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Chapter 7 Properties of Expectation

7.1 Introduction

e Discrete case: F|X| = %xp(a:)
e Continuous case: F[X]| = [22 xf(x)dx
o If P{a < X < b} =1, then

a < EX]<b

7.2 Expectation of sums of random vari-
ables

Proposition 2.1: If X and Y have a joint
probability mass function p(x,y), then

Elg(X,Y)] =¥ g(z,y)p(z,y)

If X and Y have a joint probability density
function f(x,y), then

Elg(x,y)] = 25 o0 9(@,y) f(z,y) drdy

Example 7.2a. An accident occurs at a point
X that is uniformly distributed on a road of
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length L. At the time of the accident an am-
bulance is at a location Y that is also uniformly
distributed on the road. Assuming that X and
Y are independent, find the expected distance
between the ambulance and the point of the
accident.

o f(z,y) =79, 0<z<L, 0<y<L

1
o E[|IX —Y|| = LQ/OL W |2 =yl dyda

e Now,
Iz —yldy = /02(97 —g)dy ;r [Ey — x) dy
T L T
- — - — — = L_
22+ ; 5 x( )
L
— 2‘|—Qf2 —xL
e Therefore,
1 (L%
El|X =Y|] = ﬁ/() -tz —ZI?L] dx
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EX+Y] = [ [0 (x+y)flzy) dedy
= [ :Uf:l:y)dyd:v+/ [22 yf(z,y) doc

x)de + 2 yfy(y) dy
E[X]+E[Y]

e K| X+Y|=FEX|+F|Y]if E[X]and F[Y]
are finite.

I
\
8
ii

><1

Example 7.2b. Suppose that for random
variables X and Y,

X>Y

That is, for any outcome of the probability ex-
periment, the value of the random variable X is
oreater than or equal the value of the random

variable Y. Since the preceding is equivalent
to the inequality X — Y > 0, it follows that
E|X —Y]| >0, or, equivalently,

E[X] > E]Y]

If F[X;] is finite for all i = 1,... n, then
BIX|+ -+ Xp] = E[X{] + -+ E[X,)]
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Example 7.2c. The sample mean. Let
X1, ..., Xy beindependent and identically dis-
tributed random variables having distribution
function F' and expected value p. Such a se-
quence of random variables is said to constitute
a sample from the distribution F'. The quan-
tity X, defined by

X;

n
X=73 2t
=1 n

is called the sample mean. Compute F[X].

X;

I n
X,
1=1 |
— — ¥ EIX;

n 1=1 '
=  since B[ X;| = pu

S
i
|
&S
I

(

1

n
1

Example 7.2d. DBoole’s inequality.  Let
Aq,..., A, denote events and defined the in-
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dicator variables X;, ¢ =1,...,n by

Y. _ 1 if A; occurs
|0 otherwise
o X = 'gl X;: The number of the events A;
1=
that occur.
o Let

S [rifx>1
10 otherwise

e Y isequal to 1 if at least one of the A; occurs
and 1s 0 otherwise.

e Then X > Y and F[X]| > EY].
e But since

E[X]= 3 E[Xj]= ¥ P(4))

and
E[Y] = P{at least one of the A; occur} = P (6 AZ->
i=1

e We obtain Boole’s inequality

P( Az’) < g1 P(A;)
1=

n
U
1=

1
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Next three examples show how Eq. (2.2) can
be used to calculate the expected value of bi-
nomial, negative binomial, and hypergeometric
random variables.

Example 7.2e. Expectation of a binomial
random variable. Let X be a binomial ran-
dom variable with parameters n and p.

e Note that X = X1+ X9+ .-+ X, where

1 if the 7th trial is a success

Xi = 0 if the 2th trial is a failure

e Hence, X, is a Bernoulli random variable
having expectation E[X;] = 1(p)+0(1—p).

e Thus K| X]|=FXq]+ -+ E|Xy|=np

Example 7.2f. Mean of a negative bino-
meal random variable. If independent trials,
having a constant probability p of being suc-
cesses, are performed, determine the expected
number of trials required to amass a total of r
successes.
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e X : The number of trials needed to amass a
total of r successes.

e X;: The number of additional trials required,
after the (7 — 1)st success, until a total of i
successes are amassed.

o Note that X = X+ Xo + -+ + X

o B[X] = E[X{] + - + E[X,] =

Example 7.2g. Mean of a hypergeometric
random variable. If n balls are randomly se-
lected from an urn containing /N balls of which
m are white, find the expected number of white
balls selected.

e X: The number of white balls selected.
o X = X1+ 4+ Xy, where

Y. _ 1 if the 7th white ball 1s selected
10 otherwise

e Now,
EX;] = P{X; =1}
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= P{ith white ball is selected }
I\/N—1
_ W)
()
n

n
N

e Hence

BIX] = BIX\]+ -+ + B[ Xm] =

e Alternative: X =Y +---+ Y, where

1 1if the 2th ball selected 1s white
Y, = -
0 otherwise

o ElY)| =%
e Then E[X] = E[Y{]+ - + E[Y,] = &

Example 7.2h. Expected number of matches.
A group of N people throw their hats into the
center of a room. The hats are mixed up, and
each person randomly selected one. Find the
expected number of people that select their
own hats.
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e X: The number of matches.
o X = X1+ Xo+ -4+ X where

1 if the 7th person selects his own hat

Xi = 0 otherwise

o B[Xj] = P{X; =1} = §

e Then F|X| = EX{|+ -+ E[Xy] =
=1

Example 7.2i. The following problem was
posed and solved in the eighteenth century by
Daniel Bernoulli. Suppose that a jar contains
2N cards, two of them marked 1, two marked
2, two marked 3, and so on. Draw out m cards
at random. What is the expected number of
pairs that still remain in the jar? (Interestingly
enough, Bernoulli proposed the above as a pos-
sible probabilistic model for determining the
number of marriages that remain intact when
there is a total of m deaths among the /N mar-
ried couples.)
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e Definefori=1,2,..., N,

Y. _ 1 if the 2th pair remains in the jar
* 10 otherwise

e Now,

EX;] = P{X; =1}
<2N—2>
oy
(2N—2)

m!(2N—2—m)!

(2N)!
m!(2N—m)!

(2N —m)(2N —m — 1)
(2N)(2N — 1)

e Hence the desired result is

E[Xi+ -+ Xy] = F[Xq]+-- -+ E[Xy]
2N —m)(2N —m — 1)

202N — 1)

Example 7.2j. Coupon-collecting problems.
Suppose that there are N different types of
coupons and each time one obtains a coupon it
is equally likely to be any one of the NV types.
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(a) Find the expected number of different types
of coupons that are contained in a set of n
coupons.

(b) Find the expected number of coupons one
need amass before obtaining a complete set
of at least one of each type.

e X: The number of different types of coupons
in the set of n coupons.

