
maial random variables. Let X and Y be in-
dependent binomial random variables with re-
spective parameters (n, p) and (m,p). Calcu-
late the distribution of X + Y.

[ J
n

P{X+Y =k} = & P{X=iY =k}
1=
n

= £ PAX =i}P{Y =k —i}
1=

¥ 1 n—1i k—i _m—Fk
=P [k —z’]p !
where ¢ = 1 — p and where (;) = (0 when

] >

n

e Hence
n\( m
P{X +Y =k} = pig"mF ¢
t F=pa =012 )\k —1¢
n—+m _
_ . )pkqn+m k

6.4 Conditional distributions: discrete
case
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e The conditional probability of E given F':
P(EF)
P(F)
e The conditional probability mass function
of X given Y = y:

P{X =2,Y =y} p(z,y)
px|Y(il?|y> - P{Y =y}  pyv(y)

e The conditional probability distribution func-
tion of X given Y = y:
P{X<z|Y =y}
F x|y —

= agxpxw(a’?/)

P(E|F) =

e If X and Y are independent, then
px|y(zly) = P{X =z}

Example 6.4a. Suppose that p(z,y), the
joint probability mass function of X and Y, is
oiven by

p(0,0) =4 p(0,1)=.2 p(1,0)=.1 p(1,1)=.3
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Calculate the conditional probability mass func-
tion of X, given that ¥ = 1.

o py (1) =2p(x,1) = p(0,1) +p(1,1) = .5
* Pxy(0]1) = ﬁ% =3
o Pyiy(1]1) = 25&3 =3

Example 6.4b. If X and Y are indepen-
dent Poisson random variables with respective

parameters A1 and Ao, calculate the conditional
distribution of X, given that X +Y = n.

[
P{X =klX+Y =n} = P{)](D {Xk;Xy:Yn} n)

 P{X=EkY=n—-k}
- P{X+Y =n}
 P{X =k}P{Y =n—k}
- P{X +Y =n}

e X +Y ~ Poisson(A; + A9)

o

-1

—)\1 k —)\2 n—Fk —()\1—1—)\2) n
P{X:k|X_|_Y:n} _ e >\1€ )\2 |:€ ()\1—'—)\2)

Kl (n—k)

n!
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n! ALk
(n — K EL AL + Ao)”

(G G
-k A+ Ao A+ Ao

6.5 Conditional distributions: contin-
uous case

e Conditional probability density function:

Ixy(ely) = ];(;gyy;

o P{AX € A|Y =y} = [afx)y(z|y)dz
o Fyylaly) = P{X < a | Y = y} =
/goo fX\Y(ZIj’?D dz

Example 6.5a. The joint density of X and
Y is given by

15
N2 — 1 — O<ZI3, <1

0 otherwise

Compute the conditional density of X, given
that Y =y, where 0 < y < 1.
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efor0<ax<1,0<y<1, wehave

fxy(ely) = ];if(’?%)
[y
1% flz,y) dx
_ r(2—1x—1y)
G2 —z—y)de
_ r(2—x—y)
5 —y/2
_ 6x(2 —x — y)
4 — 3y

Example 6.5b. Suppose that the joint den-
sity of X and Y is given by

—z/Y =Y
(& (&

0 otherwise

Find P{X > 1Y = y}.

e The conditional density of X, given that
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Y=y
_ f(z,y)
B e~ %/Ye Y /y
e —Yi5°(1/y)e —Z/Y dy
_ le—x/y
Y
e Hence
P{X > 1Y =y} = © ;ex/y dx
— _e_x/ycl)o
— 6_1/y

If X and Y are independent continuous ran-
dom variables, the conditional density of X,
ogiven Y = y, 1s just the unconditional density

of X.

