
1Chapter 7 Properties of Expe
tation7.1 Introdu
tion�Dis
rete 
ase: E[X ℄ = Xx xp(x)�Continuous 
ase: E[X ℄ = Z1�1 xf (x) dx� If Pfa � X � bg = 1, thena � E[X ℄ � b7.2 Expe
tation of sums of random vari-ablesProposition 2.1: If X and Y have a jointprobability mass fun
tion p(x; y), thenE[g(X;Y )℄ = Xy Xx g(x; y)p(x; y)If X and Y have a joint probability densityfun
tion f (x; y), thenE[g(x; y)℄ = Z1�1 Z1�1 g(x; y)f (x; y) dxdyExample 7.2a. An a

ident o

urs at a pointX that is uniformly distributed on a road of



Probability II{ Chap. 7: Properties of Expe
tation 2length L. At the time of the a

ident an am-bulan
e is at a lo
ation Y that is also uniformlydistributed on the road. Assuming that X andY are independent, �nd the expe
ted distan
ebetween the ambulan
e and the point of thea

ident.� f (x; y) = 1L2; 0 < x < L; 0 < y < L� E[jX � Y j℄ = 1L2 Z L0 Z L0 jx� yj dydx� Now,Z L0 jx� yjdy = Z x0 (x� y)dy + Z Lx (y � x) dy= x22 + L22 � x22 � x(L� x)
= L22 + x2 � xL� Therefore,E[jX � Y j℄ = 1L2 Z L0 0BBBBB�L22 + x2 � xL1CCCCCA dx= L3



Probability II{ Chap. 7: Properties of Expe
tation 3� E[X + Y ℄ = Z 1�1 Z 1�1(x + y)f(x; y) dxdy= Z 1�1 Z 1�1 xf(x; y) dydx+ Z 1�1 Z 1�1 yf(x; y) dxdy= Z 1�1 xfX(x) dx + Z 1�1 yfY (y) dy= E[X ℄ + E[Y ℄� E[X+Y ℄ = E[X ℄+E[Y ℄ if E[X ℄ and E[Y ℄are �nite.Example 7.2b. Suppose that for randomvariables X and Y ,X � YThat is, for any out
ome of the probability ex-periment, the value of the random variableX isgreater than or equal the value of the randomvariable Y . Sin
e the pre
eding is equivalentto the inequality X � Y � 0, it follows thatE[X � Y ℄ � 0, or, equivalently,E[X ℄ � E[Y ℄If E[Xi℄ is �nite for all i = 1; : : : ; n, thenE[X1 + � � � +Xn℄ = E[X1℄ + � � � +E[Xn℄
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tation 4Example 7.2
. The sample mean. LetX1; : : : ; Xn be independent and identi
ally dis-tributed random variables having distributionfun
tion F and expe
ted value �. Su
h a se-quen
e of random variables is said to 
onstitutea sample from the distribution F . The quan-tity X , de�ned byX = nXi=1Xinis 
alled the sample mean. Compute E[X℄.� E[X ℄ = E 26664 nXi=1Xin 37775= 1nE 2664 nXi=1Xi3775= 1n nXi=1E[Xi℄= � sin
e E[Xi℄ � �Example 7.2d. Boole's inequality. LetA1; : : : ; An denote events and de�ned the in-
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tation 5di
ator variables Xi, i = 1; : : : ; n byXi = 8>>>><>>>>: 1 if Ai o

urs0 otherwise
�X = nXi=1Xi: The number of the events Aithat o

ur.� Let Y = 8>>>><>>>>: 1 if X � 10 otherwise� Y is equal to 1 if at least one of theAi o

ursand is 0 otherwise.� Then X � Y and E[X ℄ � E[Y ℄.� But sin
eE[X ℄ = nXi=1E[Xi℄ = nXi=1P (Ai)andE[Y ℄ = Pfat least one of the Ai o

urg = P 0� n[i=1Ai1A�We obtain Boole's inequalityP 0BB� n[i=1Ai1CCA � nXi=1P (Ai)
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tation 6Next three examples show how Eq. (2.2) 
anbe used to 
al
ulate the expe
ted value of bi-nomial, negative binomial, and hypergeometri
random variables.Example 7.2e. Expe
tation of a binomialrandom variable. Let X be a binomial ran-dom variable with parameters n and p.� Note that X = X1 +X2 + � � � +Xn whereXi = 8>>>><>>>>: 1 if the ith trial is a su

ess0 if the ith trial is a failure� Hen
e, Xi is a Bernoulli random variablehaving expe
tation E[Xi℄ = 1(p)+0(1�p).� Thus E[X ℄ = E[X1℄ + � � � +E[Xn℄ = npExample 7.2f. Mean of a negative bino-mial random variable. If independent trials,having a 
onstant probability p of being su
-
esses, are performed, determine the expe
tednumber of trials required to amass a total of rsu

esses.
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tation 7�X : The number of trials needed to amass atotal of r su

esses.�Xi: The number of additional trials required,after the (i� 1)st su

ess, until a total of isu

esses are amassed.� Note that X = X1 +X2 + � � � +Xr� E[X ℄ = E[X1℄ + � � � +E[Xr℄ = rpExample 7.2g. Mean of a hypergeometri
random variable. If n balls are randomly se-le
ted from an urn 
ontaining N balls of whi
hm are white, �nd the expe
ted number of whiteballs sele
ted.�X : The number of white balls sele
ted.�X = X1 + � � � +Xm whereXi = 8>>>><>>>>: 1 if the ith white ball is sele
ted0 otherwise� Now,E[Xi℄ = PfXi = 1g