(a) X = X1+ -+ 4+ Xy where

. 1 if at least one type ¢ coupon is contained in the set of n
"] 0 otherwise

e Now,
ElXi] = P{X;=1}
= 1 — P{no type i coupon are contained in the set of n}
N —1\"
-1 ()
e Hence
N — 1"

(b) Y: The number of coupons collected before
a complete set 1s attained.
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e Y;: The number of additional coupons that
need to be obtained after ¢ distinct types
have been collected in order to obtain an-
other distinct type.

oY =Y+ Y+ +Yy_q
o P{Y; =k} = VL) k>
o Y, ~ geometric((N —1)/N)

o B[Y]] = xv.
e [hen
N N N
EY] =14 o+t +
1 1
— NI1+...
+ +N—1+N

~ N(log N + C)

where (' =~ 0.57721 1s the Euler constant.

Example 7.2k. Ten hunters are waiting for
ducks to fly by. When a flock of ducks flies
overhead, the hunters fire at the same time,
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but each chooses his target at random, inde-
pendently of the others. If each hunter inde-
pendently hits his target with probability p,
compute the expected number of ducks that
escape unhurt when a flick of size 10 flies over-

head.

e X,: 1 if the 2th duck escapes unhurt and 0
otherwise.

o EIXi+---+ X0 = E[X1]+ -+ E[Xy)

e Flach of the hubters will hit the :th duck
with probability p/10.

e P{X;=1}=(1—-4

o E[X]=10(1—{;

Example 7.21. FExpected number of runs.
Suppose that a sequence of n 1's and m 0’s is
randomly permuted so that each of the (n +
m)!/(n!m!) possible arrangements is equally
likely. Any consecutive string of 1’s is said
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to constitute a run of 1’s-for instance, if n =
6, m = 4, and the ordering s 1,1,1,0,1,1,0,0,1,0,
then there are 3 runs of 1’s-and we are inter-
ested in computing the mean number of such
runs.

o Let
I 1 if a run of 1’s starts at the ¢th position
* |0 otherwise
e R(1): The number of runs of 1.
R(1) ="3"I
1=
E[R()] = "£" BI]

e Now,
E|I] = P{"1” in position 1}
n

n-—+m
and for 1 <1 <n+m,

E|L]) = P«%’;O” in p%sition i — 1,71 in position i

n+mn+m—1
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e Hence

E(R(1)] - n (n+m — 1)nm

n+mJr (n+m)(n+m—1)
e Similarly, E|R(0)], the expected number of
runs of 0’s, is

E[R(())]:nTerner

and the expected number of runs of either
type 1s
EIR(1)+ R(0)] =1+

nm

2nm

n-+m

Example 7.2m. Consider an ordinary deck
of cards that is turned face up one card at a
time. How many cards would one expect to

turn face up in order to obtain (a) an ace and
(b) a spade?

e (a) and (b) are special cases of the following
problem.

e Suppose that balls are taken one by one out
of an urn containing n white and m black
balls until the first white ball is drawn.
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e [f X denotes the number of balls withdrawn.

e Name the black balls as b1, ..., by,.

o [ct

P 1 if b; is withdrawn before any of the white balls
" | 0 otherwise

o X =1+ g%l X;
1=
o Hence E[X] =1+ .751 P{X; =1}
1=

e As each of these n white balls plus ball b;
has an equal probability of being the first
one of this set to be withdrawn

EX]=P{X;=1}=

n+1

oE[X]zl—l—ﬂ

Example 7.2n. A random walk in the plane.
Consider a particle initially located at a given
point in the plane and suppose that it under-
coes a sequence of steps of fixed length but
in a completely random direction. Specifically,
suppose that the new position after each step is
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one unit of distance from the previous position
and at an angle of orientation from the previ-
ous position that is uniformly distributed over
(0,2m) (see Fig. 7.3). Compute the expected
square of the distance from the origin after n
steps.

e (X;,Y;): The change in the position at the
1th step.

e X; =cosf; Y,=-sinb,

[ J
2 2
p? =& x| +(E v
1=1 1=1
n
—~ 1(X2+Y2)+z7zé(XX +Y;Y;)
- J
= n+2 > (cosB; cosB; +sinf;sin b))
7]
o
2w Elcosb;] = T cosudu = sin 27 — sin0 = 0
2m E[sin6;] = 2” sinu du = cos 0 — cos2m = 0

o E[DQ] —
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Example 7.20. Analyzing the quick-sort
algorithm. Suppose that we are presented with
a set of n distinct values z1, ..., z, and we de-
sire to put them in increasing order. An efh-
cient procedure for accomplishing this task is
the quick-sort algorithm.

e When n = 2, the algorithm compares the
two values and then put them in the appro-
priate order.

e When n > 2, one of the elements is ran-
domly chosen—say it is x;—and then all of
the other values are compared with z;.

e the algorithm then repeats itself on these
brackets and continues until all values have
been sorted.

o Example: 5, 9.3 10, 11, 14, 8. 4, 17, 6
~{5,9,3,8,4,6},10, {11, 14, 17}
—{5,3,4},6,{9,8,},10, {11,14, 17}
—{3},4,{5},6,{9,8, },10, {11, 14,17}
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— This continues until there is no bracketed
set that contains more than a single value.

e X: The number of comparisons that it takes
the quick-sort algorithm to sort n distinct
numbers, then F[X] is a measure of the ef-
fectiveness of this algorithm.

e [(i,7): 1if ¢ and j are ever directly com-
pared, 0 otherwise.

—1
e X =" ¥ I(ij)
1=1 7=1+1
n—1 n : :
e K| X|= x ¥ P{iandj are ever compared}
1=1 j=1+1
. . 2
e P{i and j are ever compared} = ——
J—1+1
—1 2
e BlX] ="y ¥
i=1 j=1+19 — 1+ 1
n 2 n 2
> ~ ; dx
j=itlj —i+1 /7’+1:13—z'+1

2log(n —i+1) — 2log(2)
2log(n — 1+ 1)

Q
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F[X]| =~ élﬂog(n — i+ 1)

~ 2 og(n — 2 + 1) da
= 2 /' log(y) dy
~ 2nlog(n)

Example 7.2p. The probability of a union
of events. Let Aq,..., A, denote events and
X, = 1 if A; OCCUTS

0 otherwise
ol — ,?[1(1 — X;) = 1 if UA; occurs and 0
1=
otherwise.
n n
QE{l— I (I—Xi)] :P(.U Az)
i=1 1=1
n n k
I(1-X;)= ¥ (-1 > X X
’ i:1< 2 k:0< ) i<o<ip ! 'k
¢ E[XllXZQ " Xlk] — P<A7,1A7,2 T Alk)

o E{1 ~ 110 —XZ-)} = S ()M S P(AL Ay

k=1 1 <-<ip

Example 7.2q. A round-robin tournament
of n contestants is one in which each of the
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(g’) pairs of contestants play each other exactly
once, with the outcome of any play being that
one of the contestants wins and the other loses.

e Suppose that the n players are initially num-
bered as player 1, player 2. and so on.

e Hamiltonian permutation it 71 beats 79, 19
beats i3, ..., and 7,1 beats 1y,.

e A problem of some interest is to determine
the largest possible number of Hamiltonian
permutations.

e Suppose that there are 3 players. Then it
easy to see that if one of the players wins
twice, then there is a single Hamiltonian
permutation.

e If each of the players wins once, then there
will be three Hamiltonians.

e We will introduce randomness to show that
in a round-robin tournament of n players,
n > 2, there is an outcome for which the
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number of Hamiltonian permutations is greater
than n!/2" 1.

e Suppose that the results of the (g) games
are independent and that either of the two
contestants 1s equally likely to win each en-
counter.

e X : The number of Hamiltonians that result.

e Since at least one of the possible values of a
nonrandom variable must exceed its mean,
it follows that there must be at least one
possible tournament result which has more
than F[X] Halmiltonian permutations.

e To determine F|X], number of the n! per-
mutations, for ¢ = 1,...,n!l, X; = 1 if per-
mutation ¢ 1s a Halmitonian, 0 otherwise.

o L|X| =3 E[X]]
o BIX;] = (1/2)"!

