
1Chapter 7 Properties of Expetation7.1 Introdution�Disrete ase: E[X ℄ = Xx xp(x)�Continuous ase: E[X ℄ = Z1�1 xf (x) dx� If Pfa � X � bg = 1, thena � E[X ℄ � b7.2 Expetation of sums of random vari-ablesProposition 2.1: If X and Y have a jointprobability mass funtion p(x; y), thenE[g(X;Y )℄ = Xy Xx g(x; y)p(x; y)If X and Y have a joint probability densityfuntion f (x; y), thenE[g(x; y)℄ = Z1�1 Z1�1 g(x; y)f (x; y) dxdyExample 7.2a. An aident ours at a pointX that is uniformly distributed on a road of



Probability II{ Chap. 7: Properties of Expetation 2length L. At the time of the aident an am-bulane is at a loation Y that is also uniformlydistributed on the road. Assuming that X andY are independent, �nd the expeted distanebetween the ambulane and the point of theaident.� f (x; y) = 1L2; 0 < x < L; 0 < y < L� E[jX � Y j℄ = 1L2 Z L0 Z L0 jx� yj dydx� Now,Z L0 jx� yjdy = Z x0 (x� y)dy + Z Lx (y � x) dy= x22 + L22 � x22 � x(L� x)
= L22 + x2 � xL� Therefore,E[jX � Y j℄ = 1L2 Z L0 0BBBBB�L22 + x2 � xL1CCCCCA dx= L3



Probability II{ Chap. 7: Properties of Expetation 3� E[X + Y ℄ = Z 1�1 Z 1�1(x + y)f(x; y) dxdy= Z 1�1 Z 1�1 xf(x; y) dydx+ Z 1�1 Z 1�1 yf(x; y) dxdy= Z 1�1 xfX(x) dx + Z 1�1 yfY (y) dy= E[X ℄ + E[Y ℄� E[X+Y ℄ = E[X ℄+E[Y ℄ if E[X ℄ and E[Y ℄are �nite.Example 7.2b. Suppose that for randomvariables X and Y ,X � YThat is, for any outome of the probability ex-periment, the value of the random variableX isgreater than or equal the value of the randomvariable Y . Sine the preeding is equivalentto the inequality X � Y � 0, it follows thatE[X � Y ℄ � 0, or, equivalently,E[X ℄ � E[Y ℄If E[Xi℄ is �nite for all i = 1; : : : ; n, thenE[X1 + � � � +Xn℄ = E[X1℄ + � � � +E[Xn℄



Probability II{ Chap. 7: Properties of Expetation 4Example 7.2. The sample mean. LetX1; : : : ; Xn be independent and identially dis-tributed random variables having distributionfuntion F and expeted value �. Suh a se-quene of random variables is said to onstitutea sample from the distribution F . The quan-tity X , de�ned byX = nXi=1Xinis alled the sample mean. Compute E[X℄.� E[X ℄ = E 26664 nXi=1Xin 37775= 1nE 2664 nXi=1Xi3775= 1n nXi=1E[Xi℄= � sine E[Xi℄ � �Example 7.2d. Boole's inequality. LetA1; : : : ; An denote events and de�ned the in-



Probability II{ Chap. 7: Properties of Expetation 5diator variables Xi, i = 1; : : : ; n byXi = 8>>>><>>>>: 1 if Ai ours0 otherwise
�X = nXi=1Xi: The number of the events Aithat our.� Let Y = 8>>>><>>>>: 1 if X � 10 otherwise� Y is equal to 1 if at least one of theAi oursand is 0 otherwise.� Then X � Y and E[X ℄ � E[Y ℄.� But sineE[X ℄ = nXi=1E[Xi℄ = nXi=1P (Ai)andE[Y ℄ = Pfat least one of the Ai ourg = P 0� n[i=1Ai1A�We obtain Boole's inequalityP 0BB� n[i=1Ai1CCA � nXi=1P (Ai)



Probability II{ Chap. 7: Properties of Expetation 6Next three examples show how Eq. (2.2) anbe used to alulate the expeted value of bi-nomial, negative binomial, and hypergeometrirandom variables.Example 7.2e. Expetation of a binomialrandom variable. Let X be a binomial ran-dom variable with parameters n and p.� Note that X = X1 +X2 + � � � +Xn whereXi = 8>>>><>>>>: 1 if the ith trial is a suess0 if the ith trial is a failure� Hene, Xi is a Bernoulli random variablehaving expetation E[Xi℄ = 1(p)+0(1�p).� Thus E[X ℄ = E[X1℄ + � � � +E[Xn℄ = npExample 7.2f. Mean of a negative bino-mial random variable. If independent trials,having a onstant probability p of being su-esses, are performed, determine the expetednumber of trials required to amass a total of rsuesses.



Probability II{ Chap. 7: Properties of Expetation 7�X : The number of trials needed to amass atotal of r suesses.�Xi: The number of additional trials required,after the (i� 1)st suess, until a total of isuesses are amassed.� Note that X = X1 +X2 + � � � +Xr� E[X ℄ = E[X1℄ + � � � +E[Xr℄ = rpExample 7.2g. Mean of a hypergeometrirandom variable. If n balls are randomly se-leted from an urn ontaining N balls of whihm are white, �nd the expeted number of whiteballs seleted.�X : The number of white balls seleted.�X = X1 + � � � +Xm whereXi = 8>>>><>>>>: 1 if the ith white ball is seleted0 otherwise� Now,E[Xi℄ = PfXi = 1g



Probability II{ Chap. 7: Properties of Expetation 8= Pfith white ball is seletedg=  11! N�1n�1 ! Nn !
= nN� HeneE[X ℄ = E[X1℄ + � � � + E[Xm℄ = mnN� Alternative: X = Y1 + � � � + Yn whereYi = 8>>>><>>>>: 1 if the ith ball seleted is white0 otherwise� E[Yi℄ = mN� Then E[X ℄ = E[Y1℄ + � � � + E[Yn℄ = nmNExample 7.2h. Expeted number of mathes.A group of N people throw their hats into theenter of a room. The hats are mixed up, andeah person randomly seleted one. Find theexpeted number of people that selet theirown hats.



Probability II{ Chap. 7: Properties of Expetation 9�X : The number of mathes.�X = X1 +X2 + � � � +XN whereXi = 8>>>><>>>>: 1 if the ith person selets his own hat0 otherwise� E[Xi℄ = PfXi = 1g = 1N� Then E[X ℄ = E[X1℄ + � � � + E[XN ℄ =( 1N ) = 1Example 7.2i. The following problem wasposed and solved in the eighteenth entury byDaniel Bernoulli. Suppose that a jar ontains2N ards, two of them marked 1, two marked2, two marked 3, and so on. Draw out m ardsat random. What is the expeted number ofpairs that still remain in the jar? (Interestinglyenough, Bernoulli proposed the above as a pos-sible probabilisti model for determining thenumber of marriages that remain intat whenthere is a total of m deaths among the N mar-ried ouples.)



Probability II{ Chap. 7: Properties of Expetation 10� De�ne for i = 1; 2; : : : ; N;Xi = 8>>>><>>>>: 1 if the ith pair remains in the jar0 otherwise� Now,E[Xi℄ = PfXi = 1g=  2N�2m ! 2Nm !
= (2N�2)!m!(2N�2�m)!(2N)!m!(2N�m)!= (2N �m)(2N �m� 1)(2N )(2N � 1)� Hene the desired result isE[X1 + � � � +XN ℄ = E[X1℄ + � � � +E[XN ℄= (2N �m)(2N �m� 1)2(2N � 1)Example 7.2j. Coupon-olleting problems.Suppose that there are N di�erent types ofoupons and eah time one obtains a oupon itis equally likely to be any one of the N types.



Probability II{ Chap. 7: Properties of Expetation 11(a) Find the expeted number of di�erent typesof oupons that are ontained in a set of noupons.(b) Find the expeted number of oupons oneneed amass before obtaining a omplete setof at least one of eah type.�X : The number of di�erent types of ouponsin the set of n oupons.(a)X = X1 + � � � +XN whereXi = 8><>: 1 if at least one type i oupon is ontained in the set of n0 otherwise� Now,E[Xi℄ = PfXi = 1g= 1� Pfno type i oupon are ontained in the set of ng= 1�  N � 1N !n
� HeneE[X ℄ = E[X1℄+� � �+E[XN ℄ = N 266641� 0BBB�N � 1N 1CCCAn37775(b) Y : The number of oupons olleted beforea omplete set is attained.