Suppose that X is a continuous random vari-
able having density function f and NV is a dis-
crete random variable.
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The conditional density of X given that N =
n:

Plr <X <z+dz|[N=n}  P{N=nlz<X<z+de}P{r <X <z+dr}

dx P{N =n} dx
lim {:l? < <$+d$‘ ’n} _ { ’I’L‘ x}f(x)
dx—0 dx P{N = n}

Frtaln) = UL S fa)

Example 6.5c. Consider n + m trials hav-
ing a common probability of success. Suppose,
however, that this success probability is not
fixed in advance but is chosen from a uniform
(0, 1) population. What is the conditional dis-
tribution of the success probability given that
the n + m trails result in n successes”

e X ~ uniform(0,1): The trial success prob-
ability.

e N ~ binomial(n + m,x): The number of
SUCCESS.
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e The conditional density of X given that N =
n: Beta(n +1,m + 1)
P{N =n|X =z} fx(z)
<n+m>xn<1 . le)m
= N 0<z <l
P{N =n} v

= cx''(1 —x)"

e The conditional density is that of a beta ran-
dom variable with parameters n + 1, m + 1.

*6.6 Order statistics

e X1, Xo,..., X, aren independent and iden-
tically distributed, continuous random vari-
ables having a common density f and dis-
tribution function F'.

X<1> = smallest of X1, Xo,..., X},
X<2> = second smallest of X1, Xo,..., Xy

X(j) = 9th smallest of X1, Xo,..., X},
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X(n) = largest of X, Xo,..., X,

e Order statistics: X<1> < X(Q) < ... <

X (n)
e The order statistics X<1>, X(2>, e X<n> will
take on the values r1 < a9 < -+ < g if

and only if for some permutation (i1, 9, ..., in)
of (1,2,...,n)

Xl :xipXQ:xiy"an:xin

€ € € €
~ eanl,XQ,...,Xn(xip xi27 <. 7xin)

=" fx1) - f(zn)

€ € € €
P{$1—§<X1<£l?1—|—§,...,£lfn—§<Xn<xn—|—§}
~nle" f(xy)--- f(zn)

e Joint density function of order statistics:

fX(l) ..... X(n)<x17 ceey Qj‘n) = ’n,’f(xl) RPN f(xn) T < - <L Ty

Example 6.6a. Along a road 1 mile long
are 3 people "distributed at random.” Find the



Probability II- Chap. 6: Jointly Distributed Random Variables 47

probability that no 2 people are less than a
distance of d miles apart, when d < %

e X,;’s are independent uniform(0, 1).
'fX(l),X(Q),X(g)(xlvx27$3) =3l 0< 2 <
To < 13 <1

e [f X, denotes the position of the ith person,
the desired probability is

P{X(,L) > X(i—l) +d,1 = 2,3}

P{X(l) > X(’L—].) + d,'L - 2, 3} — ///l">l"1+d i=2.3 fX(l),X(Q),X(3) (x17 x27 :E3)d£l?1d£l?ﬂ

-3 2 i 1;‘; [ Y dwsdaade,

= /1 2d/$ (1 —d — z3)dzodxy

_ /01 * i aien yadysda,
where yo =1 — d — 9.
e Hence
= 3 2d(1 —2d — z1)%dx;
= 3 yidy,
= (1— 2d)
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e The same method can be used to prove that
when there are n people distributed at ran-
dom over the unit interval the desired prob-
ability is

1
[1—(n—1)d]" whend <
n—1
The density function of X ()’
Frg@) = e [P@) L~ F)]™ f(2)

(n =) =1)

(j—l,z—j,lj B (n—jﬁéj—l)!

Example 6.6b. When a sample of 2n + 1
random variables (that is, when 2n + 1 inde-
pendent and identically distribute random vari-
ables) are observed, the (n + 1)st smallest is
called the sample median. If a sample of
size 3 from a uniform distribution over (0,1) is
observed, find the probability that the sample

median 1s between % and %
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|
o fx, (@)= fr(l—z) 0<z<1

e Hence

P{i < X9 < i} = 6/3//£L (1—z)dx
. 33_2 B xg]xS/il - E
2 3 1=1/4 16

n!

Fy,(y) = [ G i F @ L - P (@)

Fx, (y) = P{j or more of Xj’s are <y}

n

- £ ({)rwn - o

k=
n!
P @oti) = GG i i G-
F @) — Pl P 5w ()

Example 6.6c. Distribution of the range
of a random sample. Suppose that n in-
dependent and identically distributed random
variables X1, Xo, ..., X, are observed.

o R = X<n> — X<1>: The range of the ob-

served random variables.
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e [f the random variables X; have distribution
function F' and density function f, then the
distribution of R can be obtained from Eq.
(6.6) as follows: a > 0.