Probability II{ Chap. 7: Properties of Expe
tation 8= Pfith white ball is sele
tedg=  11! N�1n�1 ! Nn !
= nN� Hen
eE[X ℄ = E[X1℄ + � � � + E[Xm℄ = mnN� Alternative: X = Y1 + � � � + Yn whereYi = 8>>>><>>>>: 1 if the ith ball sele
ted is white0 otherwise� E[Yi℄ = mN� Then E[X ℄ = E[Y1℄ + � � � + E[Yn℄ = nmNExample 7.2h. Expe
ted number of mat
hes.A group of N people throw their hats into the
enter of a room. The hats are mixed up, andea
h person randomly sele
ted one. Find theexpe
ted number of people that sele
t theirown hats.
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tation 9�X : The number of mat
hes.�X = X1 +X2 + � � � +XN whereXi = 8>>>><>>>>: 1 if the ith person sele
ts his own hat0 otherwise� E[Xi℄ = PfXi = 1g = 1N� Then E[X ℄ = E[X1℄ + � � � + E[XN ℄ =( 1N ) = 1Example 7.2i. The following problem wasposed and solved in the eighteenth 
entury byDaniel Bernoulli. Suppose that a jar 
ontains2N 
ards, two of them marked 1, two marked2, two marked 3, and so on. Draw out m 
ardsat random. What is the expe
ted number ofpairs that still remain in the jar? (Interestinglyenough, Bernoulli proposed the above as a pos-sible probabilisti
 model for determining thenumber of marriages that remain inta
t whenthere is a total of m deaths among the N mar-ried 
ouples.)
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tation 10� De�ne for i = 1; 2; : : : ; N;Xi = 8>>>><>>>>: 1 if the ith pair remains in the jar0 otherwise� Now,E[Xi℄ = PfXi = 1g=  2N�2m ! 2Nm !
= (2N�2)!m!(2N�2�m)!(2N)!m!(2N�m)!= (2N �m)(2N �m� 1)(2N )(2N � 1)� Hen
e the desired result isE[X1 + � � � +XN ℄ = E[X1℄ + � � � +E[XN ℄= (2N �m)(2N �m� 1)2(2N � 1)Example 7.2j. Coupon-
olle
ting problems.Suppose that there are N di�erent types of
oupons and ea
h time one obtains a 
oupon itis equally likely to be any one of the N types.



Probability II{ Chap. 7: Properties of Expe
tation 11(a) Find the expe
ted number of di�erent typesof 
oupons that are 
ontained in a set of n
oupons.(b) Find the expe
ted number of 
oupons oneneed amass before obtaining a 
omplete setof at least one of ea
h type.�X : The number of di�erent types of 
ouponsin the set of n 
oupons.(a)X = X1 + � � � +XN whereXi = 8><>: 1 if at least one type i 
oupon is 
ontained in the set of n0 otherwise� Now,E[Xi℄ = PfXi = 1g= 1� Pfno type i 
oupon are 
ontained in the set of ng= 1�  N � 1N !n
� Hen
eE[X ℄ = E[X1℄+� � �+E[XN ℄ = N 266641� 0BBB�N � 1N 1CCCAn37775(b) Y : The number of 
oupons 
olle
ted beforea 
omplete set is attained.
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tation 12� Yi: The number of additional 
oupons thatneed to be obtained after i distin
t typeshave been 
olle
ted in order to obtain an-other distin
t type.� Y = Y0 + Y1 + � � � + YN�1� PfYi = kg = N�iN ( iN )k�1 k � 1� Yi � geometri
((N � i)=N )� E[Yi℄ = NN�i� ThenE[Y ℄ = 1 + NN � 1 + NN � 2 + � � � + N1= N 266641 + � � � + 1N � 1 + 1N 37775� N (logN + C)where C � 0:57721 is the Euler 
onstant.Example 7.2k. Ten hunters are waiting fordu
ks to 
y by. When a 
o
k of du
ks 
iesoverhead, the hunters �re at the same time,
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tation 13but ea
h 
hooses his target at random, inde-pendently of the others. If ea
h hunter inde-pendently hits his target with probability p,
ompute the expe
ted number of du
ks thates
ape unhurt when a 
i
k of size 10 
ies over-head.�Xi: 1 if the ith du
k es
apes unhurt and 0otherwise.� E[X1+ � � �+X10℄ = E[X1℄ + � � �+E[X10℄� Ea
h of the hubters will hit the ith du
kwith probability p=10.� PfXi = 1g =  1� p10!10� E[X ℄ = 10  1� p10!10Example 7.2l. Expe
ted number of runs.Suppose that a sequen
e of n 1's and m 0's israndomly permuted so that ea
h of the (n +m)!=(n!m!) possible arrangements is equallylikely. Any 
onse
utive string of 1's is said
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tation 14to 
onstitute a run of 1's-for instan
e, if n =6;m = 4, and the ordering is 1,1,1,0,1,1,0,0,1,0,then there are 3 runs of 1's-and we are inter-ested in 
omputing the mean number of su
hruns.� LetIi = 8>>>><>>>>: 1 if a run of 1's starts at the ith position0 otherwise� R(1): The number of runs of 1.R(1) = n+mXi=1 IiE[R(1)℄ = n+mXi=1 E[Ii℄� Now, E[I1℄ = Pf"1" in position 1g= nn +mand for 1 < i � n +m,E[Ii℄ = Pf"0" in position i� 1, "1" in position ig= mn +m nn +m� 1
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tation 15� Hen
eE[R(1)℄ = nn +m + (n +m� 1)nm(n +m)(n +m� 1)� Similarly, E[R(0)℄, the expe
ted number ofruns of 0's, isE[R(0)℄ = mn +m + nmn +mand the expe
ted number of runs of eithertype isE[R(1) +R(0)℄ = 1 + 2nmn +mExample 7.2m. Consider an ordinary de
kof 
ards that is turned fa
e up one 
ard at atime. How many 
ards would one expe
t toturn fa
e up in order to obtain (a) an a
e and(b) a spade?� (a) and (b) are spe
ial 
ases of the followingproblem.� Suppose that balls are taken one by one outof an urn 
ontaining n white and m bla
kballs until the �rst white ball is drawn.
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tation 16� IfX denotes the number of balls withdrawn.� Name the bla
k balls as b1; : : : ; bm.� LetXi = 8><>: 1 if bi is withdrawn before any of the white balls0 otherwise�X = 1 + mXi=1Xi� Hen
e E[X ℄ = 1 + mXi=1PfXi = 1g� As ea
h of these n white balls plus ball bihas an equal probability of being the �rstone of this set to be withdrawnE[Xi℄ = PfXi = 1g = 1n + 1� E[X ℄ = 1 + mn+1Example 7.2n. A random walk in the plane.Consider a parti
le initially lo
ated at a givenpoint in the plane and suppose that it under-goes a sequen
e of steps of �xed length butin a 
ompletely random dire
tion. Spe
i�
ally,suppose that the new position after ea
h step is
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tation 17one unit of distan
e from the previous positionand at an angle of orientation from the previ-ous position that is uniformly distributed over(0; 2�) (see Fig. 7.3). Compute the expe
tedsquare of the distan
e from the origin after nsteps.� (Xi; Yi): The 
hange in the position at theith step.�Xi = 
os �i Yi = sin �i�D2 = 0BB� nXi=1Xi1CCA2 + 0BB� nXi=1Yi1CCA2= nXi=1(X2i + Y 2i ) + X Xi6=j(XiXj + YiYj)= n + X Xi6=j(
os �i 
os �j + sin �i sin �j)� 2�E[
os �i℄ = Z 2�0 
osu du = sin 2� � sin 0 = 02�E[sin �i℄ = Z 2�0 sinu du = 
os 0� 
os 2� = 0� E[D2℄ = n
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tation 18Example 7.2o. Analyzing the qui
k-sortalgorithm. Suppose that we are presented witha set of n distin
t values x1; : : : ; xn and we de-sire to put them in in
reasing order. An eÆ-
ient pro
edure for a