[ EX] — 27?11
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. n
E[nlgnooiglxi — iy B | ¥ X]

holds in two important special cases:

1. The X, are all nonnegative random vari-
ables.

2. ¥ Bl <

Example 7.2r. Consider any nonnegative,
integer-valued random variable X.

o If for each ¢+ > 1, we define

1it X >

X =10 X <

then
00 X 00
Y X; = X XZ+ > X
1=1 1=1 =X +1

X
S St 0
1=1 1=X+1
= X

><M8
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e Hence, since the X; are all nonnegative,

E[X] = & E[X]

= X P{X >i}
1=
a useful identity:.

Example 7.2s. Suppose that n elements-
call them 1,2, ..., n-must be stored in a com-
puter in the form of an ordered list. Each
unit of time a request will be made for one
of these elements-2 being requested, indepen-
dently of the past, with probability P(z),7 >
1,5 P(7) = 1. Assuming these probabilities are
kn(z)wn, what ordering minimizes the average
position on the line of the element requested?

e Suppose that the elements are numbered so
that P(1) > P(2) > --- > P(n).

e To show that 1,2,...,n is the optimal or-
dering, let X denote the position of the re-
quested element.
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e Now under any ordering say O = 41,19, . . . , in,
Po{X > k} = %km)
J
> & P(j)
1=k
= P o X >k}
OEO[X] > b9 [X]

1= 7

7.3 Covariance, variance of sums, and
correlations

Proposition 3.1: If X and Y are indepen-
dent, then for any functions A and g,

Elg(X)n(Y)] = Elg(X)|E[AY)]

Definition: The covariance between X and
Y, denoted by Cov(X,Y), is defined by

Cov(X, Y) El(X = EIX)Y — E[Y])]
EIXY]| - EX]E]Y]

A simple example of two dependent random
variables X and Y have zero covariance:
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e P{X = 0} = P{X = 1} = P{X =

_1}:%
oY =0if X #0and 1if X =0.
e Cov(X,Y) = FXY]| - FIX|E|]Y] = 0

since K| XY]|=0and F[X]=0.

Proposition 3.2:
(i) Cov(X,Y) = Cov(Y, X)
COV(X X) = Var(X)

Var( > X) = 5 Var(X;)+2 £ Cov(X;, X

_—

1=1 1=1 1<
If Xq,...,X,, are pairwise independent, then
Var(,g Xi) = 35 Var(X;).
1=1 1=1

Example 7.3a. Let Xy,...,X, be inde-
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pendent and identically distributed random vari-

ables having expected value 1 and variance o2,

and as in Example 2¢, let X = g X;/n be

=1
the sample mean. The quantities X; — X, ¢ =
1,...,n, are called deviations, as they equal

the differences between the individual data and
the sample mean. The random variable

SQ _ g (XZ o 7)2
i=1 n—1
is called the sample variance. Find(a) Var(X)

and (b) E[S?]

()
Var(X) =

b Var(X;) by independence
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(n=1DEISY = ¥ BlX; = )’ = nE[X )]
= no* — nVar(X)

= (n—1)0”

Example 7.3b. Variance of a binomial
random variable. Compute the variance of a
binomial random variable X with parameters
n and p.

o X = X1+ 4+ X, where

Y. 1 if the 7th trial is a success
10 otherwise

o Var(X) = Var(Xy) + - - - + Var(Xy)

Var(X;) = E[X7] — (B[X;])’
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— E[X;] — (E[X;])?  since X7 = X;
=p—p’
e Var(X) =np(l — p)

Example 7.3c. Variance of the number
of matches. Compute the variance of X, the
number of people that select their own hats in
Example 2h.

o X = Xy +---+ Xy where

Y. — { 1 if the 7th man selects his own hat
;=

0 otherwise

N
® Var(X) = > Var(X;) + 2% ¥ Cov(X;, Xj)
1= 1<)
o Var(X;) = (1 - ) =3
o Cov(X;, X;) = E[X;X;] — E[X;]E[X}]

1 if the ¢th and jth men both select their own hats
0 otherwise

&&z{
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E[X;X;] = P{X;=1,X; =1}
= P{X; = 1}P{X; = 1|X; = 1}

11
NN -1
1 1)? !
e Cov(X;, X;) = N(N-1) "~ <N> ~ N2(N-1)
[
N—-1 _(N 1
B N—1+1
lN N

Example 7.3d. Sampling from a finite pop-
ulation. Consider a set /N people each of whom
has an opinion about a certain subject that
1s measured by a real number v, which repre-
sents the person’s "strength of feeling” about
the subject. Let v; represent the strength of
feeling of person 7,2 = 1, ..., N. Suppose that
these quantities v;,2 = 1,..., N are unknown
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and to gather information a group of n of the
N people 1s "randomly chosen” in the sense
that all of the (]X ) subsets of size n are equally
likely to be chosen. These n people are then
questioned and their feelings determined. If .S
denotes the sum of the n sampled values, de-
termine its mean and variance.

An important application of the above is to a
forthcoming election in which each person in
the population is either for or against a cer-
tain candidate or proposition. If we take v; to

equal 1 if person 7 is in favor and 0 if he or she

: . N
is against, then v = ¥ wv;/N represents the

proportion of the pop%l_lation that is in favor.
To estimate v, a random sample of n people is
chosen, and these people are polled. The pro-
portion of those polled that are in favor-that
is, S/n-is often used used as an estimate of v.

I 1 if person ¢ is in the random sample
* | 0 otherwise
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N
5= 3% vl;
1=1
[
N
F[S] = £ wiBll;
1=
N
Var(S) = ¥ Var(v;l;) +2x £ Cov(vil;,v;1;)
1=1 1<
N9
= 20 Var(I;) + 227;% viv;Cov(l;, 1)
o L|Ii| =
o E[]i]j] = %L__ll
o
n n
V&f([z> = N <(1 — ]\§>
nn —1 n\2
COV([Z', []> = NQ(N - 1) — (N)
(N —n)
-~ N2(N —1)
e Hence
E[S] = ngjl%:n@
n(N—n\N , 2n(N—n)
Var(S) = N( N igvz _NQ(N—l)ZEjviv‘]
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N
o Var(S) = n%\[__lm (Zi]\l[vzz — 1)2)

e F|S]=nu=np since @z%:p
[ J
n(N —n) (N
Var(S) = (N— 1 ) Np —pZ)
- n(N —n)
= v P1-p)
P[5 =1
e Var (%) — né\]f\f_—nl)p(l —p)
Correlation:
Cov(X,Y)
X,Y) =
pIXY) Nar(X)Var(Y)

e ) < Var (X + Y) implies —1 < p(X,Y).