Probability II{ Chap. 7: Properties of Expetation 12� Yi: The number of additional oupons thatneed to be obtained after i distint typeshave been olleted in order to obtain an-other distint type.� Y = Y0 + Y1 + � � � + YN�1� PfYi = kg = N�iN ( iN )k�1 k � 1� Yi � geometri((N � i)=N )� E[Yi℄ = NN�i� ThenE[Y ℄ = 1 + NN � 1 + NN � 2 + � � � + N1= N 266641 + � � � + 1N � 1 + 1N 37775� N (logN + C)where C � 0:57721 is the Euler onstant.Example 7.2k. Ten hunters are waiting forduks to y by. When a ok of duks iesoverhead, the hunters �re at the same time,



Probability II{ Chap. 7: Properties of Expetation 13but eah hooses his target at random, inde-pendently of the others. If eah hunter inde-pendently hits his target with probability p,ompute the expeted number of duks thatesape unhurt when a ik of size 10 ies over-head.�Xi: 1 if the ith duk esapes unhurt and 0otherwise.� E[X1+ � � �+X10℄ = E[X1℄ + � � �+E[X10℄� Eah of the hubters will hit the ith dukwith probability p=10.� PfXi = 1g =  1� p10!10� E[X ℄ = 10  1� p10!10Example 7.2l. Expeted number of runs.Suppose that a sequene of n 1's and m 0's israndomly permuted so that eah of the (n +m)!=(n!m!) possible arrangements is equallylikely. Any onseutive string of 1's is said



Probability II{ Chap. 7: Properties of Expetation 14to onstitute a run of 1's-for instane, if n =6;m = 4, and the ordering is 1,1,1,0,1,1,0,0,1,0,then there are 3 runs of 1's-and we are inter-ested in omputing the mean number of suhruns.� LetIi = 8>>>><>>>>: 1 if a run of 1's starts at the ith position0 otherwise� R(1): The number of runs of 1.R(1) = n+mXi=1 IiE[R(1)℄ = n+mXi=1 E[Ii℄� Now, E[I1℄ = Pf"1" in position 1g= nn +mand for 1 < i � n +m,E[Ii℄ = Pf"0" in position i� 1, "1" in position ig= mn +m nn +m� 1



Probability II{ Chap. 7: Properties of Expetation 15� HeneE[R(1)℄ = nn +m + (n +m� 1)nm(n +m)(n +m� 1)� Similarly, E[R(0)℄, the expeted number ofruns of 0's, isE[R(0)℄ = mn +m + nmn +mand the expeted number of runs of eithertype isE[R(1) +R(0)℄ = 1 + 2nmn +mExample 7.2m. Consider an ordinary dekof ards that is turned fae up one ard at atime. How many ards would one expet toturn fae up in order to obtain (a) an ae and(b) a spade?� (a) and (b) are speial ases of the followingproblem.� Suppose that balls are taken one by one outof an urn ontaining n white and m blakballs until the �rst white ball is drawn.



Probability II{ Chap. 7: Properties of Expetation 16� IfX denotes the number of balls withdrawn.� Name the blak balls as b1; : : : ; bm.� LetXi = 8><>: 1 if bi is withdrawn before any of the white balls0 otherwise�X = 1 + mXi=1Xi� Hene E[X ℄ = 1 + mXi=1PfXi = 1g� As eah of these n white balls plus ball bihas an equal probability of being the �rstone of this set to be withdrawnE[Xi℄ = PfXi = 1g = 1n + 1� E[X ℄ = 1 + mn+1Example 7.2n. A random walk in the plane.Consider a partile initially loated at a givenpoint in the plane and suppose that it under-goes a sequene of steps of �xed length butin a ompletely random diretion. Spei�ally,suppose that the new position after eah step is



Probability II{ Chap. 7: Properties of Expetation 17one unit of distane from the previous positionand at an angle of orientation from the previ-ous position that is uniformly distributed over(0; 2�) (see Fig. 7.3). Compute the expetedsquare of the distane from the origin after nsteps.� (Xi; Yi): The hange in the position at theith step.�Xi = os �i Yi = sin �i�D2 = 0BB� nXi=1Xi1CCA2 + 0BB� nXi=1Yi1CCA2= nXi=1(X2i + Y 2i ) + X Xi6=j(XiXj + YiYj)= n + X Xi6=j(os �i os �j + sin �i sin �j)� 2�E[os �i℄ = Z 2�0 osu du = sin 2� � sin 0 = 02�E[sin �i℄ = Z 2�0 sinu du = os 0� os 2� = 0� E[D2℄ = n



Probability II{ Chap. 7: Properties of Expetation 18Example 7.2o. Analyzing the quik-sortalgorithm. Suppose that we are presented witha set of n distint values x1; : : : ; xn and we de-sire to put them in inreasing order. An eÆ-ient proedure for aomplishing this task isthe quik-sort algorithm.�When n = 2, the algorithm ompares thetwo values and then put them in the appro-priate order.�When n > 2, one of the elements is ran-domly hosen{say it is xi{and then all ofthe other values are ompared with xi.� the algorithm then repeats itself on thesebrakets and ontinues until all values havebeen sorted.� Example: 5, 9, 3, 10, 11, 14, 8, 4, 17, 6{ f5; 9; 3; 8; 4; 6g; 10; f11; 14; 17g{ f5; 3; 4g; 6; f9; 8; g; 10; f11; 14; 17g{ f3g; 4; f5g; 6; f9; 8; g; 10; f11; 14; 17g



Probability II{ Chap. 7: Properties of Expetation 19{ This ontinues until there is no braketedset that ontains more than a single value.�X : The number of omparisons that it takesthe quik-sort algorithm to sort n distintnumbers, then E[X ℄ is a measure of the ef-fetiveness of this algorithm.� I(i; j): 1 if i and j are ever diretly om-pared, 0 otherwise.�X = n�1Xi=1 nXj=i+1 I(i; j)� E[X ℄ = n�1Xi=1 nXj=i+1Pfi and j are ever omparedg
� Pfi and j are ever omparedg = 2j � i + 1� E[X ℄ = n�1Xi=1 nXj=i+1 2j � i + 1nXj=i+1 2j � i + 1 � Z ni+1 2x� i + 1 dx= 2 log(n� i + 1)� 2 log(2)� 2 log(n� i + 1)



Probability II{ Chap. 7: Properties of Expetation 20E[X ℄ � nXi=1 2 log(n� i + 1)� 2 Z n�11 log(n� x + 1) dx= 2 Z n2 log(y) dy� 2n log(n)Example 7.2p. The probability of a unionof events. Let A1; : : : ; An denote events andXi = 8>>>><>>>>: 1 if Ai ours0 otherwise� 1 � nYi=1(1 � Xi) = 1 if [Ai ours and 0otherwise.� E 26641� nYi=1(1�Xi)3775 = P 0BB� n[i=1Ai1CCA� nYi=1(1�Xi) = nXk=0(�1)k Xi1<���<ikXi1 � � �Xik� E[Xi1Xi2 � � �Xik℄ = P (Ai1Ai2 � � �Aik)� E 241� nYi=1(1�Xi)35 = nXk=1(�1)k+1 Xi1<���<ik P (Ai1 � � �Aik)Example 7.2q. A round-robin tournamentof n ontestants is one in whih eah of the



Probability II{ Chap. 7: Properties of Expetation 21 n2! pairs of ontestants play eah other exatlyone, with the outome of any play being thatone of the ontestants wins and the other loses.� Suppose that the n players are initially num-bered as player 1, player 2, and so on.� Hamiltonian permutation if i1 beats i2, i2beats i3; : : : ; and in�1 beats in.� A problem of some interest is to determinethe largest possible number of Hamiltonianpermutations.� Suppose that there are 3 players. Then iteasy to see that if one of the players winstwie, then there is a single Hamiltonianpermutation.� If eah of the players wins one, then therewill be three Hamiltonians.�We will introdue randomness to show thatin a round-robin tournament of n players,n > 2, there is an outome for whih the



Probability II{ Chap. 7: Properties of Expetation 22number of Hamiltonian permutations is greaterthan n!=2n�1.� Suppose that the results of the  n2! gamesare independent and that either of the twoontestants is equally likely to win eah en-ounter.�X : The number of Hamiltonians that result.� Sine at least one of the possible values of anonrandom variable must exeed its mean,it follows that there must be at least onepossible tournament result whih has morethan E[X ℄ Halmiltonian permutations.� To determine E[X ℄, number of the n! per-mutations, for i = 1; : : : ; n!, Xi = 1 if per-mutation i is a Halmitonian, 0 otherwise.� E[X ℄ = Xi E[Xi℄� E[Xi℄ = (1=2)n�1� E[X ℄ = n!2n�1