P{R<a} = P{X4 — Xu <n}
= //:v _1<a fX (xl xn)dxldxn

= [ (n (F(2,) = Fa)]" f(1) f(w0)dwada,

e Making the change of variable y = F'(xzy) —
F(x1),dy = f(xn)dxy,, yields

[ @) = Pl faa)de, = [
1

= — 1[F(x1 +a) — F(z)]" !

—F(zq) yn_Qdy

and thus
P{R <a}=n /" [F(zi+a)— F(z)]" " f(z1)dz,
(6.7)
e When the X;’s are all uniformly distributed
n (0,1):
P{R < a} = n/o (21 +a) — F(x)]" ' f(21)dz,

= n/ol ! a"” 1d£l? +n/11_a(1 — Cl?l)n_ld.fl
= n(l —a)a" ' +a"
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e The density function of the range:

(nn—1)a"?(1-a)0<a<1
Trla) = 0 otherwise

e The range of n independent uniform(0, 1)
random variables is a Beta(n — 1, 2).

6.7 Joint probability distribution of func-
tions of random variables

e The joint probability density function fx, x,.
o Y] = g1(X7, Xo) and Y5 = go( X1, Xo).

e Assume that g; and g9 satisty the following
condition:

1. The equation y; = gi(x1,x9) and yy =
go(x1,x9) can be uniquely solved for x
and ro In terms of y; and yo with solu-
tions given by x1 = hi(y1,y2) and x9 =
ho(y1, y2)-

2. The functions g7 and g9 have continuous
partial derivatives at all points (z7, x9)
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and are such that the following 2 x 2 de-

terminant
dg1  Og1
J(CULCUZ) = ax% axg # 0
T )

at all points (z1, 29).

The joint density function of Y7 and Y5:

Friva (W1 v2) = Fx, x, (21, 29)[ T (21, 22)|

Example 6.7a. Let X and X9 be jointly
continuous random variables with probability
density function fx, x,. Let Y1 = X1+X9, Yy =
X1 — Xo. Find the joint density function of Y;
and Y5 in terms of fx, x,.

o gi1(z1,x9) = 1 +x9 and go(x1, 20) = 71 —
x9. Then

I 1

|1 T 72

J(xq,m0) =

o v, v, (Y1, y2) = 5 x, x, (U2, 15402)
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e If X and Xy are independent uniform(0, 1),

then
|
5 0<y1+1yp<2,0<y; —yy <2
le,YQ(ylayQ) = { 2

0 otherwise

e If X| and X5 are independent exp(A1), exp(Ag),
then My, y2)

[ 2 ep{=A(152) = M(U52)} yi 4y > 0,51 — 2 20
10 otherwise

e [f X and X9 are independent unit normal
random variables, then Y7 and Y5> are inde-

pendent N(0, 2).

le Y2<y17 y2) — 416_[(?/1+92>2/8+(y1—92>2/8]
’ T
_ LR
A

Example 6.7b. Let (X,Y) denote a ran-
dom point in the plane and assume that the
rectangular coordinates X and Y are indepen-
dent unit normal random variables. We are in-

terested in the joint distribution of R, 6, the
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polar coordinate representation of this point
(See Fig. 6.4).

o r = gi(x,y) = (2% +y? and 0 = go(,y) =
tan" Ly /2, 0 < 7 < 00,0 < @ < 2.

891 2+y and 891 \/#y?
o 8:1: = m% and 3% = inEI—yQ'
o J(wy) = rm =
o o) = e

o f(r,0) = %Te_TQ/Q

e I and O are independent.

e Ris Rayleigh distribution. © isuniform(0, 27)
e The joint distribution of R? and ©:

~d =g = 2" +y and § = go(x,y) =
tan"ly /2, 0 < d < 00,0 < 6 < 2.