Or = Oy

e ) < Var (X — 3/) implies 1 > p(X,Y).

o lf p(X,Y) =1, then Y = a + bX where
b=oy/0s.
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o If p(X,Y)=—1,then Y = a+ bX where

e X and Y are uncorrelated if p(X,Y) =
0.

Example 7.3e. Let 14 and Ig be indicator
variables for the events A and B. That is,

[ 1 if A occurs
A~ |0 otherwise
7. (1 if B occurs
b= |0 otherwise

Then

e F|I4] = P(A)

e F|Ig| = P(B)

e K|I4lp| = P(AB)

Cov(Ig, Ig) = P(AB) — P(A)P(B)
— P(B)[P(A|B) — P(A)]

e Thus we obtain the quite intuitive result
that the indicator variables for A and B are
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either positively correlated, uncorrelated, or
negatively correlated depending on whether
P(A|B) is greater than, equal to, or less

than P(A).

Example 7.3f. Let Xq,..., X, beindepen-
dent and identically distributed random vari-
ables having variance o2. Show that

COV(Xi — X,Y) =0

Cov(X; — X, X) = Cov(X;, X) — Cov(X, X)

1 n -
1 n g2
= — > Cov(X;, X;) ——
anl OV( (] ]) n
02 02
_ = O
n n
o
v _ |0 if j # i by independence
COV<X’L7 X]> o {0.2 lfj — 7/ SinCe V&I‘(XZ> _ 0_2
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e Although X and the deviation X; — X are
uncorrelated, they are not, in general, inde-
pendent.

o If X;’s are N(u,0?), then X and the devi-
ation (X; — X)’s are independent.

Example 7.3g. Consider m independent tri-
als, each of which results in any of r possible
outcomes with probabilities Py, P, ..., Py, % P, =
1.

e /V;: Denote the number of the m trials that
result in outcome ¢, then Ny, No, ..., Ny
have the multinomial distribution

P{Ni{=n1,Ny =n9,..., N, =n,}

m! ni pn? n
— ‘pl Py?... P

r
— TN 2 N; =m
n1no. ..., Ny =

1=1

e For ¢ £ 4 it seems likely that when IN; is
large N; would tend to be small, and hence
1t 1s intuitive that they should be negatively
correlated.
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e Let us compute their covariance by using
Proposition 3.2(iv) and the representation

N;= % Ii(k) and Nj= 5 I;(k)

k=1 k=17
where
I(k) = (1 if trial k results in outcome ¢
0 otherwise
Ii(k) = 1 if trial k results in outcome j
J |0 otherwise

e From Proposition 3.2(iv) we have

m m
Cov(N;, Nj) = r  x Covlli(k), I;(£))

e Now, when k £ /£,
Cov(I;(k), 1;(¢)) =0

since the outcome of trial £ is independent
of the outcome of trial /.

e On the other hand,

Cov(I;(£), 1;(0)) = E[L;(0)1;(0)] — E[Li(O)]E[I;(¢
— 0 - P,Pj = —P;P;
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where the above uses that I;(¢)I;(£) = 0
since trial ¢ cannot result in both outcome
» and outcome j.

e Hence we obtain that
COV(N@, N]) — _sz'Pj

which 1s in accord with our intuition that
N; and N; are negatively correlated.

7.4 Conditional expectation
7.4.1 Definitions
Discrete case:

pxy(zly) = P{X =2 |Y =y} =
E[X:$’Y:y]=%$P{X:$]Y:y}

p(x,y)
py(y)

Example 7.4a. If X and Y are indepen-
dent binomial random variables with identical
parameters n and p, calculate the conditional
expected value of X, given that X +Y =m.
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[
P{X=kX+Y =m}
P{X +Y =m}
P{X =kY =m—Fk}
P{X+Y =m}
P{X =k}P{Y =m — k}
P{X +Y =m}
(PP =) ) = )
G (1 — p)zem
_ WGy
()
e The conditional distribution of X', given that
X +Y = m, is the hypergeometric distri-

bution (2n,n,m).

e X | X+Y =m]=m/2

P{X=kX+Y =m} =

Continuous case:

fxylely) = ‘ig(’yy;

EX Y =y| = Poafxy(aly) d

Example 7.4b. Suppose that the joint den-
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sity of X and Y is given by

e_x/ye_y
flz,y) = 0<z,y<oo
Y

Compute F[X|Y = y].

e The conditional distribution of X', given that
Y =y, isexp(1/y).
¢« E[X|Y =y = [° e Vdr =y
Y



Probability II- Chap. 7: Properties of Expectation 41

7.4.2 Computing expectations by con-
ditioning

Proposition 4.1:
EIX]= BEIX|Y]  (41)

%E[X|Y = y|P{Y =y} discrete case
|2 E[X|Y = y|fy(y)dy continuous case

This is an extremely useful result that often
enables us to easily compute expectations by
first conditioning on some appropriate random
variable.

Example 7.4c. A mineristrapped in a mine
containing 3 doors. The first door leads to a
tunnel that will take him to satety after 3 hours
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of travel. The second door leads to a tunnel
that will return him to the mine after 5 hours
of travel. The third door leads to a tunnel that
will return him to the mine after 7 hours. If we
assume that the miner is at all times equally
likely to choose any one of the doors, what is
the expected length of time until he reaches
safety?

e X: The amount of time until the miner
reaches safety:.

e Y': The door he initially chooses.

E[X] = E[X|Y = |P{Y = 1} + E[X|Y = 2]P{Y =2}
LEX|Y = 3]P{Y =3}

_ é(Emy — 1]+ E[X|Y =9 + E[X]Y = 3)

e Note that
EIX|Y =1] =3
EIX|Y =2 =5+ FX] (4.3)
EIX|Y =3 = 7+ FX]

o
=
=

||
ol

L3454 E[X]+ 7+ E[X])
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o E[X]=15

Example 7.4d. FEzxpectation of a random
number of random wvariables. Suppose that
the number of people entering a department
store on a given day is a random variable with
mean 0. Suppose further that amounts of
money spent by these customers are indepen-
dent random variables having a common mean
of 8. Assume also that the amount of money
spent by a customer is also independent of the
total number of customers to enter the store.
What is the expected amount of money spent
in the store in a given day”’

e N: The number of customers that enter the
store.

e X,;: The amount spent by the 2th such cus-
tomer.

et )=l x]
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o
E [%XAN - n] - B éxiuv — n]
_E ? XZ-] by the independence of the X; and N
~ nE[X] where E[X] = E[X]]
o ]%[XZ-|N] — NE[X]
e Thus
E ;;Vl Xi| = EINE[X] = EINIE[X]

e The expected amount of money spent: 50 X
8 = 400

Example 7.4e. Consider n points that are
independently and uniformly distributed on the
interval (0,1). Say that any one of these points
1s "isolated” if there are no other points within
a distance d of it, where d is a specified constant
such that 0 < d < % Compute the expected
number of the n points that are isolated from
the others.

e Let the points be Uy, ..., Up, and define I;
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as the indicator variable for the event that
U; 1s an isolated point.