omplishing this task isthe qui
k-sort algorithm.�When n = 2, the algorithm 
ompares thetwo values and then put them in the appro-priate order.�When n > 2, one of the elements is ran-domly 
hosen{say it is xi{and then all ofthe other values are 
ompared with xi.� the algorithm then repeats itself on thesebra
kets and 
ontinues until all values havebeen sorted.� Example: 5, 9, 3, 10, 11, 14, 8, 4, 17, 6{ f5; 9; 3; 8; 4; 6g; 10; f11; 14; 17g{ f5; 3; 4g; 6; f9; 8; g; 10; f11; 14; 17g{ f3g; 4; f5g; 6; f9; 8; g; 10; f11; 14; 17g
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tation 19{ This 
ontinues until there is no bra
ketedset that 
ontains more than a single value.�X : The number of 
omparisons that it takesthe qui
k-sort algorithm to sort n distin
tnumbers, then E[X ℄ is a measure of the ef-fe
tiveness of this algorithm.� I(i; j): 1 if i and j are ever dire
tly 
om-pared, 0 otherwise.�X = n�1Xi=1 nXj=i+1 I(i; j)� E[X ℄ = n�1Xi=1 nXj=i+1Pfi and j are ever 
omparedg
� Pfi and j are ever 
omparedg = 2j � i + 1� E[X ℄ = n�1Xi=1 nXj=i+1 2j � i + 1nXj=i+1 2j � i + 1 � Z ni+1 2x� i + 1 dx= 2 log(n� i + 1)� 2 log(2)� 2 log(n� i + 1)



Probability II{ Chap. 7: Properties of Expe
tation 20E[X ℄ � nXi=1 2 log(n� i + 1)� 2 Z n�11 log(n� x + 1) dx= 2 Z n2 log(y) dy� 2n log(n)Example 7.2p. The probability of a unionof events. Let A1; : : : ; An denote events andXi = 8>>>><>>>>: 1 if Ai o

urs0 otherwise� 1 � nYi=1(1 � Xi) = 1 if [Ai o

urs and 0otherwise.� E 26641� nYi=1(1�Xi)3775 = P 0BB� n[i=1Ai1CCA� nYi=1(1�Xi) = nXk=0(�1)k Xi1<���<ikXi1 � � �Xik� E[Xi1Xi2 � � �Xik℄ = P (Ai1Ai2 � � �Aik)� E 241� nYi=1(1�Xi)35 = nXk=1(�1)k+1 Xi1<���<ik P (Ai1 � � �Aik)Example 7.2q. A round-robin tournamentof n 
ontestants is one in whi
h ea
h of the
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tation 21 n2! pairs of 
ontestants play ea
h other exa
tlyon
e, with the out
ome of any play being thatone of the 
ontestants wins and the other loses.� Suppose that the n players are initially num-bered as player 1, player 2, and so on.� Hamiltonian permutation if i1 beats i2, i2beats i3; : : : ; and in�1 beats in.� A problem of some interest is to determinethe largest possible number of Hamiltonianpermutations.� Suppose that there are 3 players. Then iteasy to see that if one of the players winstwi
e, then there is a single Hamiltonianpermutation.� If ea
h of the players wins on
e, then therewill be three Hamiltonians.�We will introdu
e randomness to show thatin a round-robin tournament of n players,n > 2, there is an out
ome for whi
h the
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tation 22number of Hamiltonian permutations is greaterthan n!=2n�1.� Suppose that the results of the  n2! gamesare independent and that either of the two
ontestants is equally likely to win ea
h en-
ounter.�X : The number of Hamiltonians that result.� Sin
e at least one of the possible values of anonrandom variable must ex
eed its mean,it follows that there must be at least onepossible tournament result whi
h has morethan E[X ℄ Halmiltonian permutations.� To determine E[X ℄, number of the n! per-mutations, for i = 1; : : : ; n!, Xi = 1 if per-mutation i is a Halmitonian, 0 otherwise.� E[X ℄ = Xi E[Xi℄� E[Xi℄ = (1=2)n�1� E[X ℄ = n!2n�1
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tation 23
E 2664 limn!1 nXi=1Xi3775 = limn!1E 2664 nXi=1Xi3775holds in two important spe
ial 
ases:1. The Xi are all nonnegative random vari-ables.2. 1Xi=1E[jXij℄ <1