Probability II{ Chap. 7: Properties of Expetation 23
E 2664 limn!1 nXi=1Xi3775 = limn!1E 2664 nXi=1Xi3775holds in two important speial ases:1. The Xi are all nonnegative random vari-ables.2. 1Xi=1E[jXij℄ <1

Example 7.2r. Consider any nonnegative,integer-valued random variable X .� If for eah i � 1, we de�neXi = 8>>>><>>>>: 1 if X � i0 if X < ithen 1Xi=1Xi = XXi=1Xi + 1Xi=X+1Xi= XXi=1 1 + 1Xi=X+1 0= X



Probability II{ Chap. 7: Properties of Expetation 24� Hene, sine the Xi are all nonnegative,E[X ℄ = 1Xi=1E[Xi℄= 1Xi=1PfX � iga useful identity.Example 7.2s. Suppose that n elements-all them 1; 2; : : : ; n-must be stored in a om-puter in the form of an ordered list. Eahunit of time a request will be made for oneof these elements-i being requested, indepen-dently of the past, with probability P (i); i �1;Xi P (i) = 1. Assuming these probabilities areknown, what ordering minimizes the averageposition on the line of the element requested?� Suppose that the elements are numbered sothat P (1) � P (2) � � � � � P (n).� To show that 1; 2; : : : ; n is the optimal or-dering, let X denote the position of the re-quested element.



Probability II{ Chap. 7: Properties of Expetation 25� Now under any ordering sayO = i1; i2; : : : ; in,POfX � kg = nXj=kP (ij)� nXj=kP (j)= P1;2;:::;nfX � kg� EO[X ℄ � E1;2;:::;n[X ℄7.3 Covariane, variane of sums, andorrelationsProposition 3.1: IfX and Y are indepen-dent, then for any funtions h and g,E[g(X)h(Y )℄ = E[g(X)℄E[h(Y )℄
De�nition: The ovariane betweenX andY , denoted by Cov(X;Y ), is de�ned byCov(X;Y ) = E[(X �E[X ℄)(Y �E[Y ℄)℄= E[XY ℄� E[X ℄E[Y ℄A simple example of two dependent randomvariables X and Y have zero ovariane:



Probability II{ Chap. 7: Properties of Expetation 26� PfX = 0g = PfX = 1g = PfX =�1g = 13� Y = 0 if X 6= 0 and 1 if X = 0.� Cov(X;Y ) = E[XY ℄ � E[X ℄E[Y ℄ = 0sine E[XY ℄ = 0 and E[X ℄ = 0.Proposition 3.2:(i) Cov(X;Y ) = Cov(Y;X)(ii) Cov(X;X) = Var(X)(iii) Cov(aX; Y ) = aCov(X;Y )(iv) Cov 0B� nXi=1Xi; mXj=1Yj1CA = nXi=1 mXj=1Cov(Xi; Yj)
Var 0BB� nXi=1Xi1CCA = nXi=1Var(Xi)+2 Xi<j Cov(Xi; Xj)
If X1; : : : ; Xn are pairwise independent, thenVar 0BB� nXi=1Xi1CCA = nXi=1Var(Xi):Example 7.3a. Let X1; : : : ; Xn be inde-



Probability II{ Chap. 7: Properties of Expetation 27pendent and identially distributed random vari-ables having expeted value � and variane �2,and as in Example 2, let X = nXi=1Xi=n bethe sample mean. The quantities Xi �X; i =1; : : : ; n, are alled deviations, as they equalthe di�erenes between the individual data andthe sample mean. The random variableS2 = nXi=1 (Xi �X)2n� 1is alled the sample variane. Find(a) Var(X)and (b) E[S2℄(a) Var(X) = 0BBB�1n1CCCA2Var 0BB� nXi=1Xi1CCA= 0BBB�1n1CCCA2 nXi=1Var(Xi) by independene
= �2n(b) (n� 1)S2 = nXi=1 (Xi � � + ��X)2



Probability II{ Chap. 7: Properties of Expetation 28= nXi=1(Xi � �)2 + nXi=1(X � �)2 � 2(X � �) nXi=1(Xi � �)= nXi=1(Xi � �)2 + n(X � �)2 � 2(X � �)n(X � �)= nXi=1(Xi � �)2 � n(X � �)2� (n� 1)E[S2℄ = nXi=1E[(Xi � �)2℄� nE[(X � �)2℄= n�2 � nVar(X)= (n� 1)�2
Example 7.3b. Variane of a binomialrandom variable. Compute the variane of abinomial random variable X with parametersn and p.�X = X1 + � � � +Xn whereXi = 8>>>><>>>>: 1 if the ith trial is a suess0 otherwise� Var(X) = Var(X1) + � � � + Var(Xn)� Var(Xi) = E[X2i ℄� (E[Xi℄)2



Probability II{ Chap. 7: Properties of Expetation 29= E[Xi℄� (E[Xi℄)2 sine X2i = Xi= p� p2� Var(X) = np(1� p)Example 7.3. Variane of the numberof mathes. Compute the variane of X , thenumber of people that selet their own hats inExample 2h.�X = X1 + � � � +XN whereXi = 8>>>><>>>>: 1 if the ith man selets his own hat0 otherwise� Var(X) = NXi=1Var(Xi) + 2X Xi<j Cov(Xi; Xj)� Var(Xi) = 1N (1� 1N ) = N�1N2� Cov(Xi; Xj) = E[XiXj℄� E[Xi℄E[Xj℄XiXj = 8><>: 1 if the ith and jth men both selet their own hats0 otherwise



Probability II{ Chap. 7: Properties of Expetation 30
E[XiXj℄ = PfXi = 1; Xj = 1g= PfXi = 1gPfXj = 1jXi = 1g= 1N 1N � 1� Cov(Xi; Xj) = 1N(N�1)� 0� 1N 1A2 = 1N2(N�1)� Var(X) = N � 1N + 20BBBB�N2 1CCCCA 1N2(N � 1)= N � 1N + 1N= 1Example 7.3d. Sampling from a �nite pop-ulation. Consider a setN people eah of whomhas an opinion about a ertain subjet thatis measured by a real number v, whih repre-sents the person's "strength of feeling" aboutthe subjet. Let vi represent the strength offeeling of person i; i = 1; : : : ; N . Suppose thatthese quantities vi; i = 1; : : : ; N are unknown



Probability II{ Chap. 7: Properties of Expetation 31and to gather information a group of n of theN people is "randomly hosen" in the sensethat all of the  Nn ! subsets of size n are equallylikely to be hosen. These n people are thenquestioned and their feelings determined. If Sdenotes the sum of the n sampled values, de-termine its mean and variane.An important appliation of the above is to aforthoming eletion in whih eah person inthe population is either for or against a er-tain andidate or proposition. If we take vi toequal 1 if person i is in favor and 0 if he or sheis against, then v = NXi=1 vi=N represents theproportion of the population that is in favor.To estimate v, a random sample of n people ishosen, and these people are polled. The pro-portion of those polled that are in favor-thatis, S=n-is often used used as an estimate of v.� Ii = 8>>>><>>>>: 1 if person i is in the random sample0 otherwise



Probability II{ Chap. 7: Properties of Expetation 32� S = NXi=1 viIi� E[S℄ = NXi=1 viE[Ii℄Var(S) = NXi=1Var(viIi) + 2X Xi<j Cov(viIi; vjIj)= NXi=1 v2iVar(Ii) + 2X Xi<j vivjCov(Ii; Ij)� E[Ii℄ = nN� E[IiIj℄ = nN n�1N�1� Var(Ii) = nN 0B�1� nN 1CACov(Ii; Ij) = n(n� 1)N2(N � 1) � 0B� nN 1CA2
= �n(N � n)N2(N � 1)� HeneE[S℄ = n NXi=1 viN = nvVar(S) = nN 0�N � nN 1A NXi=1 v2i � 2n(N � n)N 2(N � 1) X Xi<j vivj



Probability II{ Chap. 7: Properties of Expetation 33� Var(S) = n(N�n)N�1 0BB�PNi=1 v2iN � v21CCA� E[S℄ = nv = np sine v = NpN = p� Var(S) = n(N � n)N � 1 0BBB�NpN � p21CCCA= n(N � n)N � 1 p(1� p)� E 24Sn35 = p� Var 0�Sn1A = N�nn(N�1)p(1� p)
Correlation:�(X;Y ) = Cov(X;Y )sVar(X)Var(Y )
� 0 � Var 0B�X�x + Y�y1CA implies �1 � �(X;Y ).� 0 � Var 0B�X�x � Y�y1CA implies 1 � �(X;Y ).� If �(X;Y ) = 1, then Y = a + bX whereb = �y=�x.