_ —d/2 1
—J—Qandf(d,é’)—Qe /27T
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— R? and © are independent with R? hav-
ing an exponential distribution with pa-
rameter 1/2.

e The above result can be used to simulate
normal random variables by making a suit-
able transformation on uniform random vari-
ables.

— Uy and Us are independent uniform(0, 1).

— R? = —21log U is an exponential distri-
bution with parameter 1/2.

— © = 27Us is a uniform(0, 27).

— X| = Rcos© = y/—2log Uj cos(2mUs)

— X9 = Rsin©® = /—2log U; sin(2nU»)

Example 6.7c. If X and Y are indepen-
dent gamma random variables with parame-
ters (o, \) and (8, ), respectively, compute
the joint density of U = X +Y and V =
X/(X+Y).
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e The joint density of X and Y is given by
Ae AT (M) @) Ne= AV (\y) (1)

fX,Y(xa?D — F(Oz) F(@)
_ A 6—A(x+y)xoz—1y6—1
[(a)I(5)

ou=gi(z,y) =x+y,v=gs(r,y) =x/(x+
y), then

891_891_1 g2y 0go x
or Oy dr  (z+y)? 0y  (z+y)?
o
1 1 1
Sy =y —x |=-
(r+y? (oty)?|  TTY

ez =uv, and y = u(l — v)

fov(u,v) = fxyluv,u(l —ov)u
e M (Au)etF=1ye= (1 — )~ (a + )

Mla+5) P(a)I'(B)

e U and V are independent gamma(a + ()
and beta(a, 3).

e Suppose that there are n + m jobs to be
performed, with each taking an exponential
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amount of time with rate A for performance,
and suppose that we have two workers to
perform these jobs.

e Worker I will do jobs 1,...,n, and worker
[I will do the remaining m jobs.

e [f we let X and Y denote the total working
times of workers I and II, respectively, then
X and Y will be independent gamma(n, \)
and gamma(m, \).

e Then the above result yields that indepen-
dently of the working time needed to com-
plete all n + m jobs, the proportion of this
work that will be performed by worker I has
a beta(n, m).

The joint density function of the n random
variables X1, Xo, ..., Xy:
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.Y7;:gi<X17X27"'7Xn)7Z.: 1727"'7n

0 0 0,
J:?i% 5% :vi

Ogn  Ogn . . Ogn
Jry Ox9 Tn
yi:gi(x17x27"'7ajn>7i: 1727"'7n
® fYI ----- Yn<y17 s 7yn> — le ..... Xn<x17 >|J‘_1 Where

x; = h;(y1, yg,...,yn)zzl,Z,...,n

Example 6.7d. Let X{, Xo and X3 be in-
dependent unit normal random variables. If
Y1 = X1+ Xo+ X3, Y9 = X; — Xo, Yy =
X1 — X3, compute the joint density function
of Y7,Y9,Y5.
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_ Y1—2Y5+Y,
o X2 — 3

Y1+Yo—-2Y:
o X3 = 1112

o
1 y1+y2+y3 y1—2y2+y3 y1 +y2 — 23
fyl,yg,y3 (ylay27y3) = _le,XQaX3 ) ’
3 3 3 3
3 2
L o= %i=127/2

® le,XQ,X:g(ajla L2, 5173) — (2#)3/26

1 y
* [y, v, v5(W1,¥2,y3) = 3(@m 32 Qyr-2,93)/

where
+ + 2 —2 + 2 + -9 2
Qy1,Y2,y3) = (M) +<yl Y2 y3> +<y1 Y2 y3>
3 3 3
p
_ ¥ 2, 2, 2

Example 6.7e. Let Xq, Xo,...,X,, be in-
dependent and identically distributed exponen-
tial random variables with rate A. Let

Yi=X;+--+ X, i=1....n

(a) Find the joint density function of Y7, ..., Y}.

(b) Use the result of part (a) to find the density
of Y;,.
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(a) Y1 = X1,Yo = X1+ Xo, ...,V = X1 +
e+ X

I 0 00---0

1 1 00 0

I 1 00 0
J(SE‘l,,CIZn): ......