.ELzl ]]] _]Z1E[[]
E[Ij] — /O []j|Uj = x| dx

E[I] / [I\U_xdx+/ I\U_xdx+/ E[L|U; = ] dz
/0(1 d— x)”ld:n—l—/d (1—2d)"'dz
1
n—1
+/ (—z+dde
/Hl "Ly + (1 —2d)(1 —2d)"—1+/2d nld
1—2dy Y p Yy Yy
1—d)" (1-2d)" 2d)"  d"

n n n n

S

.l L’Zl 1]-] —(I—d)" + (n—1)(1 — 2d)"

(2" — 1)d"
elfd=c/n, E Lgl [j] ~e C+(n—1)e ¢
Example 7.4f. An urn contains ¢ white and

b black balls. One ball at a time is randomly
withdrawn until the first white ball is drawn.
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Find the expected number of black balls that
are withdrawn.

e X: The number of black balls withdrawn.
1 if the first ball selected is white

Y= 0 if the first ball selected is black
o M,y = EX|=FEX|Y =1]P{Y =1} +
EIX|Y =0|P{Y =0}
e FIX|Y =1]=0
e HIXIY =0/ =1+ M,

e Since P{Y =0} = b/(a + b), we see that

M. . = 1+ M 1
a,b a%_ﬁ a,b ]
e M, is clearly equal to 0,
1 1
M,, = 14+ M, = ——
1 a+1[ N ’0] a-+1
2 ' 1 9
Ma — 1 MCL — 1 =
2 a+2[ N ’1] a-+ 2| +a—l—l_ a-+1
3 3 T 2 ] 3
Ma — 1 MCL — 1 =
3 a+3[+ 2 a3l Taril et
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b
* Map = ap1

Example 7.4g. Variance of the geometric
distribution. Independent trials each result-
Ing 1n a success with probability p are succes-
sively performed. Let NV be the time of the first
success. Find Var(N).

o Var(N) = E[N? — (E[N))2
e However,

E[NYY =1 =1
E[N?|Y =0] = E[(14 N)?]

S|
<
|

= E[N?|Y =1|P{Y =1} + E[N*]Y = 0]P{Y =0}
p+(1—p)E[(L+N)
1+ (1—p)E2N + N7

o B[N =1+212) 1 (1 — p)E[N?
2

o E[N? = 2
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e Therefore,

Var(N) = E[N?] — (E[N])?

Example 7.4h. Let Uy, Uo, ... beasequence
of independent uniform (0,1) random variables.

Find E|N] when

[/

N:min{n: % Ui>1}

1

n
Y

[/

UZ'>£IZ'}
1
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mlz) = 1+ fFm(z — y)dy
= 1+ [f m(u)du by letting u=z —y

o m/(z) = m(x)

o logim(z)|=x+c
o m(x) = ke’
e Since m(0) = 1 we see that k = 1, then

m(x) = e’

7.4.3 Computing probabilities by con-
ditioning
D 1 if E occurs
0 if £ does not occur

E[X] = P(E)
EX|)Y =y] = P(E|]Y =y)
P(E) %P(E|Y = y)P(Y =y) ifY isdis

= S P(E)Y =y)fy(y)dy Y isc
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Example 7.4i. The best prize problem. Sup-
pose that we are to be presented with n distinct
prizes in sequence. After being presented with
a prize we must immediately decide whether
to accept 1t or to reject it and consider the
next prize. The only information we are given
when deciding whether to accept a prize is the
relative rank of that prize compared to ones
already seen. That is, for instance, when the
fitth prize is presented, we learn how it com-
pares with the four prizes already seen. Sup-
pose that once a prize is rejected 1t is list, and
that our objective is to maximize the probabil-
ity of obtaining the best prize. Assuming that
all n! orderings of the prizes are equally likely,
how well can we do?

e Consider the strategy that rejects the first
k prizes and then accepts the first one that
1s better than all of those first &.

Py(best) = .%1 Py(best| X = §)P(X = i)
1=
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1 n
— — % Pu(best| X =1
L E py(best|X = i)
o P (best| X =i)=0 1<k

kK n 1
Fi(best) = ﬁi:%ﬂi—l
k., 1
~ — d
n/kaJrl v
kl n—l)
= —lo
n 5 k
k n
~ —log |-
nog k>

e Now, if we consider the function

M@Zzbﬂg

ﬂ@zibdg—i
n

g’(a:):()ilog(x)zlia::

n
€

ol
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Example 7.4j. Let U be a uniform random
variable on (0,1), and suppose that the condi-
tional distribution of X, given that U = p, is
binomial with parameters n and p. Find the
probability mass function of X.

e Conditioning on the value of U:

P{X =i} = /o1 P{X =i|U = p} fu(p)dp
=/ P{X—i!U p}dp

= [P (L—p)" " dp

z(n—z)
./ 2(1_ )77, Zd 2!(n—z'
b= (n+1)!
e Hence we obtain that
1
P{X =l = =0
(X=i}=— - i=0...»

e [f a coin whose probability of coming up
heads is uniformly distributed over (0, 1) is
flipped n times, then the number of heads
occurring is equally likely to be any the val-
ues 0,...,n.
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e Another argument:
- U, Uy, ...,U,areindependent uniform(0, 1).

— X: The number of the random variables
Ui, ...,Uy, that are smaller than U.

— Since all the random variables U, Uy, . .., Uy,
have the same distribution, it follows that
U 1s equally likely to be the smallest, or
the second smallest, or the largest of them:;
so X is equally likely to be any of the val-
ues 0,1,...,n.

Example 7.4k. Suppose that X and Y are
independent continuous random variables hav-

ing densities fx and fy, respectively. Com-
pute P{X <Y}

e Conditioning on the value of Y:
P{X <Y} = [ P{X <Y =y}f,(y)dy

= [P{X <ylY =y} fr(y)dy
— /_ozo P{X < y}fy(y)dy by independence

= [ Fx(y)fr(y)dy
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where

Fx(y) = /_yoo fx(X)dz

e Special case: If fxy = fy, then P(X <
Y)=1

Example 7.41. Suppose that X and Y are
independent continuous random variables. Find
the distribution of X + Y.

e Conditioning on the value of Y
P{X+Y <a} = /_ozo P{X+Y <alY =y} fy(y)dy
= [ P{X+y<alY =y}fr(y)dy
= [ P{X <a—y}fr(y)dy
= [ Fx(a—y)fr(y)dy

7.4.4 Conditional variance

Var(X[Y) = E[(X — B[X|Y])*|Y]
= E[X°[Y] - (E[X|Y])"
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Proposition 4.2: The conditional variance
formula

Var(X) = E[Var(X|Y)] 4+ Var(E[X|Y])

o Var(X|Y) = E[X?|Y] — (E[X]|Y))?
o E[Var(X|Y)] = E[X?] — E[(E[X|Y])?]
o Var(E[X|Y]) = E[(E[X[Y])Y] — (E[X])?