Probability II{ Chap. 7: Properties of Expetation 34� If �(X;Y ) = �1, then Y = a + bX whereb = ��y=�x.�X and Y are unorrelated if �(X;Y ) =0.Example 7.3e. Let IA and IB be indiatorvariables for the events A and B. That is,IA = 8>>>><>>>>: 1 if A ours0 otherwiseIB = 8>>>><>>>>: 1 if B ours0 otherwiseThen� E[IA℄ = P (A)� E[IB℄ = P (B)� E[IAIB℄ = P (AB)Cov(IA; IB) = P (AB)� P (A)P (B)= P (B)[P (AjB)� P (A)℄� Thus we obtain the quite intuitive resultthat the indiator variables for A and B are



Probability II{ Chap. 7: Properties of Expetation 35either positively orrelated, unorrelated, ornegatively orrelated depending on whetherP (AjB) is greater than, equal to, or lessthan P (A).Example 7.3f. LetX1; : : : ; Xn be indepen-dent and identially distributed random vari-ables having variane �2. Show thatCov(Xi �X;X) = 0� Cov(Xi �X;X) = Cov(Xi; X)� Cov(X;X)= Cov 0BBB�Xi; 1n nXj=1Xj1CCCA� Var(X)
= 1n nXj=1Cov(Xi; Xj)� �2n= �2n � �2n = 0� Cov(Xi; Xj) = 8>>>><>>>>: 0 if j 6= i by independene�2 if j = i sine Var(Xi) = �2



Probability II{ Chap. 7: Properties of Expetation 36� Although X and the deviation Xi �X areunorrelated, they are not, in general, inde-pendent.� If Xi's are N (�; �2), then X and the devi-ation (Xi �X)'s are independent.Example 7.3g. Considerm independent tri-als, eah of whih results in any of r possibleoutomes with probabilitiesP1; P2; : : : ; Pr; rX1 Pi =1.� Ni: Denote the number of the m trials thatresult in outome i, then N1; N2; : : : ; Nrhave the multinomial distributionPfN1 = n1; N2 = n2; : : : ; Nr = nrg= m!n1!n2! : : : ; nr!Pn11 Pn22 � � �Pnrr rXi=1ni = m� For i 6= j it seems likely that when Ni islarge Nj would tend to be small, and heneit is intuitive that they should be negativelyorrelated.



Probability II{ Chap. 7: Properties of Expetation 37� Let us ompute their ovariane by usingProposition 3.2(iv) and the representationNi = mXk=1 Ii(k) and Nj = mXk=1 Ij(k)whereIi(k) = 8>>>><>>>>: 1 if trial k results in outome i0 otherwiseIj(k) = 8>>>><>>>>: 1 if trial k results in outome j0 otherwise� From Proposition 3.2(iv) we haveCov(Ni; Nj) = mX`=1 mXk=1Cov(Ii(k); Ij(`))� Now, when k 6= `;Cov(Ii(k); Ij(`)) = 0sine the outome of trial k is independentof the outome of trial `.� On the other hand,Cov(Ii(`); Ij(`)) = E[Ii(`)Ij(`)℄�E[Ii(`)℄E[Ij(`)℄= 0� PiPj = �PiPj



Probability II{ Chap. 7: Properties of Expetation 38where the above uses that Ii(`)Ij(`) = 0sine trial ` annot result in both outomei and outome j.� Hene we obtain thatCov(Ni; Nj) = �mPiPjwhih is in aord with our intuition thatNi and Nj are negatively orrelated.7.4 Conditional expetation7.4.1 De�nitionsDisrete ase:pXjY (xjy) = PfX = x j Y = yg = p(x; y)pY (y)E[X = x j Y = y℄ = Xx xPfX = x j Y = yg
Example 7.4a. If X and Y are indepen-dent binomial random variables with identialparameters n and p, alulate the onditionalexpeted value of X , given that X + Y = m.



Probability II{ Chap. 7: Properties of Expetation 39� PfX = kjX + Y = mg = PfX = k;X + Y = mgPfX + Y = mg= PfX = k; Y = m� kgPfX + Y = mg= PfX = kgPfY = m� kgPfX + Y = mg= �nk�pk(1� p)n�k� nm�k�pm�k(1� p)n�m+k�2nm�pm(1� p)2n�m= �nk�� nm�k��2nm�� The onditional distribution ofX , given thatX + Y = m, is the hypergeometri distri-bution (2n; n;m).� E[X j X + Y = m℄ = m=2Continuous ase:fXjY (xjy) = f (x; y)fY (y)E[X j Y = y℄ = Z1�1 xfXjY (xjy) dxExample 7.4b. Suppose that the joint den-



Probability II{ Chap. 7: Properties of Expetation 40sity of X and Y is given byf (x; y) = e�x=ye�yy 0 < x; y <1Compute E[XjY = y℄.� fXjY (xjy) = f (x; y)fY (y)= f (x; y)R1�1 f (x; y)dx= (1=y)e�x=ye�yR10 (1=y)e�x=ye�ydx= (1=y)e�x=yR10 (1=y)e�x=ydx= 1ye�x=y� The onditional distribution ofX , given thatY = y, is exp(1=y).� E[XjY = y℄ = Z10 xye�x=y dx = y



Probability II{ Chap. 7: Properties of Expetation 41
E[g(X)jY = y℄ = 8>>>>><>>>>>: Xx g(x)pXjY (xjy) disrete aseZ1�1 g(x)fXjY (xjy) dx ontinuous aseE[ nXi=1XijY = y℄ = nXi=1E[XijY = y℄
7.4.2 Computing expetations by on-ditioningProposition 4.1:E[X ℄ = E[E[XjY ℄℄ (4:1)
E[X ℄ = 8>>>>><>>>>>: Xy E[XjY = y℄PfY = yg disrete aseZ1�1E[XjY = y℄fY (y) dy ontinuous aseThis is an extremely useful result that oftenenables us to easily ompute expetations by�rst onditioning on some appropriate randomvariable.Example 7.4. Aminer is trapped in a mineontaining 3 doors. The �rst door leads to atunnel that will take him to safety after 3 hours



Probability II{ Chap. 7: Properties of Expetation 42of travel. The seond door leads to a tunnelthat will return him to the mine after 5 hoursof travel. The third door leads to a tunnel thatwill return him to the mine after 7 hours. If weassume that the miner is at all times equallylikely to hoose any one of the doors, what isthe expeted length of time until he reahessafety?�X : The amount of time until the minerreahes safety.� Y : The door he initially hooses.E[X ℄ = E[XjY = 1℄PfY = 1g + E[XjY = 2℄PfY = 2g+E[XjY = 3℄PfY = 3g= 13(E[XjY = 1℄ + E[XjY = 2℄ + E[XjY = 3℄)� Note thatE[XjY = 1℄ = 3E[XjY = 2℄ = 5 + E[X ℄ (4:3)E[XjY = 3℄ = 7 + E[X ℄� E[X ℄ = 13(3 + 5 + E[X ℄ + 7 + E[X ℄)



Probability II{ Chap. 7: Properties of Expetation 43� E[X ℄ = 15Example 7.4d. Expetation of a randomnumber of random variables. Suppose thatthe number of people entering a departmentstore on a given day is a random variable withmean 50. Suppose further that amounts ofmoney spent by these ustomers are indepen-dent random variables having a ommon meanof 8. Assume also that the amount of moneyspent by a ustomer is also independent of thetotal number of ustomers to enter the store.What is the expeted amount of money spentin the store in a given day?� N : The number of ustomers that enter thestore.�Xi: The amount spent by the ith suh us-tomer. E 2664NX1 Xi3775 = E 2664E 2664NX1 XijN 37753775