Example 7.2r. Consider any nonnegative,integer-valued random variable X .� If for ea
h i � 1, we de�neXi = 8>>>><>>>>: 1 if X � i0 if X < ithen 1Xi=1Xi = XXi=1Xi + 1Xi=X+1Xi= XXi=1 1 + 1Xi=X+1 0= X
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tation 24� Hen
e, sin
e the Xi are all nonnegative,E[X ℄ = 1Xi=1E[Xi℄= 1Xi=1PfX � iga useful identity.Example 7.2s. Suppose that n elements-
all them 1; 2; : : : ; n-must be stored in a 
om-puter in the form of an ordered list. Ea
hunit of time a request will be made for oneof these elements-i being requested, indepen-dently of the past, with probability P (i); i �1;Xi P (i) = 1. Assuming these probabilities areknown, what ordering minimizes the averageposition on the line of the element requested?� Suppose that the elements are numbered sothat P (1) � P (2) � � � � � P (n).� To show that 1; 2; : : : ; n is the optimal or-dering, let X denote the position of the re-quested element.
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tation 25� Now under any ordering sayO = i1; i2; : : : ; in,POfX � kg = nXj=kP (ij)� nXj=kP (j)= P1;2;:::;nfX � kg� EO[X ℄ � E1;2;:::;n[X ℄7.3 Covarian
e, varian
e of sums, and
orrelationsProposition 3.1: IfX and Y are indepen-dent, then for any fun
tions h and g,E[g(X)h(Y )℄ = E[g(X)℄E[h(Y )℄
De�nition: The 
ovarian
e betweenX andY , denoted by Cov(X;Y ), is de�ned byCov(X;Y ) = E[(X �E[X ℄)(Y �E[Y ℄)℄= E[XY ℄� E[X ℄E[Y ℄A simple example of two dependent randomvariables X and Y have zero 
ovarian
e:
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tation 26� PfX = 0g = PfX = 1g = PfX =�1g = 13� Y = 0 if X 6= 0 and 1 if X = 0.� Cov(X;Y ) = E[XY ℄ � E[X ℄E[Y ℄ = 0sin
e E[XY ℄ = 0 and E[X ℄ = 0.Proposition 3.2:(i) Cov(X;Y ) = Cov(Y;X)(ii) Cov(X;X) = Var(X)(iii) Cov(aX; Y ) = aCov(X;Y )(iv) Cov 0B� nXi=1Xi; mXj=1Yj1CA = nXi=1 mXj=1Cov(Xi; Yj)
Var 0BB� nXi=1Xi1CCA = nXi=1Var(Xi)+2 Xi<j Cov(Xi; Xj)
If X1; : : : ; Xn are pairwise independent, thenVar 0BB� nXi=1Xi1CCA = nXi=1Var(Xi):Example 7.3a. Let X1; : : : ; Xn be inde-
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tation 27pendent and identi
ally distributed random vari-ables having expe
ted value � and varian
e �2,and as in Example 2
, let X = nXi=1Xi=n bethe sample mean. The quantities Xi �X; i =1; : : : ; n, are 
alled deviations, as they equalthe di�eren
es between the individual data andthe sample mean. The random variableS2 = nXi=1 (Xi �X)2n� 1is 
alled the sample varian
e. Find(a) Var(X)and (b) E[S2℄(a) Var(X) = 0BBB�1n1CCCA2Var 0BB� nXi=1Xi1CCA= 0BBB�1n1CCCA2 nXi=1Var(Xi) by independen
e
= �2n(b) (n� 1)S2 = nXi=1 (Xi � � + ��X)2
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tation 28= nXi=1(Xi � �)2 + nXi=1(X � �)2 � 2(X � �) nXi=1(Xi � �)= nXi=1(Xi � �)2 + n(X � �)2 � 2(X � �)n(X � �)= nXi=1(Xi � �)2 � n(X � �)2� (n� 1)E[S2℄ = nXi=1E[(Xi � �)2℄� nE[(X � �)2℄= n�2 � nVar(X)= (n� 1)�2
Example 7.3b. Varian
e of a binomialrandom variable. Compute the varian
e of abinomial random variable X with parametersn and p.�X = X1 + � � � +Xn whereXi = 8>>>><>>>>: 1 if the ith trial is a su

ess0 otherwise� Var(X) = Var(X1) + � � � + Var(Xn)� Var(Xi) = E[X2i ℄� (E[Xi℄)2



Probability II{ Chap. 7: Properties of Expe
tation 29= E[Xi℄� (E[Xi℄)2 sin
e X2i = Xi= p� p2� Var(X) = np(1� p)Example 7.3
. Varian
e of the numberof mat
hes. Compute the varian
e of X , thenumber of people that sele
t their own hats inExample 2h.�X = X1 + � � � +XN whereXi = 8>>>><>>>>: 1 if the ith man sele
ts his own hat0 otherwise� Var(X) = NXi=1Var(Xi) + 2X Xi<j Cov(Xi; Xj)� Var(Xi) = 1N (1� 1N ) = N�1N2� Cov(Xi; Xj) = E[XiXj℄� E[Xi℄E[Xj℄XiXj = 8><>: 1 if the ith and jth men both sele
t their own hats0 otherwise
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tation 30
E[XiXj℄ = PfXi = 1; Xj = 1g= PfXi = 1gPfXj = 1jXi = 1g= 1N 1N � 1� Cov(Xi; Xj) = 1N(N�1)� 0� 1N 1A2 = 1N2(N�1)� Var(X) = N � 1N + 20BBBB�N2 1CCCCA 1N2(N � 1)= N � 1N + 1N= 1Example 7.3d. Sampling from a �nite pop-ulation. Consider a setN people ea
h of whomhas an opinion about a 
ertain subje
t thatis measured by a real number v, whi
h repre-sents the person's "strength of feeling" aboutthe subje
t. Let vi represent the strength offeeling of person i; i = 1; : : : ; N . Suppose thatthese quantities vi; i = 1; : : : ; N are unknown



Probability II{ Chap. 7: Properties of Expe
tation 31and to gather information a group of n of theN people is "randomly 
hosen" in the sensethat all of the  Nn ! subsets of size n are equallylikely to be 
hosen. These n people are thenquestioned and their feelings determined. If Sdenotes the sum of the n sampled values, de-termine its mean and varian
e.An important appli
ation of the above is to aforth
oming ele
tion in whi
h ea
h person inthe population is either for or against a 
er-tain 
andidate or proposition. If we take vi toequal 1 if person i is in favor and 0 if he or sheis against, then v = NXi=1 vi=N represents theproportion of the population that is in favor.To estimate v, a random sample of n people is
hosen, and these people are polled. The pro-portion of those polled that are in favor-thatis, S=n-is often used used as an estimate of v.� Ii = 8>>>><>>>>: 1 if person i is in the random sample0 otherwise
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tation 32� S = NXi=1 viIi� E[S℄ = NXi=1 viE[Ii℄Var(S) = NXi=1Var(viIi) + 2X Xi<j Cov(viIi; vjIj)= NXi=1 v2iVar(Ii) + 2X Xi<j vivjCov(Ii; Ij)� E[Ii℄ = nN� E[IiIj℄ = nN n�1N�1� Var(Ii) = nN 0B�1� nN 1CACov(Ii; Ij) = n(n� 1)N2(N � 1) � 0B� nN 1CA2
= �n(N � n)N2(N � 1)� Hen
eE[S℄ = n NXi=1 viN = nvVar(S) = nN 0�N � nN 1A NXi=1 v2i � 2n(N � n)N 2(N � 1) X Xi<j vivj
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tation 33� Var(S) = n(N�n)N�1 0BB�PNi=1 v2iN � v21CCA� E[S℄ = nv = np sin
e v = NpN = p� Var(S) = n(N � n)N � 1 0BBB�NpN � p21CCCA= n(N � n)N � 1 p(1� p)� E 24Sn35 = p� Var 0�Sn1A = N�nn(N�1)p(1� p)
Correlation:�(X;Y ) = Cov(X;Y )sVar(X)Var(Y )
� 0 � Var 0B�X�x + Y�y1CA implies �1 � �(X;Y ).� 0 � Var 0B�X�x � Y�y1CA implies 1 � �(X;Y ).� If �(X;Y ) = 1, then Y = a + bX whereb = �y=�x.
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tation 34� If �(X;Y ) = �1, then Y = a + bX whereb = ��y=�x.�X and Y are un
orrelated if �(X;Y ) =0.Example 7.3e. Let IA and IB be indi
atorvariables for the events A and B. That is,IA = 8>>>><>>>>: 1 if A o