Example 7.4m. Suppose that by any time
t the number of people that have arrived at a
train depot 1s a Poisson random variable with
mean At. If the initial train arrives at the de-
pot at a time (independent of when the passen-
gers arrive) that is uniformly distributed over
(0,T), what is the mean and variance of the
number of passengers that enter the train?

e N(t): The number of arrivals by ¢.

e Y: The time at which the train arrives.

e The random variable of interest is N ().
EINY)Y =] = E[N@#)|Y =1
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FE[N(t)] by the independence of Y and N(t)
EIN(t)

At since N (t) is Poisson with mean At
o« EN(Y)|Y] = AY

o EIN(Y)] = ME[Y] = %]

®

Var(N(Y)[Y = t) = Var(N(8)|]Y = t)

= Var(N(t)) by independence

= At
Var(N(Y)|Y) = \Y
EINY)|Y] = \Y
e From the conditional variance formula:
Var(N(Y')) = E|\Y]| 4+ Var(A\Y)

T T?

Example 7.4n. Variance of a random num-
ber of random vartables. Let Xq, Xo,... be
a sequence of independent and identically dis-
tributed random variables and let /N be a non-
negative integer-valued random variable that
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is independent of the sequence X,;, 2 > 1. To

N
compute Var (.Z Xi), we condition on /V:

1=1

E{gl XN = NE[X]
1= |
Var(gl X;|N| = NVar(X)
1=
N
Var (,zl X;| = E[N]Var(X) + (E[X])?Var(N)
1=

7.5 Conditional expectation and pre-
diction

e X = x is observed.

e Use g(x) to predict Y.

e Choose ¢ so as to min E[(Y — g(X))?].

Proposition 7.5.1:
E[(Y — g(X))’] > E[(Y — E[Y|X])’

o B[Y — g(X))’|X] = E[(Y — E[Y|X] +
E[Y|X] - g(X))’|X] =
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E((Y - B[Y |X])’| X+ E[(E[Y]X]—g(X))*| X]+
2B[(Y = E[Y | X])(E[Y[X] = g(X))[X]

o B[(Y — EIY|X])(EY[X] = g(X))[X] =0
o B(Y —g(X))’|X] > E[(Y - E[Y]X])*|X]

Example 7.5a. Suppose that the son of a
man of height = (in inches) attains a height
that is normally distributed with mean = + 1
and variance 4. What is the best prediction of
the height at full growth of the son of a man
who is 6 feet tall?

oY = X + 1+ e where e ~ N(0,4).
ElYIX =72 = F[X +1+e|X =72
— 73+ Ele|X = 7]
= 73+ E(e) by independence
= 73

Example 7.5b. Suppose that if a signal value
s is sent from location A, then the signal value
received at location B is normally distributed
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with parameters (s,1). If .S, the value of the
signal sent at A, is normally distributed with
parameters (u, 0%), what is the best estimate
of the signal sent if R, the value received at B,
1s equal to r?

s-w’ (=P (1 .1\ (g
552 + 5 = 5 (27‘2+§)—(p+7“>3+01
1+o%[, 1+ ro’
= — 2 C
2072 _S (1+02 5T
B 1+ o2 U+ ro? ’
- 202 1+ 02 ’

where C1 and C do not depend on s.
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e Hence

o (e
1402
fs|r(s|r) = Cexp N
(1+02>

2
e K[S|IR=r]= %

2
o Var(S|R =r) = 175

2

o E[S|R — T] — 71_:0_2,& + 71_?_0_27"

Example 7.5c. In digital signal processing
raw continuous analog data X must be quan-
tized, or discretized, in order to obtain a digital
representation. In order to quantize the raw
data X, an increasing set of numbers a;,7 =
0,x1,£2,..., such that lim; ,,a; = o0,
lim; _, _ o a; = —00, is fixed and the raw data
are then quantized according to the interval
(a;, a;11] in which X lies. Let us denote by y;
the discretized value when X € (a;, a;1], and
let Y denote the observed discretized value-
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that 1s,
Y=y ta <X <ajq
The distribution of Y is given by
P{Y =y} = Fx(ai+1) — Fx(a;)

Suppose now that we want to choose the val-
ues y;,1 = 0,x1,42,... so as to minimize
E[(X —Y)?], the expected mean square differ-
ence between the raw data and their quantized
Verslon.

(a) Find the optimal values y;,7 = 0,41,...
For the optimal quantizer Y show that:

(b) K[ X] = E|[Y], so the mean square error
quantizer preserves the input mean;

(c) Var(Y) = Var(X) — E[(X —Y)?].

° (a)
o B[(X — V)] = > E[(X — yi)la; < X <
aji+1]P{a; < X < aj11}
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o/ = ifai<X§az-+1
e Then
Bl(X—y)a; < X < aj41] = B[(X—y;)*|I = 1]
°
yi = E[X|I =]
= E[X’CLZ < X < aiﬂ]
FX(az+1> FX(%)
e (b) E[Y] = E[X

E[Var(X|I)| + Var(E[X|I])
= E[E[(X — Y)?|I]] + Var(Y)
E[(X —Y)?] + Var(Y)

Best linear predictor of ¥ w.r.t X

min B[(Y — (a + bX))]

o LE|(Y — (a+bX)))] = —2E[Y] + 2a +
20E[X]
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o JE[(Y —(a+bX))% = —2E[XY|+2aE[X ]+
2bE[X7?]

o b — EXY]-EX]E[Y] _ Cov(X)Y) _ oy
~EXI-(EX])2 T o2 o«

ea=FE|Y|—-bEX]
e Best linear predictor of Y w.r.t. X

po
[y T+ J(X — Mx)

Oy

e Mean square error of this predictor:

2 2
k — Uy(l_p )

Example 7.5d. An example in which the
conditional expectation of Y given X is linear
in X, and hence the best linear predictor of Y
with respect to X 1is the best overall predic-
tor, 1s when X and Y have a bivariate normal
distribution. In this case their joint density is
given by

flz,y) = 2ﬂ0xay{/m exp {_2(1 i = [(I ;E,Ux>2 B 2p(x —;L:;(/y - :uy) + (y ;yﬁ@)Q] }




Probability II- Chap. 7: Properties of Expectation 64

1 1 Ty 2
frix(ylz) = VaroJT= Xp{_Qag(l—pZ) (y_ﬂy_pa—x(x—,ux)> }
o« E[Y|X = a] = py + 22 — pig)
o Var(Y|X =x) = 05(1 — p°)

7.6 Moment generating functions
M(t) = Bl
Ze “p(z) if X is discrete,
[ o0 el f (x) dz if X is continuous

M'(t) = E[Xe]  M'(0) = E[X]
M”(t) E[XQ tX] M”(O) _ E[X2]
MW(t) = B[X"eX] MM (0) = BIX™]

Example 7.6a. Binomaal distribution with
parameters n and p. If X is a binomial ran-
dom variable with parameters n and p, then

M(t) = E[e"]
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Ntk Tk n—~k
= Y e 1 —
) &%( p)
n t\k n—~k
= X e )" (1 —
2 e i - p)

= (pe! + 1 —p)"

n

o M'(t) = n(pel +1—p)" ?pel and E[X] =
M'(0) = np.

o M"(t) = n(n — 1)(pe’ + 1 —p)"2(pe’)* + n(pe’ +
1 — p)"pe! and E[XQ] = M”(O) = n(n —
1)p? + np.

e The variance of X is given by
Var(X) = E[X?] - (E[X])”
= n(n — 1)p2 +np — n’p’
= np(1 —p)
Example 7.6b. Poisson distribution with

mean M. If X i1s a Poisson random variable
with parameter A\, then

M(t) = E[e!)