I 1 11 1

[
M@z, - m) = fxiex, (UL y2 = Y1 ¥ = Yiets - Yn = Y1)
n
= Nexp{—Alyt + > (¥ —yi-1)]}
i=2

Ne™n 0<y,0<yi—yi_1,i=2,...,n
= N <y <ys<--<Yn

Yo, YuY2y o+ o5 Yn) = e “ray
f ( ) 0?J2)\n /\yd
= Nyoe ™" 0<yp <yz < <Yp

fro v, (Ysy ooy Un) = 0y3 A y0e ™My,

2
— A"%e”yn 0<ys<ys<---<Un

2
nYs -
fy4,._.,yn(y4, - 7yn> — A 3—1’16 Ayn D<ys <+ <y
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e Y, is gamma(n, \)

*6.8 Exchangeable random variables

e The random variables Xy, ..., X, are said

to exchangeable if for every permutation ¢y, . . .

of the integers 1,....,n
P{le SLL’l,...,XZ'n Sl’n}:P{Xl Sl’l,...,Xngl’n}

e Discrete random variables will be exchange-

able if
P{Xil=$1,-.-,X@'nZl’n}:P{X1:SL’1,--.,Xn:I'n}

Example 6.8a. Suppose that balls are with-
drawn one at a time and without replacement
from an urn that initially contains n balls, of
which k are considered special, in such a man-
ner that each withdrawal is equally likely to be
any of the balls that remain in the urn at the
time. Let X; = 1 if the ¢th ball withdrawn is a
special and let it be 0 otherwise. We will show
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that the random variables Xy, ..., X, are ex-
changeable.
e Let (z1,...,xy) be a vector consisting of k

ones and n — k zeros.

e However, before considering the joint mass
function evaluated at (x1, ..., zy), let us try
to gain some insight by considering a fixed
such vector-for instance, consider the vector
(1,1,0,1,0,...,0,1), which is assumed to
have k ones and n — k zeros.

e Then

kk—1n—kk—2n—k—1 1
p(1717071707...7071):_ n n .

nn—1n—-2n—-3 n—4 2
which follows since the probability that the
first ball is special is k/n, the conditional
probability that the next one is special is
(k — 1)/(n — 1), the conditional probabil-
ity that the next one is not special is (n —

k)/(n —2), and so on.

e By the same argument, it follows that
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p(x1,...,xy) can be expressed as the prod-
uct of n fractions.

e The successive denominator terms of these
fractions will go from n down to 1.

e The numerator term at the location where
the vector (z1,...,xy) is 1 for the ith time
is k — (¢ — 1), and where it is 0 for the ith
timeitisn —k — (¢ — 1).

e Hence, since the vector (z1,. .., xy) consists
of k ones and n — k ones and n — k zeros,
we obtain that

Elin — k)!
plxy,...,xTpn) = (n ) :137;:0,1,,% r; =k
n! 1=1

e Since this is a symmetric function of (x4, ..., xp),
it follows that the random variables are ex-
changeable.

If X1, Xo,...,X,, are exchangeable, it easily
follows that each X; has the same probability
distribution. If X and Y are exchangeable dis-
crete random variables, then
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P{X:x}:%:P{X:x,Y:y}:%P{X:y,Y:x}:P{Y:x}

Example 6.8b. In Example 6.8a, let Y7 de-
note the selection number of the first special
ball withdrawn, let Yo denote the additional
number that are then withdrawn until the sec-
ond special ball appears, and in general, let
Y, denote the additional number of balls with-
drawn after the (7 — 1)st special ball is selected
until the 2th is selected, 2 =1, ... k.

e [or instance, it n = 4,k = 2 and X =

1,Xo = 0,Xg3 = 0,Xy = 1 then Y7 =
.Yy =3,

e Since Y| = 11,Yo = ig,...,Yk = 1. &
Xil — g1+ — T Xi1—|—'“—|—ik — 17X] —

0, otherwise; we obtain from the joint mass
function of the X; that

klln — k)!

n!