urs0 otherwiseIB = 8>>>><>>>>: 1 if B o

urs0 otherwiseThen� E[IA℄ = P (A)� E[IB℄ = P (B)� E[IAIB℄ = P (AB)Cov(IA; IB) = P (AB)� P (A)P (B)= P (B)[P (AjB)� P (A)℄� Thus we obtain the quite intuitive resultthat the indi
ator variables for A and B are
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tation 35either positively 
orrelated, un
orrelated, ornegatively 
orrelated depending on whetherP (AjB) is greater than, equal to, or lessthan P (A).Example 7.3f. LetX1; : : : ; Xn be indepen-dent and identi
ally distributed random vari-ables having varian
e �2. Show thatCov(Xi �X;X) = 0� Cov(Xi �X;X) = Cov(Xi; X)� Cov(X;X)= Cov 0BBB�Xi; 1n nXj=1Xj1CCCA� Var(X)
= 1n nXj=1Cov(Xi; Xj)� �2n= �2n � �2n = 0� Cov(Xi; Xj) = 8>>>><>>>>: 0 if j 6= i by independen
e�2 if j = i sin
e Var(Xi) = �2
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tation 36� Although X and the deviation Xi �X areun
orrelated, they are not, in general, inde-pendent.� If Xi's are N (�; �2), then X and the devi-ation (Xi �X)'s are independent.Example 7.3g. Considerm independent tri-als, ea
h of whi
h results in any of r possibleout
omes with probabilitiesP1; P2; : : : ; Pr; rX1 Pi =1.� Ni: Denote the number of the m trials thatresult in out
ome i, then N1; N2; : : : ; Nrhave the multinomial distributionPfN1 = n1; N2 = n2; : : : ; Nr = nrg= m!n1!n2! : : : ; nr!Pn11 Pn22 � � �Pnrr rXi=1ni = m� For i 6= j it seems likely that when Ni islarge Nj would tend to be small, and hen
eit is intuitive that they should be negatively
orrelated.
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tation 37� Let us 
ompute their 
ovarian
e by usingProposition 3.2(iv) and the representationNi = mXk=1 Ii(k) and Nj = mXk=1 Ij(k)whereIi(k) = 8>>>><>>>>: 1 if trial k results in out
ome i0 otherwiseIj(k) = 8>>>><>>>>: 1 if trial k results in out
ome j0 otherwise� From Proposition 3.2(iv) we haveCov(Ni; Nj) = mX`=1 mXk=1Cov(Ii(k); Ij(`))� Now, when k 6= `;Cov(Ii(k); Ij(`)) = 0sin
e the out
ome of trial k is independentof the out
ome of trial `.� On the other hand,Cov(Ii(`); Ij(`)) = E[Ii(`)Ij(`)℄�E[Ii(`)℄E[Ij(`)℄= 0� PiPj = �PiPj



Probability II{ Chap. 7: Properties of Expe
tation 38where the above uses that Ii(`)Ij(`) = 0sin
e trial ` 
annot result in both out
omei and out
ome j.� Hen
e we obtain thatCov(Ni; Nj) = �mPiPjwhi
h is in a

ord with our intuition thatNi and Nj are negatively 
orrelated.7.4 Conditional expe
tation7.4.1 De�nitionsDis
rete 
ase:pXjY (xjy) = PfX = x j Y = yg = p(x; y)pY (y)E[X = x j Y = y℄ = Xx xPfX = x j Y = yg
Example 7.4a. If X and Y are indepen-dent binomial random variables with identi
alparameters n and p, 
al
ulate the 
onditionalexpe
ted value of X , given that X + Y = m.
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tation 39� PfX = kjX + Y = mg = PfX = k;X + Y = mgPfX + Y = mg= PfX = k; Y = m� kgPfX + Y = mg= PfX = kgPfY = m� kgPfX + Y = mg= �nk�pk(1� p)n�k� nm�k�pm�k(1� p)n�m+k�2nm�pm(1� p)2n�m= �nk�� nm�k��2nm�� The 
onditional distribution ofX , given thatX + Y = m, is the hypergeometri
 distri-bution (2n; n;m).� E[X j X + Y = m℄ = m=2Continuous 
ase:fXjY (xjy) = f (x; y)fY (y)E[X j Y = y℄ = Z1�1 xfXjY (xjy) dxExample 7.4b. Suppose that the joint den-
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tation 40sity of X and Y is given byf (x; y) = e�x=ye�yy 0 < x; y <1Compute E[XjY = y℄.� fXjY (xjy) = f (x; y)fY (y)= f (x; y)R1�1 f (x; y)dx= (1=y)e�x=ye�yR10 (1=y)e�x=ye�ydx= (1=y)e�x=yR10 (1=y)e�x=ydx= 1ye�x=y� The 
onditional distribution ofX , given thatY = y, is exp(1=y).� E[XjY = y℄ = Z10 xye�x=y dx = y
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tation 41
E[g(X)jY = y℄ = 8>>>>><>>>>>: Xx g(x)pXjY (xjy) dis
rete 
aseZ1�1 g(x)fXjY (xjy) dx 
ontinuous 
aseE[ nXi=1XijY = y℄ = nXi=1E[XijY = y℄
7.4.2 Computing expe
tations by 
on-ditioningProposition 4.1:E[X ℄ = E[E[XjY ℄℄ (4:1)
E[X ℄ = 8>>>>><>>>>>: Xy E[XjY = y℄PfY = yg dis
rete 
aseZ1�1E[XjY = y℄fY (y) dy 
ontinuous 
aseThis is an extremely useful result that oftenenables us to easily 
ompute expe
tations by�rst 
onditioning on some appropriate randomvariable.Example 7.4
. Aminer is trapped in a mine
ontaining 3 doors. The �rst door leads to atunnel that will take him to safety after 3 hours
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tation 42of travel. The se
ond door leads to a tunnelthat will return him to the mine after 5 hoursof travel. The third door leads to a tunnel thatwill return him to the mine after 7 hours. If weassume that the miner is at all times equallylikely to 
hoose any one of the doors, what isthe expe
ted length of time until he rea
hessafety?�X : The amount of time until the minerrea
hes safety.� Y : The door he initially 
hooses.E[X ℄ = E[XjY = 1℄PfY = 1g + E[XjY = 2℄PfY = 2g+E[XjY = 3℄PfY = 3g= 13(E[XjY = 1℄ + E[XjY = 2℄ + E[XjY = 3℄)� Note thatE[XjY = 1℄ = 3E[XjY = 2℄ = 5 + E[X ℄ (4:3)E[XjY = 3℄ = 7 + E[X ℄� E[X ℄ = 13(3 + 5 + E[X ℄ + 7 + E[X ℄)
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tation 43� E[X ℄ = 15Example 7.4d. Expe
tation of a randomnumber of random variables. Suppose thatthe number of people entering a departmentstore on a given day is a random variable withmean 50. Suppose further that amounts ofmoney spent by these 
ustomers are indepen-dent random variables having a 
ommon meanof 8. Assume also that the amount of moneyspent by a 
ustomer is also independent of thetotal number of 
ustomers to enter the store.What is the expe
ted amount of money spentin the store in a given day?� N : The number of 
ustomers that enter thestore.�Xi: The amount spent by the ith su
h 
us-tomer. E 2664NX1 Xi3775 = E 2664E 2664NX1 XijN 37753775
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tation 44� E 24NX1 XijN = n35 = E 24 nX1 XijN = n35= E 24 nX1 Xi35 by the independen
e of the Xi and N= nE[X ℄ where E[X ℄ = E[Xi℄� E 2664NX1 XijN 3775 = NE[X ℄� ThusE 2664 NXi=1Xi3775 = E[NE[X ℄℄ = E[N ℄E[X ℄� The expe
ted amount of money spent: 50�8 = 400Example 7.4e. Consider n points that areindependently and uniformly distributed on theinterval (0,1). Say that any one of these pointsis "isolated" if there are no other points withina distan
e d of it, where d is a spe
i�ed 
onstantsu
h that 0 < d < 12. Compute the expe
tednumber of the n points that are isolated fromthe others.� Let the points be U1; : : : ; Un, and de�ne Ij
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tation 45as the indi
ator variable for the event thatUj is an isolated point.� E 26664 nXj=1 Ij37775 = nXj=1E[Ij℄� E[Ij℄ = Z 10 E[IjjUj = x℄ dx� E[Ij℄ = Z d0 E[IjjUj = x℄ dx+ Z 1�dd E[IjjUj = x℄ dx+ Z 11�dE[IjjUj = x℄ dx= Z d0 (1� d� x)n�1 dx+ Z 1�dd (1� 2d)n�1 dx+ Z 11�d(1� x+ d)n�1 dx= Z 1�d1�2d yn�1 dy + (1� 2d)(1� 2d)n�1 + Z 2dd yn�1 dy= (1� d)nn � (1� 2d)nn + (1� 2d)n + (2d)nn � dnn� E 26664 nXj=1 Ij37775 = (1� d)n + (n� 1)(1� 2d)n +(2n � 1)dn� If d = 
=n, E 26664 nXj=1 Ij37775 � e�
 + (n� 1)e�2