Probability II- Chap. 7: Properties of Expectation 66

— exp{Ae! — 1))

e Differentiation yields
M'(t) = Xe'exp{A(e' — 1)}
M"(t) = (Ae")?exp{A(e’ — 1)} + Xe' exp{\(e! — 1)}

e Thus
E[X] = M'(0) = A
E[X?] = M"(0) =)+ )
Var(X) = E[X?] — (E[X])?
= A
e Hence both the mean and the variance of
the Poisson random variable equal .

Example 7.6¢c. FEzxponential distribution with
parameter A

M(t) = E[e"]
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— )\f fOft<)\
e Differentiation of M (t) yields
A 2\
M'(t) = M"(t) =
() ()\_t)Q (> ()\—t>3
e Hence
1 2
E[X]=M(0)=" E[X%=M"0) ="
X (0) X X7 (0) \2

e The variance of X is given by
Var(X) = E[X*] - (E[X])”
1
A2
Example 7.6d. Normal distribution. We
first compute the moment generating function

of a unit normal random variable with param-
eters 0 and 1.
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e Letting Z be such a random variable,

My(t) = Ele"”]
\/12_/00 tw —x2/2 dr
pn
1 _(:1:2 — 2tx)
= \/%/_OO exp | ; ] dx

T — )2t

7&27T/foooexp —( > ) 4 ;

_ 22 (o0 ~(a- 02/2 1.,
2T

A2

dx

2
o My(t) =e/?
e X =p+0Z ~ N(u,o°)
Mx(t) = Ble™

— E'6t<,LL+O'Z)]
— E'etluetO'Z]
= et’uMz(t(7>
_ ot (ta)?)2
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{02752
= exp 5 + pt

e By differentiating, we obtain

o’t?
M5 (t) = (u+to?)exp {2 + ,ut}
2t2 2t2
MY (t) = (p+to?)? exp {02 +- ,ut} + o exp {02 +- ,ut}

e Thus
E[X] = M'(0) = p
E[X? = M"(0) = 4 + o*
implying that
Var(X) = E[X?] - (E[X])”

20'2

Suppose that X and Yare independent and
have moment generating functions M (¢) and
My (t), respectively. Then

Mxyy(t) = Mx (t)My(t)

Uniqueness of moment generating func-
tion: If My (t) exists and is finite in some
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region about ¢ = 0, then the distribution of X
1s uniquely determined.

For example, if My (t) = (1/2)0(e! + 1)1V,
then X is a binomial(10,1/2).

Example 7.6e. Suppose that the moment
generating function of a random variable X is
t
given by M(t) = €3¢ —1. What is P{X =

0}7?

e M (t) is the moment generating function of
a Poisson random variable with mean 3.

e P{X =0} =¢""

Example 7.6f. Sums of independent bino-
mial random variables. It X and Y are in-
dependent binomial random variables with pa-
rameters (n,p) and (m, p), respectively, what
1s the distribution of X + Y7

e The moment generating function of X + Y
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1s given by

My 1y (t) = Mx(t)My(t)
= (pe' +1—p)"(pe’ +1—p)™
= (pe' +1—p)"*"

e Thus X + Y is binomial distributed with
parameters m + n and p.

Example 7.6g. Sums of independent Pois-
son random variables. Calculate the distri-
bution of X +Y when X and Y are indepen-
dent Poisson random variables with means A{
and Ao, respectively.

Mx y(t) = Mx(t)My(t)
= exp{A1(e’ — 1)} exp{Aa(e’ — 1)}
= exp{(A1 + Ao) (e — 1)}

e Thus X +Y is Poisson distributed with pa-
rameters A1 + Ao.
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Example 7.6h. Sums of independent nor-
mal random variables. Show that if X and
Y are independent normal random variables
with parameters (p1, o7) and (u9, 03), respec-
tively, then X +Y is normal with mean 1+ o

and variance o7 + o3.

®
My y(t) = Mx(t)My(t)

22 2,2

_ I 5

— exXp T—F/th exXp T—'_MQt

2 L 2\,

o1 + 035)t

= exp 1 ) 2 +(M1+M2)t’

Example 7.6i. Compute the moment gen-
erating function of a chi-squared random vari-
able with n degrees of freedom.

e We can represent such a random variable as

Z 4t 22
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o M(t) = (E[etZQ])n where Z is a standard

normal.

I
E[6t22] _ \/2_/_00 etx26—x2/2 dr
i
I
T /27-(- /—OO6
0}

= (1—2t)71/?
o M(t)=(1—2t)"/2

/20" 4y where 0% = (1—2t)"

Example 7.6j. Moment generating func-
tion of the sum of a random number of ran-
dom variables. Let X1, Xo, ... beasequence
of independent and identically distributed ran-
dom variables, and let N be a nonnegative,
integer-valued random variable that is indepen-
dent of the sequence X,;, ¢ > 1. We want to

compute the moment generating function of

N
Y =% X,
1=1

e Condition on NV

N
Elexp{t > X;}|N = n] = Elexp{t> X;}|N = n]



Probability II- Chap. 7: Properties of Expectation

where
M (t)

o Ble™|N] = (Mx(t)"

= Elexp{t> X;}]
= [Mx(t)"

E[etXi]

o My (t) = E[N(Mx ()"~ M (#)]

= My (0)

NE[X]]
N]E[X]

1 1 | R | 1
=
>

Var(Y')

N (Mx(0))Y ! M (0)]

74
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Example 7.6k. LetY denote a uniform ran-
dom variable on (0, 1), and suppose that condi-
tional on Y = p, the random variable X has a
binomial distribution with parameters n and p.
In Example 7.4) we showed that X is equally
likely to take on any of the values 0,1, ..., n.
Establish this result by using moment generat-
ing functions.

o B!t |Y =p] = (pel + 1 —p)"

E[e'] = f) <fet +1—p)"dp
t
— ot _ 1/16 yndy
1 6t<n—|—1) 1

n+1 et —1
1
- n+1(1—|—6t—|—62t—|—“'—|—6nt>

e X is uniformly distributed on 0,1, ..., n.