Probability II{ Chap. 7: Properties of Expetation 44� E 24NX1 XijN = n35 = E 24 nX1 XijN = n35= E 24 nX1 Xi35 by the independene of the Xi and N= nE[X ℄ where E[X ℄ = E[Xi℄� E 2664NX1 XijN 3775 = NE[X ℄� ThusE 2664 NXi=1Xi3775 = E[NE[X ℄℄ = E[N ℄E[X ℄� The expeted amount of money spent: 50�8 = 400Example 7.4e. Consider n points that areindependently and uniformly distributed on theinterval (0,1). Say that any one of these pointsis "isolated" if there are no other points withina distane d of it, where d is a spei�ed onstantsuh that 0 < d < 12. Compute the expetednumber of the n points that are isolated fromthe others.� Let the points be U1; : : : ; Un, and de�ne Ij



Probability II{ Chap. 7: Properties of Expetation 45as the indiator variable for the event thatUj is an isolated point.� E 26664 nXj=1 Ij37775 = nXj=1E[Ij℄� E[Ij℄ = Z 10 E[IjjUj = x℄ dx� E[Ij℄ = Z d0 E[IjjUj = x℄ dx+ Z 1�dd E[IjjUj = x℄ dx+ Z 11�dE[IjjUj = x℄ dx= Z d0 (1� d� x)n�1 dx+ Z 1�dd (1� 2d)n�1 dx+ Z 11�d(1� x+ d)n�1 dx= Z 1�d1�2d yn�1 dy + (1� 2d)(1� 2d)n�1 + Z 2dd yn�1 dy= (1� d)nn � (1� 2d)nn + (1� 2d)n + (2d)nn � dnn� E 26664 nXj=1 Ij37775 = (1� d)n + (n� 1)(1� 2d)n +(2n � 1)dn� If d = =n, E 26664 nXj=1 Ij37775 � e� + (n� 1)e�2
Example 7.4f. An urn ontains awhite andb blak balls. One ball at a time is randomlywithdrawn until the �rst white ball is drawn.



Probability II{ Chap. 7: Properties of Expetation 46Find the expeted number of blak balls thatare withdrawn.�X : The number of blak balls withdrawn.Y = 8>>>><>>>>: 1 if the �rst ball seleted is white0 if the �rst ball seleted is blak�Ma;b = E[X ℄ = E[XjY = 1℄PfY = 1g +E[XjY = 0℄PfY = 0g� E[XjY = 1℄ = 0� E[XjY = 0℄ = 1 +Ma;b�1� Sine PfY = 0g = b=(a + b), we see thatMa;b = ba + b[1 +Ma;b�1℄�Ma;0 is learly equal to 0,Ma;1 = 1a + 1[1 +Ma;0℄ = 1a + 1Ma;2 = 2a + 2[1 +Ma;1℄ = 2a + 2 241 + 1a + 135 = 2a + 1Ma;3 = 3a + 3[1 +Ma;2℄ = 3a + 3 241 + 2a + 135 = 3a + 1�



Probability II{ Chap. 7: Properties of Expetation 47�Ma;b = ba+1Example 7.4g. Variane of the geometridistribution. Independent trials eah result-ing in a suess with probability p are sues-sively performed. LetN be the time of the �rstsuess. Find Var(N ).� Var(N ) = E[N2℄� (E[N ℄)2� However,E[N2jY = 1℄ = 1E[N2jY = 0℄ = E[(1 +N )2℄� E[N 2℄ = E[N 2jY = 1℄PfY = 1g + E[N 2jY = 0℄PfY = 0g= p + (1� p)E[(1 +N)2℄= 1 + (1� p)E[2N +N 2℄� E[N2℄ = 1 + 2(1�p)p + (1� p)E[N2℄� E[N2℄ = 2�pp2



Probability II{ Chap. 7: Properties of Expetation 48� Therefore,Var(N ) = E[N2℄� (E[N ℄)2= 2� pp2 � 0BBB�1p1CCCA2= 1� pp2Example 7.4h. LetU1; U2; : : : be a sequeneof independent uniform (0,1) random variables.Find E[N ℄ whenN = min 8>><>>:n : nXi=1Ui > 19>>=>>;
� N (x) = min 8>><>>:n : nXi=1Ui > x9>>=>>;�m(x) = E[N (x)℄�m(x) = Z 10 E[N (x)jU1 = y℄ dy� E[N (x)jU1 = y℄ = 8>>>><>>>>: 1 if y > x1 +m(x� y) if y � x



Probability II{ Chap. 7: Properties of Expetation 49�m(x) = 1 + Z x0 m(x� y) dy= 1 + Z x0 m(u)du by letting u = x� y�m0(x) = m(x)� m0(x)m(x) = 1� log[m(x)℄ = x + �m(x) = kex� Sine m(0) = 1 we see that k = 1, thenm(x) = ex7.4.3 Computing probabilities by on-ditioningX = 8>>>><>>>>: 1 if E ours0 if E does not ourE[X ℄ = P (E)E[XjY = y℄ = P (EjY = y)P (E) = Xy P (EjY = y)P (Y = y) if Y is disrete= Z1�1P (EjY = y)fY (y) dy if Y is ontinuous



Probability II{ Chap. 7: Properties of Expetation 50Example 7.4i. The best prize problem. Sup-pose that we are to be presented with n distintprizes in sequene. After being presented witha prize we must immediately deide whetherto aept it or to rejet it and onsider thenext prize. The only information we are givenwhen deiding whether to aept a prize is therelative rank of that prize ompared to onesalready seen. That is, for instane, when the�fth prize is presented, we learn how it om-pares with the four prizes already seen. Sup-pose that one a prize is rejeted it is list, andthat our objetive is to maximize the probabil-ity of obtaining the best prize. Assuming thatall n! orderings of the prizes are equally likely,how well an we do?� Consider the strategy that rejets the �rstk prizes and then aepts the �rst one thatis better than all of those �rst k.Pk(best) = nXi=1Pk(bestjX = i)P (X = i)



Probability II{ Chap. 7: Properties of Expetation 51= 1n nXi=1Pk(bestjX = i)� Pk(bestjX = i) = 0 i � k� Pk(best) = kn nXi=k+1 1i� 1� kn Z nk+1 1x + 1 dx= kn log 0BBB�n� 1k 1CCCA� kn log 0B�nk 1CA� Now, if we onsider the funtiong(x) = xn log 0B�nx1CA� g0(x) = 1n log 0B�nx1CA� 1n� g0(x) = 0) log 0B�nx1CA = 1) x = ne



Probability II{ Chap. 7: Properties of Expetation 52Example 7.4j. Let U be a uniform randomvariable on (0,1), and suppose that the ondi-tional distribution of X , given that U = p, isbinomial with parameters n and p. Find theprobability mass funtion of X .� Conditioning on the value of U :PfX = ig = Z 10 PfX = ijU = pgfU (p) dp= Z 10 PfX = ijU = pg dp= n!i!(n� i)! Z 10 pi(1� p)n�i dp
� Z 10 pi(1� p)n�idp = i!(n� i)!(n + 1)!� Hene we obtain thatPfX = ig = 1n + 1 i = 0; : : : ; n� If a oin whose probability of oming upheads is uniformly distributed over (0; 1) isipped n times, then the number of headsourring is equally likely to be any the val-ues 0; : : : ; n.



Probability II{ Chap. 7: Properties of Expetation 53� Another argument:{ U;U1; : : : ; Un are independent uniform(0; 1).{X : The number of the random variablesU1; : : : ; Un that are smaller than U .{ Sine all the random variablesU;U1; : : : ; Unhave the same distribution, it follows thatU is equally likely to be the smallest, orthe seond smallest, or the largest of them;soX is equally likely to be any of the val-ues 0; 1; : : : ; n.Example 7.4k. Suppose that X and Y areindependent ontinuous random variables hav-ing densities fX and fY , respetively. Com-pute PfX < Y g.� Conditioning on the value of Y :PfX < Y g = Z 1�1 PfX < Y jY = ygfy(y) dy= Z 1�1 PfX < yjY = ygfY (y) dy= Z 1�1 PfX < ygfY (y) dy by independene= Z 1�1 FX(y)fY (y) dy



Probability II{ Chap. 7: Properties of Expetation 54where FX(y) = Z y�1 fX(X) dx� Speial ase: If fX = fY , then P (X <Y ) = 12.Example 7.4l. Suppose that X and Y areindependent ontinuous random variables. Findthe distribution of X + Y .� Conditioning on the value of Y :PfX + Y < ag = Z 1�1 PfX + Y < ajY = ygfY (y) dy= Z 1�1 PfX + y < ajY = ygfY (y) dy= Z 1�1 PfX < a� ygfY (y) dy= Z 1�1 FX(a� y)fY (y) dy
7.4.4 Conditional varianeVar(XjY ) = E[(X � E[XjY ℄)2jY ℄= E[X2jY ℄� (E[XjY ℄)2