Example 7.4f. An urn 
ontains awhite andb bla
k balls. One ball at a time is randomlywithdrawn until the �rst white ball is drawn.
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tation 46Find the expe
ted number of bla
k balls thatare withdrawn.�X : The number of bla
k balls withdrawn.Y = 8>>>><>>>>: 1 if the �rst ball sele
ted is white0 if the �rst ball sele
ted is bla
k�Ma;b = E[X ℄ = E[XjY = 1℄PfY = 1g +E[XjY = 0℄PfY = 0g� E[XjY = 1℄ = 0� E[XjY = 0℄ = 1 +Ma;b�1� Sin
e PfY = 0g = b=(a + b), we see thatMa;b = ba + b[1 +Ma;b�1℄�Ma;0 is 
learly equal to 0,Ma;1 = 1a + 1[1 +Ma;0℄ = 1a + 1Ma;2 = 2a + 2[1 +Ma;1℄ = 2a + 2 241 + 1a + 135 = 2a + 1Ma;3 = 3a + 3[1 +Ma;2℄ = 3a + 3 241 + 2a + 135 = 3a + 1�



Probability II{ Chap. 7: Properties of Expe
tation 47�Ma;b = ba+1Example 7.4g. Varian
e of the geometri
distribution. Independent trials ea
h result-ing in a su

ess with probability p are su

es-sively performed. LetN be the time of the �rstsu

ess. Find Var(N ).� Var(N ) = E[N2℄� (E[N ℄)2� However,E[N2jY = 1℄ = 1E[N2jY = 0℄ = E[(1 +N )2℄� E[N 2℄ = E[N 2jY = 1℄PfY = 1g + E[N 2jY = 0℄PfY = 0g= p + (1� p)E[(1 +N)2℄= 1 + (1� p)E[2N +N 2℄� E[N2℄ = 1 + 2(1�p)p + (1� p)E[N2℄� E[N2℄ = 2�pp2
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tation 48� Therefore,Var(N ) = E[N2℄� (E[N ℄)2= 2� pp2 � 0BBB�1p1CCCA2= 1� pp2Example 7.4h. LetU1; U2; : : : be a sequen
eof independent uniform (0,1) random variables.Find E[N ℄ whenN = min 8>><>>:n : nXi=1Ui > 19>>=>>;
� N (x) = min 8>><>>:n : nXi=1Ui > x9>>=>>;�m(x) = E[N (x)℄�m(x) = Z 10 E[N (x)jU1 = y℄ dy� E[N (x)jU1 = y℄ = 8>>>><>>>>: 1 if y > x1 +m(x� y) if y � x



Probability II{ Chap. 7: Properties of Expe
tation 49�m(x) = 1 + Z x0 m(x� y) dy= 1 + Z x0 m(u)du by letting u = x� y�m0(x) = m(x)� m0(x)m(x) = 1� log[m(x)℄ = x + 
�m(x) = kex� Sin
e m(0) = 1 we see that k = 1, thenm(x) = ex7.4.3 Computing probabilities by 
on-ditioningX = 8>>>><>>>>: 1 if E o

urs0 if E does not o

urE[X ℄ = P (E)E[XjY = y℄ = P (EjY = y)P (E) = Xy P (EjY = y)P (Y = y) if Y is dis
rete= Z1�1P (EjY = y)fY (y) dy if Y is 
ontinuous



Probability II{ Chap. 7: Properties of Expe
tation 50Example 7.4i. The best prize problem. Sup-pose that we are to be presented with n distin
tprizes in sequen
e. After being presented witha prize we must immediately de
ide whetherto a

ept it or to reje
t it and 
onsider thenext prize. The only information we are givenwhen de
iding whether to a

ept a prize is therelative rank of that prize 
ompared to onesalready seen. That is, for instan
e, when the�fth prize is presented, we learn how it 
om-pares with the four prizes already seen. Sup-pose that on
e a prize is reje
ted it is list, andthat our obje
tive is to maximize the probabil-ity of obtaining the best prize. Assuming thatall n! orderings of the prizes are equally likely,how well 
an we do?� Consider the strategy that reje
ts the �rstk prizes and then a

epts the �rst one thatis better than all of those �rst k.Pk(best) = nXi=1Pk(bestjX = i)P (X = i)