7.6.1 Joint moment generating func-
tions
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o M(ty,... ty) = E[ef1X1H+tnXn]
o My (t) = E[e!*] = M(0,...,0,t,0,...,0)

o If X¢,...,X, are independent if and only
if

M(ty,...,tn) = MX1<t1) e MXn<tn>

Example 7.61. Let X and Y be indepen-
dent normal random variables, each with mean
1t and variance o2. In Example 7.7a of Chap.
6 we showed that X +Y and X — Y are inde-
pendent.

e Let us now establish this result by comput-
ing their joint moment generating function.

E[et(X—I—Y)—I—s(X—Y)] _ E[e(t—l—s)X—l—(t—s)Y]

_ E[e(t+S)X]E[6(t_S)Y]

_ 6,u(t+s)+02(t—l—s)2/2eu(t—s)—|—02(t—s)2/2
_ e2ut—|—o2t2eo2s2

e But we recognize the preceding as the joint

moment generating function of the sum of

a normal random variables with mean 2u
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and variance 202 and an independent nor-
mal random variable with mean 0 and vari-
ance 202,

e Asthe joint moment generating function uniquely
determines the joint distribution, it thus fol-

lows that X +Y and X —Y are independent
normal random variables.

Example 7.6m. Suppose that the number
of events that occur is a Poisson random vari-
able with mean A, and that each event is inde-
pendently counted with probability p. Show
that the number of counted events and the
number of uncounted events are independent
Poisson random variables with respective means

Ap and A(1 — p).

e X: The total number of events.
e X .. The number of them that are counted.

e Condition on X:
E[68X0+t<X_XC)|X =n| = emE[e(S_t>XC]X = n
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_ etn<p€s—t 41— p)n
= (pe® + (1 —p)e)"
o E[65X0+t<X_XC>|X] = (pes + (1 — p)et)X
o E[esXeHIX=Xe] = El(pe® + (1 - p)e')¥]

E[65X0+t(X—XC)] eA(peSJr(l—p)et—l)

_ M) M1p)(el 1)

7.7 Additional properties of normal ran-
dom variables

7.7.1 The multivariate normal distri-
bution

® /1,...,Zyn are a set of n independent unit
normal.

e For some constants a;; and p;,

X1 =a11241+ -+ apdn + 111

X; = a1y + -+ aindn +
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Xm = am141+ -+ amnsn + im

then the random variables X1, ..., X,, are
sald to have a multivariate normal distribu-
tion.

e X, isanormal random variable with E|X;] =

u; and Var(X;) = > a2]
J=1

o .th-X . 13 a normal random variable with
[

E| 5 tX] = Zl t;; and Var(%l tz-XZ-) =
’L: 7 1=

T 5 titiCov(X;, X ).
1=1 9=1

.M(tla---atm) - eXp{thMerlZ ZttCOV(XwX)} -

2i=1j=1
{, t’Zt}
exp st + 5

7.7.2 The joint distribution of the sam-
ple mean and sample variance

Let X; ~ N(u,0?).
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* X = .ngi/n ~ N(p,0%/n)
1=

e Cov(X,X; —X)=0fori=1,...,n.

e X . X1—X,...,X;,— X are all linear com-
binations of the independent standard nor-
mals (X; — X)/o.

e Consider Y ~ N(u,o?/n) independent of
Xz'js.

oY X1 — X,...,X,, — X also has a multi-
variate normal and has the same expected
values and covariances as the random vari-

ables X, X1 — X.,.... X, — X.

e Then X, X; — X,..., X, — X also has a
multivariate normal.

e But since a multivariate normal distribution
1s determined completely by its expected val-
ues and covariances, we can conclude that
X is independent of X; — X'’s.

n

o (n—1)5% = 2 (X = p)” = n(X — p)’
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(n—1)52+ X —p)” n (Xi_M)Z
o2 o/\/n) =1\ o

e Use moment generating function.
o (1—26) (V2120712 = (1-20) 7/

2
o

Proposition 7.1: If Xy,..., X, are in-
dependent and identically distributed normal
random variables with mean p and variance
o2, then the sample mean X and sample vari-
ance S? are independent. X is a normal
random variable with mean p and variance
o?/n; (n — 1)S%/0? is a chi-squared random
variable with n — 1 degrees of freedom.

*7.8 General definition of expectation

e There exist random variables that are nei-
ther discrete nor continuous.

e X ~ Bernoulli(1/2) and Y ~ uniform|0, 1].

eThen W =Xif X=1andY if X #1is
neither a discrete nor a continuous random
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variable.

e In order to define the expectation of an arbi-
trary random variable, we require the notion
of a Stieltjes integral.

e =)< <T9< - <xp=0>

lgte)de = Jim > glwi)(wi — i)
[ 9(x) dF(z) = nlggoélg(%)[F(%) —F<xz-_1>]
[og(@)dF(z) = / g(x
[ 9(x)dF(z) = OOOO + /_Oog (z) dF

E[X] = |, :ch<x>

e Use of Stieltjes integrals avoids the neces-
sity of having to give separate statements of
theorems for the continuous and the discrete
cases.

e Stieltjes integrals are mainly of theoretical
interest because they yield a compact way
of defining and dealing with the properties
of expectation.

Summary
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e Expectation:

— Discrete:
Elg(X,Y) =33 9(z, y)p(z, y)
— Continuous:

Elg(X,Y)] = |25 25 9(w,y) f (2, y)drdy
_E[X +Y] = E[X] + E[Y]

~E|s Xj| = 5 E[X]]
1=1 1=1

e Covariance:

—Cov(X,Y) = E[(X—E[X])(Y=E[Y])] =
E[XY] — E[X]E[Y]

n m n m
—C X;, ¥ Y| = Cov(X;, X
Ov(zgl Z’jgl 3) z’gljgl ov(Xi, Xj)

— Var

¢ XZ-) = & Var(X)+2 £ Cov(X;, X))
=1 1=1 1<<J

e Correlation:

~ Cov(X,Y)
pIXLY) = Nar(X)Var(Y)

e Conditional expected value:
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— Discrete case:
EX|Y=yl=xsaP{X=2z|Y =y}
— Continuous case:
BIX | Y = y] = [ ofy(aly)ds

e F|X|=FE|EX|Y]]

— Discrete case:

E[X] =3 P{Y =y}
— Continuous case:
EX]=JEX |Y = y|f(y)dy

e Conditional variance:

Var(X[Y = y) = E[(X-E[X|Y = y])’|Y = y]
e Conditional variance formula:

Var(X) = E[Var(X|Y)] 4+ Var(F[X|Y])

e Moment generating function: M(t) =
E[etX]

— B[X"] = 45 M (t)|1=0
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— The moment generating function uniquely
determines the distribution function of the
random variable.

— The moment generation function of the
sum of independent random variables is
equal to the product of their moment gen-
eration function.

o If Xy,..., X, are all linear combinations of
a finite set of independent standard normal
random variables, then they are said to have
a multivariate normal distibution.

o If X¢,..., X, are independent and identi-
cally distributed normal random variables,
then their sample mean X == X;/n and
sample variance 52 = (X; — X)?/(n—
1) are independent.

— X is a normal variable with mean p and
variance o2 /n

— (n—1)5%/0? is a chi-square random vari-
able with n — 1 degrees of freedom.