P{Y1=1i,Ys=1y,..., Y =is} = (SRR
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e Hence we see that the random variables Y7, . ..

are exchangeable.

e For instance, it follows from this that the
number of cards one must select from a well-
shuffled deck until an ace appears has the
same distribution as the number of addi-
tional cards one must select after the first
ace appears until the next one does, and so
on.

Example 6.8c. The following is known as
Polya’s urn model. Suppose that an urn ini-
tially contains n red and m blue balls. At each
stage a ball 1s randomly chosen, its color is
noted, and it is then replaced along with an-
other ball of the same color. Let X; = 1 if
the 7th ball selected is red and let it equal O of
the ¢th ball is blue, ¢ > 1. To obtain a feeling
for the joint probabilities of these X;, note the
following special cases.
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® P{X;=1,X0=1,X3=0,X4=1,X5=0}
n n—+1 m n -+ 2 m+ 1
n+mn+m+Iln+m+2n+m+3n+m-+4
n(n+1)(n+2)m(m+ 1)
(m+m)(n+m+1)(n+m+2)(n+m+3)(n+m+4)
@ P{X;=0,X0=1,X3=0,Xy=1X5=1}
m n m+ 1 n—+1 n -+ 2
n+mn+m+1In+m+2n+m+3n+m+4

n(n+1)(n+2)m(m+ 1)
(m+m)(n+m+1)(n+m+2)(n+m+3)(n+m+4)
o P{X1=ux1,..., Xy =x1}
nn+1)---(n+r—1I)mm+1)---(m+k—r—1)
(m+m)---(n+m+k—1)
e The random variables Xi,..., X are ex-
changeable.

Example 6.8d. Let X1, Xo,..., X, bein-
dependent uniform (0,1) random variables, and
let X (1) - X (n) denote their order statistics.
That 1s, X<j) is the jth smallest of X1, Xo, ..., Xy,
Also, let

Y1 = X<1>,

Y;; — X<Z> _X(i—1)7 i:2,...,n
Show that Y7,....,Y), are exchangeable.
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O Yl =T, Y =X — X1 L=2,...,M
.x?,:yl_l__l_yz izla"'an

¢ le """ Yn(y17y27" 7yn) — f<y17y1—|_y27°' . 7y1+‘|’

‘le,...,Yn(?/la?/Qw--7yn) — n'
O<y1<y1+yp<---<yi+---+yp <1

* fyi. v, Wi,y2,. .., yn) =n!
O<y; <lya=1,....n y1+---+yp <1

Summary

e Joint cumulative probability distribution func-
tion:

F(z,y) = P{X <=zY <y}
— Fy(z) = limy—o00 F(z,y)
— Fy(y) = limg 00 F(7, )
e Joint probability mass function:
pli,j) = P{X =4,Y = j}
- P{X =i} = §p(i,j)
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- P =g} =pli,])
e Joint probability density function: f(z,y)
- P{X,Y) e C}=/[o f(z,y)dudy
— fx(z) =25 [z, y)dy
~Iy(y) = 2% [z, y) do

e Independence

P{X e AY €e B} = P{X € A}P{Y € B}
P{X1€A1 ..... XHEAH}:P{X1€A1}P{XHGAH}

e The distribution function of X + Y:
Fxiy(a) =25 Fla—y)fy(y)dy
o If X;’s are independent N(u;, 07), then
%Xz ~ N(%Mi,%(f%)
e If X,’s are independent Poisson(J}\;), then

5 X; ~ Poisson(g ;)
(4 (4

e If X;’s are independent gamma/(ay;, 8), then

> X ~ gamma(3 o, )
i i
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e If X,’s are independent binomial(n;, p), then

n . . n
> X; ~ binomial(x n;, p)
(4 (4

e The conditional probability mass function
of X given that ¥ = y:

p(z,y)

py (y)

e The conditional probability density function
of X given that Y = y:

P{X = 2]y =y} =

Fxy(ely) = ];(;gy?

e The density function of order statistic:

flry, oo my) =nlf(a) - flz,) v <2 <0 <y,

e The random variables X1q,..., X, are ex-

changeable if the joint distribution of X; ;. ..

is the same for every permutation iy, ..., iy
of 1,...,n.