Probability II{ Chap. 7: Properties of Expetation 55Proposition 4.2: The onditional varianeformulaVar(X) = E[Var(XjY )℄ + Var(E[XjY ℄)
� Var(XjY ) = E[X2jY ℄� (E[XjY ℄)2� E[Var(XjY )℄ = E[X2℄� E[(E[XjY ℄)2℄� Var(E[XjY ℄) = E[(E[XjY ℄)2℄� (E[X ℄)2Example 7.4m. Suppose that by any timet the number of people that have arrived at atrain depot is a Poisson random variable withmean �t. If the initial train arrives at the de-pot at a time (independent of when the passen-gers arrive) that is uniformly distributed over(0; T ), what is the mean and variane of thenumber of passengers that enter the train?� N (t): The number of arrivals by t.� Y : The time at whih the train arrives.� The random variable of interest is N (t).E[N(Y )jY = t℄ = E[N(t)jY = t℄



Probability II{ Chap. 7: Properties of Expetation 56= E[N(t)℄ by the independene of Y and N(t)= E[N(t)℄= �t sine N(t) is Poisson with mean �t� E[N (Y )jY ℄ = �Y� E[N (Y )℄ = �E[Y ℄ = �T2� Var(N (Y )jY = t) = Var(N (t)jY = t)= Var(N (t)) by independene= �tVar(N (Y )jY ) = �YE[N (Y )jY ℄ = �Y� From the onditional variane formula:Var(N (Y )) = E[�Y ℄ + Var(�Y )= �T2 + �2T 212Example 7.4n. Variane of a random num-ber of random variables. Let X1; X2; : : : bea sequene of independent and identially dis-tributed random variables and let N be a non-negative integer-valued random variable that



Probability II{ Chap. 7: Properties of Expetation 57is independent of the sequene Xi, i � 1. Toompute Var 0BB� NXi=1Xi1CCA, we ondition on N :
E 2664 NXi=1XijN 3775 = NE[X ℄Var 0BB� NXi=1XijN 1CCA = NVar(X)Var 0BB� NXi=1Xi1CCA = E[N ℄Var(X) + (E[X ℄)2Var(N )

7.5 Conditional expetation and pre-dition�X = x is observed.� Use g(x) to predit Y .� Choose g so as to minE[(Y � g(X))2℄.Proposition 7.5.1:E[(Y � g(X))2℄ � E[(Y � E[Y jX ℄)2℄
� E[(Y � g(X))2jX ℄ = E[(Y � E[Y jX ℄ +E[Y jX ℄� g(X))2jX ℄ =



Probability II{ Chap. 7: Properties of Expetation 58E[(Y�E[Y jX ℄)2jX ℄+E[(E[Y jX ℄�g(X))2jX ℄+2E[(Y � E[Y jX ℄)(E[Y jX ℄� g(X))jX ℄� E[(Y �E[Y jX ℄)(E[Y jX ℄� g(X))jX ℄ = 0� E[(Y �g(X))2jX ℄ � E[(Y �E[Y jX ℄)2jX ℄Example 7.5a. Suppose that the son of aman of height x (in inhes) attains a heightthat is normally distributed with mean x + 1and variane 4. What is the best predition ofthe height at full growth of the son of a manwho is 6 feet tall?� Y = X + 1 + e where e � N (0; 4).E[Y jX = 72℄ = E[X + 1 + ejX = 72℄= 73 + E[ejX = 72℄= 73 + E(e) by independene= 73Example 7.5b. Suppose that if a signal values is sent from loation A, then the signal valuereeived at loation B is normally distributed



Probability II{ Chap. 7: Properties of Expetation 59with parameters (s; 1). If S, the value of thesignal sent at A, is normally distributed withparameters (�; �2), what is the best estimateof the signal sent if R, the value reeived at B,is equal to r?� fSjR(sjr) = fS;R(s; r)fR(r)= fS(s)fRjS(rjs)fR(r)= Ke�(s��)2=2�2e�(r�s)2=2
(s� �)22�2 + (r � s)22 = s2 0� 12�2 + 121A�  ��2 + r! s + C1= 1 + �22�2 264s2 � 2 0B�� + r�21 + �2 1CA s375 + C1= 1 + �22�2 0B�s� � + r�21 + �2 1CA2 + C2where C1 and C2 do not depend on s.



Probability II{ Chap. 7: Properties of Expetation 60� Hene
fSjR(sjr) = C exp 8>>>>>>>>>>>><>>>>>>>>>>>>:

� 2664s� (�+r�2)1+�2 377522 0B� �21+�21CA
9>>>>>>>>>>>>=>>>>>>>>>>>>;� E[SjR = r℄ = �+r�21+�2� Var(SjR = r) = �21+�2� E[SjR = r℄ = 11+�2� + �21+�2rExample 7.5. In digital signal proessingraw ontinuous analog data X must be quan-tized, or disretized, in order to obtain a digitalrepresentation. In order to quantize the rawdata X , an inreasing set of numbers ai; i =0;�1;�2; : : : ; suh that limi!+1 ai = 1,limi!�1 ai = �1, is �xed and the raw dataare then quantized aording to the interval(ai; ai+1℄ in whih X lies. Let us denote by yithe disretized value when X 2 (ai; ai+1℄, andlet Y denote the observed disretized value-



Probability II{ Chap. 7: Properties of Expetation 61that is, Y = yi if ai < X � ai+1The distribution of Y is given byPfY = yig = FX(ai+1)� FX(ai)
Suppose now that we want to hoose the val-ues yi; i = 0;�1;�2; : : : so as to minimizeE[(X�Y )2℄, the expeted mean square di�er-ene between the raw data and their quantizedversion.(a) Find the optimal values yi; i = 0;�1; : : :For the optimal quantizer Y show that:(b) E[X ℄ = E[Y ℄, so the mean square errorquantizer preserves the input mean;() Var(Y ) = Var(X)�E[(X � Y )2℄.� (a)� E[(X � Y )2℄ = Xi E[(X � yi)2jai < X �ai+1℄Pfai < X � ai+1g



Probability II{ Chap. 7: Properties of Expetation 62� I = i if ai < X � ai+1� ThenE[(X�yi)2jai < X � ai+1℄ = E[(X�yi)2jI = i℄� yi = E[XjI = i℄= E[Xjai < X � ai+1℄= Z ai+1ai xfX(s) dxFX(ai+1)� FX(ai)� (b) E[Y ℄ = E[X ℄� ()Var(X) = E[Var(XjI)℄ + Var(E[XjI ℄)= E[E[(X � Y )2jI ℄℄ + Var(Y )= E[(X � Y )2℄ + Var(Y )Best linear preditor of Y w.r.t Xmina;b E[(Y � (a + bX))2℄
� ��aE[(Y � (a + bX))2℄ = �2E[Y ℄ + 2a +2bE[X ℄



Probability II{ Chap. 7: Properties of Expetation 63� ��bE[(Y�(a+bX))2℄ = �2E[XY ℄+2aE[X ℄+2bE[X2℄� b = E[XY ℄�E[X ℄E[Y ℄E[X2℄�(E[X ℄)2 = Cov(X;Y )�2x = ��y�x� a = E[Y ℄� bE[X ℄� Best linear preditor of Y w.r.t. X�y + ��y�x (X � �x)�Mean square error of this preditor:E 2666640BBB�Y � �y � ��y�x (X � �x)1CCCA2377775 = �2y(1��2)
Example 7.5d. An example in whih theonditional expetation of Y given X is linearin X , and hene the best linear preditor of Ywith respet to X is the best overall predi-tor, is when X and Y have a bivariate normaldistribution. In this ase their joint density isgiven byf(x; y) = 12��x�yp1� �2 exp8<:� 12(1� �2) 24�x� �x�x �2 � 2�(x� �x)(y � �y)�x�y +  y � �y�y !2359=;
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� fY jX(yjx) = 1p2��yp1� �2 exp8<:� 12�2y(1� �2)  y � �y � ��y�x (x� �x)!29=;� E[Y jX = x℄ = �y + ��y�x (x� �x)� Var(Y jX = x) = �2y(1� �2)7.6 Moment generating funtionsM (t) = E[etX ℄= 8>>>>><>>>>>: Xx etxp(x) if X is disrete;Z1�1 etxf (x) dx if X is ontinuous
M 0(t) = E[XetX ℄ M 0(0) = E[X ℄M 00(t) = E[X2etX ℄ M 00(0) = E[X2℄M (n)(t) = E[XnetX ℄ M (n)(0) = E[Xn℄Example 7.6a. Binomial distribution withparameters n and p. If X is a binomial ran-dom variable with parameters n and p, thenM (t) = E[etX ℄
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= nXk=0 etk0BBBB�nk1CCCCApk(1� p)n�k
= nXk=0 0BBBB�nk1CCCCA(pet)k(1� p)n�k= (pet + 1� p)n�M 0(t) = n(pet+1� p)n�2pet and E[X ℄ =M 0(0) = np.� M 00(t) = n(n � 1)(pet + 1 � p)n�2(pet)2 + n(pet +1 � p)n�1pet and E[X2℄ = M 00(0) = n(n �1)p2 + np.� The variane of X is given byVar(X) = E[X2℄� (E[X ℄)2= n(n� 1)p2 + np� n2p2= np(1� p)Example 7.6b. Poisson distribution withmean �. If X is a Poisson random variablewith parameter �, thenM (t) = E[etX ℄



Probability II{ Chap. 7: Properties of Expetation 66
= 1Xn=0 etne���nn!= e�� 1Xn=0 (�et)nn!= e��e�et= expf�(et � 1)g� Di�erentiation yieldsM 0(t) = �et expf�(et � 1)gM 00(t) = (�et)2 expf�(et � 1)g + �et expf�(et � 1)g� Thus E[X ℄ = M 0(0) = �E[X2℄ = M 00(0) = �2 + �Var(X) = E[X2℄� (E[X ℄)2= �� Hene both the mean and the variane ofthe Poisson random variable equal �.Example 7.6. Exponential distribution withparameter �M (t) = E[etX ℄



Probability II{ Chap. 7: Properties of Expetation 67= Z10 etX�e��x dx= � Z10 e�(��t)x dx= ��� t for t < �
� Di�erentiation of M (t) yieldsM 0(t) = �(�� t)2 M 00(t) = 2�(�� t)3� HeneE[X ℄ = M 0(0) = 1� E[X2℄ = M 00(0) = 2�2� The variane of X is given byVar(X) = E[X2℄� (E[X ℄)2= 1�2Example 7.6d. Normal distribution. We�rst ompute the moment generating funtionof a unit normal random variable with param-eters 0 and 1.



Probability II{ Chap. 7: Properties of Expetation 68� Letting Z be suh a random variable,MZ(t) = E[etZ ℄= 1p2� Z1�1 etxe�x2=2 dx
= 1p2� Z1�1 exp 8>>>>><>>>>>:�(x2 � 2tx)2 9>>>>>=>>>>>; dx= 1p2� Z1�1 exp 8>>>>><>>>>>:�(x� t)22 + t22 9>>>>>=>>>>>; dx= et2=2 1p2� Z1�1 e�(x�t)2=2 dx= et2=2�MZ(t) = et2=2�X = � + �Z � N (�; �2)MX(t) = E[etX ℄= E[et(�+�Z)℄= E[et�et�Z ℄= et�MZ(t�)= et�e(t�)2=2
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= exp 8>>>>><>>>>>:�2t22 + �t9>>>>>=>>>>>;� By di�erentiating, we obtainM 0X(t) = (� + t�2) exp 8>><>>:�2t22 + �t9>>=>>;M 00X(t) = (� + t�2)2 exp 8>><>>:�2t22 + �t9>>=>>; + �2 exp 8>><>>:�2t22 + �t9>>=>>;� Thus E[X ℄ = M 0(0) = �E[X2℄ = M 00(0) = �2 + �2implying thatVar(X) = E[X2℄� (E[X ℄)2= �2Suppose that X and Y are independent andhave moment generating funtions MX(t) andMY (t), respetively. ThenMX+Y (t) = MX(t)MY (t)Uniqueness of moment generating fun-tion: If MX(t) exists and is �nite in some



Probability II{ Chap. 7: Properties of Expetation 70region about t = 0, then the distribution of Xis uniquely determined.For example, if MX(t) = (1=2)10(et + 1)10,then X is a binomial(10; 1=2).Example 7.6e. Suppose that the momentgenerating funtion of a random variable X isgiven by M (t) = e3(et�1). What is PfX =0g?�M (t) is the moment generating funtion ofa Poisson random variable with mean 3.� PfX = 0g = e�3
Example 7.6f. Sums of independent bino-mial random variables. If X and Y are in-dependent binomial random variables with pa-rameters (n; p) and (m; p), respetively, whatis the distribution of X + Y ?� The moment generating funtion of X + Y



Probability II{ Chap. 7: Properties of Expetation 71is given byMX+Y (t) = MX(t)MY (t)= (pet + 1� p)n(pet + 1� p)m= (pet + 1� p)m+n� Thus X + Y is binomial distributed withparameters m + n and p.Example 7.6g. Sums of independent Pois-son random variables. Calulate the distri-bution of X + Y when X and Y are indepen-dent Poisson random variables with means �1and �2, respetively.�MX+Y (t) = MX(t)MY (t)= expf�1(et � 1)g expf�2(et � 1)g= expf(�1 + �2)(et � 1)g� Thus X +Y is Poisson distributed with pa-rameters �1 + �2.



Probability II{ Chap. 7: Properties of Expetation 72Example 7.6h. Sums of independent nor-mal random variables. Show that if X andY are independent normal random variableswith parameters (�1; �21) and (�2; �22), respe-tively, thenX+Y is normal with mean �1+�2and variane �21 + �22.�MX+Y (t) = MX(t)MY (t)= exp 8>>>>><>>>>>:�21t22 + �1t9>>>>>=>>>>>; exp 8>>>>><>>>>>:�22t22 + �2t9>>>>>=>>>>>;= exp 8>>>>><>>>>>:(�21 + �22)t22 + (�1 + �2)t9>>>>>=>>>>>;Example 7.6i. Compute the moment gen-erating funtion of a hi-squared random vari-able with n degrees of freedom.�We an represent suh a random variable asZ21 + � � � + Z2n



Probability II{ Chap. 7: Properties of Expetation 73�M (t) = (E[etZ2℄)n where Z is a standardnormal.E[etZ2℄ = 1p2� Z 1�1 etx2e�x2=2 dx= 1p2� Z 1�1 e�x2=2�2 dx where �2 = (1� 2t)�1= �= (1� 2t)�1=2�M (t) = (1� 2t)�n=2Example 7.6j. Moment generating fun-tion of the sum of a random number of ran-dom variables. LetX1; X2; : : : be a sequeneof independent and identially distributed ran-dom variables, and let N be a nonnegative,integer-valued random variable that is indepen-dent of the sequene Xi, i � 1. We want toompute the moment generating funtion ofY = NXi=1Xi� Condition on NE[expftNX1 XigjN = n℄ = E[expft nX1 XigjN = n℄



Probability II{ Chap. 7: Properties of Expetation 74= E[expft nX1 Xig℄= [MX(t)℄nwhere MX(t) = E[etXi℄� E[etY jN ℄ = (MX(t))N�M 0Y (t) = E[N (MX(t))N�1M 0X(t)℄
E[Y ℄ = M 0Y (0)= E[N (MX(0))N�1M 0X(0)℄= E[NE[X ℄℄= E[N ℄E[X ℄� E[Y 2℄ = M 00Y (0)= E[N(N � 1)(E[X ℄)2 +NE[X2℄℄= (E[X ℄)2(E[N 2℄� E[N ℄) + E[N ℄E[X2℄= E[N ℄(E[X2℄� (E[X ℄)2) + (E[X ℄)2E[N 2℄= E[N ℄Var(X) + (E[X ℄)2E[N 2℄Var(Y ) = E[N ℄Var(X) + (E[X ℄)2(E[N 2℄� (E[N ℄)2)= E[N ℄Var(X) + (E[X ℄)2Var(N)



Probability II{ Chap. 7: Properties of Expetation 75Example 7.6k. Let Y denote a uniform ran-dom variable on (0; 1), and suppose that ondi-tional on Y = p, the random variable X has abinomial distribution with parameters n and p.In Example 7.4j we showed that X is equallylikely to take on any of the values 0; 1; : : : ; n.Establish this result by using moment generat-ing funtions.� E[etXjY = p℄ = (pet + 1� p)nE[etX ℄ = Z 10 (pet + 1� p)n dp= 1et � 1 Z et1 yn dy
= 1n + 1et(n+1) � 1et � 1= 1n + 1(1 + et + e2t + � � � + ent)�X is uniformly distributed on 0; 1; : : : ; n.7.6.1 Joint moment generating fun-tions



Probability II{ Chap. 7: Properties of Expetation 76�M (t1; : : : ; tn) = E[et1X1+���+tnXn℄�MXi(t) = E[etXi℄ = M (0; : : : ; 0; t; 0; : : : ; 0)� If X1; : : : ; Xn are independent if and onlyif M (t1; : : : ; tn) = MX1(t1) � � �MXn(tn)Example 7.6l. Let X and Y be indepen-dent normal random variables, eah with mean� and variane �2. In Example 7.7a of Chap.6 we showed that X + Y and X � Y are inde-pendent.� Let us now establish this result by omput-ing their joint moment generating funtion.E[et(X+Y )+s(X�Y )℄ = E[e(t+s)X+(t�s)Y ℄= E[e(t+s)X ℄E[e(t�s)Y ℄= e�(t+s)+�2(t+s)2=2e�(t�s)+�2(t�s)2=2= e2�t+�2t2e�2s2� But we reognize the preeding as the jointmoment generating funtion of the sum ofa normal random variables with mean 2�



Probability II{ Chap. 7: Properties of Expetation 77and variane 2�2 and an independent nor-mal random variable with mean 0 and vari-ane 2�2.� As the joint moment generating funtion uniquelydetermines the joint distribution, it thus fol-lows thatX+Y andX�Y are independentnormal random variables.Example 7.6m. Suppose that the numberof events that our is a Poisson random vari-able with mean �, and that eah event is inde-pendently ounted with probability p. Showthat the number of ounted events and thenumber of unounted events are independentPoisson random variables with respetive means�p and �(1� p).�X : The total number of events.�X: The number of them that are ounted.� Condition on X :E[esX+t(X�X)jX = n℄ = etnE[e(s�t)XjX = n℄



Probability II{ Chap. 7: Properties of Expetation 78= etn(pes�t + 1� p)n= (pes + (1� p)et)n� E[esX+t(X�X)jX ℄ = (pes + (1� p)et)X� E[esX+t(X�X)℄ = E[(pes + (1� p)et)X ℄� E[esX+t(X�X)℄ = e�(pes+(1�p)et�1)= e�p(es�1)e�(1�p)(et�1)
7.7 Additional properties of normal ran-dom variables7.7.1 The multivariate normal distri-bution� Z1; : : : ; Zn are a set of n independent unitnormal.� For some onstants aij and �i,X1 = a11Z1 + � � � + a1nZn + �1...Xi = ai1Z1 + � � � + ainZn + �i



Probability II{ Chap. 7: Properties of Expetation 79...Xm = am1Z1 + � � � + amnZn + �mthen the random variables X1; : : : ; Xm aresaid to have a multivariate normal distribu-tion.�Xi is a normal random variable withE[Xi℄ =�i and Var(Xi) = nXj=1 a2ij.� mXi=1 tiXi is a normal random variable withE[ mXi=1 tiXi℄ = mXi=1 ti�i and Var 0BB� mXi=1 tiXi1CCA =mXi=1 mXj=1 titjCov(Xi; Xj).� M(t1; : : : ; tm) = exp 8><>: mXi=1 ti�i + 12 mXi=1 mXj=1 titjCov(Xi; Xj)9>=>; =exp 8><>:t0� + t0�t2 9>=>;7.7.2 The joint distribution of the sam-ple mean and sample varianeLet Xi � N (�; �2).



Probability II{ Chap. 7: Properties of Expetation 80� �X = nXi=1Xi=n � N (�; �2=n)� Cov( �X;Xi � �X) = 0 for i = 1; : : : ; n.� �X;X1� �X; : : : ;Xn� �X are all linear om-binations of the independent standard nor-mals (Xi � �X)=�.� Consider Y � N (�; �2=n) independent ofXi's.� Y;X1 � �X; : : : ;Xn � �X also has a multi-variate normal and has the same expetedvalues and ovarianes as the random vari-ables �X;X1 � �X; : : : ;Xn � �X .� Then �X;X1 � �X; : : : ;Xn � �X also has amultivariate normal.� But sine a multivariate normal distributionis determined ompletely by its expeted val-ues and ovarianes, we an onlude that�X is independent of Xi � �X 's.� (n� 1)S2 = nXi=1(Xi � �)2 � n( �X � �)2
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� (n� 1)S2�2 + 0BBBB� �X � ��=pn 1CCCCA2 = nXi=1 0BBB�Xi � �� 1CCCA2� Use moment generating funtion.� (1�2t)�(n�1)=2(1�2t)�1=2 = (1�2t)�n=2Proposition 7.1: If X1; : : : ; Xn are in-dependent and identially distributed normalrandom variables with mean � and variane�2, then the sample mean X and sample vari-ane S2 are independent. X is a normalrandom variable with mean � and variane�2=n; (n � 1)S2=�2 is a hi-squared randomvariable with n� 1 degrees of freedom.*7.8 General de�nition of expetation� There exist random variables that are nei-ther disrete nor ontinuous.�X � Bernoulli(1=2) and Y � uniform[0; 1℄.� Then W = X if X = 1 and Y if X 6= 1 isneither a disrete nor a ontinuous random



Probability II{ Chap. 7: Properties of Expetation 82variable.� In order to de�ne the expetation of an arbi-trary random variable, we require the notionof a Stieltjes integral.� a = x0 < x1 < x2 < � � � < xn = bZ ba g(x) dx = limn!1 nXi=1 g(xi)(xi � xi�1)Z ba g(x) dF (x) = limn!1 nXi=1 g(xi)[F (xi)� F (xi�1)℄Z 1�1 g(x) dF (x) = lima!�1;b!1 Z ba g(x)dF (x)Z 1�1 g(x) dF (x) = Z 1�1 g+(x) dF (x)� Z 1�1 g�(x) dF (x)E[X ℄ = Z 1�1 xdF (x)� Use of Stieltjes integrals avoids the nees-sity of having to give separate statements oftheorems for the ontinuous and the disreteases.� Stieltjes integrals are mainly of theoretialinterest beause they yield a ompat wayof de�ning and dealing with the propertiesof expetation.Summary



Probability II{ Chap. 7: Properties of Expetation 83� Expetation:{ Disrete:E[g(X;Y )℄ = Xy Xx g(x; y)p(x; y){ Continuous:E[g(X;Y )℄ = Z1�1 Z1�1 g(x; y)f (x; y)dxdy{ E[X + Y ℄ = E[X ℄ +E[Y ℄{ E 2664 nXi=1Xi3775 = nXi=1E[Xi℄�Covariane:{ Cov(X;Y ) = E[(X�E[X ℄)(Y�E[Y ℄)℄ =E[XY ℄� E[X ℄E[Y ℄{ Cov 0BBB� nXi=1Xi; mXj=1Yj1CCCA = nXi=1 mXj=1Cov(Xi; Xj){ Var 0BB� nXi=1Xi1CCA = nXi=1Var(Xi)+2 Xi<j Cov(Xi; Xj)�Correlation:�(X;Y ) = Cov(X;Y )sVar(X)Var(Y )�Conditional expeted value:



Probability II{ Chap. 7: Properties of Expetation 84{ Disrete ase:E[X j Y = y℄ = X xPfX = x j Y = yg{ Continuous ase:E[X j Y = y℄ = Z xfXjY (xjy)dx� E[X ℄ = E[E[XjY ℄℄{ Disrete ase:E[X ℄ = Xy PfY = yg{ Continuous ase:E[X ℄ = Z E[X j Y = y℄f(y)dy�Conditional variane:Var(XjY = y) = E[(X�E[XjY = y℄)2jY = y℄�Conditional variane formula:Var(X) = E[Var(XjY )℄ + Var(E[XjY ℄)�Moment generating funtion: M (t) =E[etX ℄{ E[Xn℄ = dndtnM (t)jt=0



Probability II{ Chap. 7: Properties of Expetation 85{ The moment generating funtion uniquelydetermines the distribution funtion of therandom variable.{ The moment generation funtion of thesum of independent random variables isequal to the produt of their moment gen-eration funtion.� If X1; : : : ; Xn are all linear ombinations ofa �nite set of independent standard normalrandom variables, then they are said to havea multivariate normal distibution.� If X1; : : : ; Xn are independent and identi-ally distributed normal random variables,then their sample meanX = PXi=n andsample variane S2 = X(Xi�X)2=(n�1) are independent.{X is a normal variable with mean � andvariane �2=n{ (n�1)S2=�2 is a hi-square random vari-able with n� 1 degrees of freedom.