Probability II{ Chap. 7: Properties of Expe
tation 51= 1n nXi=1Pk(bestjX = i)� Pk(bestjX = i) = 0 i � k� Pk(best) = kn nXi=k+1 1i� 1� kn Z nk+1 1x + 1 dx= kn log 0BBB�n� 1k 1CCCA� kn log 0B�nk 1CA� Now, if we 
onsider the fun
tiong(x) = xn log 0B�nx1CA� g0(x) = 1n log 0B�nx1CA� 1n� g0(x) = 0) log 0B�nx1CA = 1) x = ne



Probability II{ Chap. 7: Properties of Expe
tation 52Example 7.4j. Let U be a uniform randomvariable on (0,1), and suppose that the 
ondi-tional distribution of X , given that U = p, isbinomial with parameters n and p. Find theprobability mass fun
tion of X .� Conditioning on the value of U :PfX = ig = Z 10 PfX = ijU = pgfU (p) dp= Z 10 PfX = ijU = pg dp= n!i!(n� i)! Z 10 pi(1� p)n�i dp
� Z 10 pi(1� p)n�idp = i!(n� i)!(n + 1)!� Hen
e we obtain thatPfX = ig = 1n + 1 i = 0; : : : ; n� If a 
oin whose probability of 
oming upheads is uniformly distributed over (0; 1) is
ipped n times, then the number of headso

urring is equally likely to be any the val-ues 0; : : : ; n.



Probability II{ Chap. 7: Properties of Expe
tation 53� Another argument:{ U;U1; : : : ; Un are independent uniform(0; 1).{X : The number of the random variablesU1; : : : ; Un that are smaller than U .{ Sin
e all the random variablesU;U1; : : : ; Unhave the same distribution, it follows thatU is equally likely to be the smallest, orthe se
ond smallest, or the largest of them;soX is equally likely to be any of the val-ues 0; 1; : : : ; n.Example 7.4k. Suppose that X and Y areindependent 
ontinuous random variables hav-ing densities fX and fY , respe
tively. Com-pute PfX < Y g.� Conditioning on the value of Y :PfX < Y g = Z 1�1 PfX < Y jY = ygfy(y) dy= Z 1�1 PfX < yjY = ygfY (y) dy= Z 1�1 PfX < ygfY (y) dy by independen
e= Z 1�1 FX(y)fY (y) dy



Probability II{ Chap. 7: Properties of Expe
tation 54where FX(y) = Z y�1 fX(X) dx� Spe
ial 
ase: If fX = fY , then P (X <Y ) = 12.Example 7.4l. Suppose that X and Y areindependent 
ontinuous random variables. Findthe distribution of X + Y .� Conditioning on the value of Y :PfX + Y < ag = Z 1�1 PfX + Y < ajY = ygfY (y) dy= Z 1�1 PfX + y < ajY = ygfY (y) dy= Z 1�1 PfX < a� ygfY (y) dy= Z 1�1 FX(a� y)fY (y) dy
7.4.4 Conditional varian
eVar(XjY ) = E[(X � E[XjY ℄)2jY ℄= E[X2jY ℄� (E[XjY ℄)2
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tation 55Proposition 4.2: The 
onditional varian
eformulaVar(X) = E[Var(XjY )℄ + Var(E[XjY ℄)
� Var(XjY ) = E[X2jY ℄� (E[XjY ℄)2� E[Var(XjY )℄ = E[X2℄� E[(E[XjY ℄)2℄� Var(E[XjY ℄) = E[(E[XjY ℄)2℄� (E[X ℄)2Example 7.4m. Suppose that by any timet the number of people that have arrived at atrain depot is a Poisson random variable withmean �t. If the initial train arrives at the de-pot at a time (independent of when the passen-gers arrive) that is uniformly distributed over(0; T ), what is the mean and varian
e of thenumber of passengers that enter the train?� N (t): The number of arrivals by t.� Y : The time at whi
h the train arrives.� The random variable of interest is N (t).E[N(Y )jY = t℄ = E[N(t)jY = t℄
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tation 56= E[N(t)℄ by the independen
e of Y and N(t)= E[N(t)℄= �t sin
e N(t) is Poisson with mean �t� E[N (Y )jY ℄ = �Y� E[N (Y )℄ = �E[Y ℄ = �T2� Var(N (Y )jY = t) = Var(N (t)jY = t)= Var(N (t)) by independen
e= �tVar(N (Y )jY ) = �YE[N (Y )jY ℄ = �Y� From the 
onditional varian
e formula:Var(N (Y )) = E[�Y ℄ + Var(�Y )= �T2 + �2T 212Example 7.4n. Varian
e of a random num-ber of random variables. Let X1; X2; : : : bea sequen
e of independent and identi
ally dis-tributed random variables and let N be a non-negative integer-valued random variable that
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tation 57is independent of the sequen
e Xi, i � 1. To
ompute Var 0BB� NXi=1Xi1CCA, we 
ondition on N :
E 2664 NXi=1XijN 3775 = NE[X ℄Var 0BB� NXi=1XijN 1CCA = NVar(X)Var 0BB� NXi=1Xi1CCA = E[N ℄Var(X) + (E[X ℄)2Var(N )

7.5 Conditional expe
tation and pre-di
tion�X = x is observed.� Use g(x) to predi
t Y .� Choose g so as to minE[(Y � g(X))2℄.Proposition 7.5.1:E[(Y � g(X))2℄ � E[(Y � E[Y jX ℄)2℄
� E[(Y � g(X))2jX ℄ = E[(Y � E[Y jX ℄ +E[Y jX ℄� g(X))2jX ℄ =
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tation 58E[(Y�E[Y jX ℄)2jX ℄+E[(E[Y jX ℄�g(X))2jX ℄+2E[(Y � E[Y jX ℄)(E[Y jX ℄� g(X))jX ℄� E[(Y �E[Y jX ℄)(E[Y jX ℄� g(X))jX ℄ = 0� E[(Y �g(X))2jX ℄ � E[(Y �E[Y jX ℄)2jX ℄Example 7.5a. Suppose that the son of aman of height x (in in
hes) attains a heightthat is normally distributed with mean x + 1and varian
e 4. What is the best predi
tion ofthe height at full growth of the son of a manwho is 6 feet tall?� Y = X + 1 + e where e � N (0; 4).E[Y jX = 72℄ = E[X + 1 + ejX = 72℄= 73 + E[ejX = 72℄= 73 + E(e) by independen
e= 73Example 7.5b. Suppose that if a signal values is sent from lo
ation A, then the signal valuere
eived at lo
ation B is normally distributed
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tation 59with parameters (s; 1). If S, the value of thesignal sent at A, is normally distributed withparameters (�; �2), what is the best estimateof the signal sent if R, the value re
eived at B,is equal to r?� fSjR(sjr) = fS;R(s; r)fR(r)= fS(s)fRjS(rjs)fR(r)= Ke�(s��)2=2�2e�(r�s)2=2
(s� �)22�2 + (r � s)22 = s2 0� 12�2 + 121A�  ��2 + r! s + C1= 1 + �22�2 264s2 � 2 0B�� + r�21 + �2 1CA s375 + C1= 1 + �22�2 0B�s� � + r�21 + �2 1CA2 + C2where C1 and C2 do not depend on s.
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tation 60� Hen
e
fSjR(sjr) = C exp 8>>>>>>>>>>>><>>>>>>>>>>>>:

� 2664s� (�+r�2)1+�2 377522 0B� �21+�21CA
9>>>>>>>>>>>>=>>>>>>>>>>>>;� E[SjR = r℄ = �+r�21+�2� Var(SjR = r) = �21+�2� E[SjR = r℄ = 11+�2� + �21+�2rExample 7.5
. In digital signal pro
essingraw 
ontinuous analog data X must be quan-tized, or dis
retized, in order to obtain a digitalrepresentation. In order to quantize the rawdata X , an in
reasing set of numbers ai; i =0;�1;�2; : : : ; su
h that limi!+1 ai = 1,limi!�1 ai = �1, is �xed and the raw dataare then quantized a

ording to the interval(ai; ai+1℄ in whi
h X lies. Let us denote by yithe dis
retized value when X 2 (ai; ai+1℄, andlet Y denote the observed dis
retized value-
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tation 61that is, Y = yi if ai < X � ai+1The distribution of Y is given byPfY = yig = FX(ai+1)� FX(ai)
Suppose now that we want to 
hoose the val-ues yi; i = 0;�1;�2; : : : so as to minimizeE[(X�Y )2℄, the expe
ted mean square di�er-en
e between the raw data and their quantizedversion.(a) Find the optimal values yi; i = 0;�1; : : :For the optimal quantizer Y show that:(b) E[X ℄ = E[Y ℄, so the mean square errorquantizer preserves the input mean;(
) Var(Y ) = Var(X)�E[(X � Y )2℄.� (a)� E[(X � Y )2℄ = Xi E[(X � yi)2jai < X �ai+1℄Pfai < X � ai+1g
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tation 62� I = i if ai < X � ai+1� ThenE[(X�yi)2jai < X � ai+1℄ = E[(X�yi)2jI = i℄� yi = E[XjI = i℄= E[Xjai < X � ai+1℄= Z ai+1ai xfX(s) dxFX(ai+1)� FX(ai)� (b) E[Y ℄ = E[X ℄� (
)Var(X) = E[Var(XjI)℄ + Var(E[XjI ℄)= E[E[(X � Y )2jI ℄℄ + Var(Y )= E[(X � Y )2℄ + Var(Y )Best linear predi
tor of Y w.r.t Xmina;b E[(Y � (a + bX))2℄
� ��aE[(Y � (a + bX))2℄ = �2E[Y ℄ + 2a +2bE[X ℄
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tation 63� ��bE[(Y�(a+bX))2℄ = �2E[XY ℄+2aE[X ℄+2bE[X2℄� b = E[XY ℄�E[X ℄E[Y ℄E[X2℄�(E[X ℄)2 = Cov(X;Y )�2x = ��y�x� a = E[Y ℄� bE[X ℄� Best linear predi
tor of Y w.r.t. X�y + ��y�x (X � �x)�Mean square error of this predi
tor:E 2666640BBB�Y � �y � ��y�x (X � �x)1CCCA2377775 = �2y(1��2)
Example 7.5d. An example in whi
h the
onditional expe
tation of Y given X is linearin X , and hen
e the best linear predi
tor of Ywith respe
t to X is the best overall predi
-tor, is when X and Y have a bivariate normaldistribution. In this 
ase their joint density isgiven byf(x; y) = 12��x�yp1� �2 exp8<:� 12(1� �2) 24�x� �x�x �2 � 2�(x� �x)(y � �y)�x�y +  y � �y�y !2359=;
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� fY jX(yjx) = 1p2��yp1� �2 exp8<:� 12�2y(1� �2)  y � �y � ��y�x (x� �x)!29=;� E[Y jX = x℄ = �y + ��y�x (x� �x)� Var(Y jX = x) = �2y(1� �2)7.6 Moment generating fun
tionsM (t) = E[etX ℄= 8>>>>><>>>>>: Xx etxp(x) if X is dis
rete;Z1�1 etxf (x) dx if X is 
ontinuous
M 0(t) = E[XetX ℄ M 0(0) = E[X ℄M 00(t) = E[X2etX ℄ M 00(0) = E[X2℄M (n)(t) = E[XnetX ℄ M (n)(0) = E[Xn℄Example 7.6a. Binomial distribution withparameters n and p. If X is a binomial ran-dom variable with parameters n and p, thenM (t) = E[etX ℄
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= nXk=0 etk0BBBB�nk1CCCCApk(1� p)n�k
= nXk=0 0BBBB�nk1CCCCA(pet)k(1� p)n�k= (pet + 1� p)n�M 0(t) = n(pet+1� p)n�2pet and E[X ℄ =M 0(0) = np.� M 00(t) = n(n � 1)(pet + 1 � p)n�2(pet)2 + n(pet +1 � p)n�1pet and E[X2℄ = M 00(0) = n(n �1)p2 + np.� The varian
e of X is given byVar(X) = E[X2℄� (E[X ℄)2= n(n� 1)p2 + np� n2p2= np(1� p)Example 7.6b. Poisson distribution withmean �. If X is a Poisson random variablewith parameter �, thenM (t) = E[etX ℄
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= 1Xn=0 etne���nn!= e�� 1Xn=0 (�et)nn!= e��e�et= expf�(et � 1)g� Di�erentiation yieldsM 0(t) = �et expf�(et � 1)gM 00(t) = (�et)2 expf�(et � 1)g + �et expf�(et � 1)g� Thus E[X ℄ = M 0(0) = �E[X2℄ = M 00(0) = �2 + �Var(X) = E[X2℄� (E[X ℄)2= �� Hen
e both the mean and the varian
e ofthe Poisson random variable equal �.Example 7.6
. Exponential distribution withparameter �M (t) = E[etX ℄
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tation 67= Z10 etX�e��x dx= � Z10 e�(��t)x dx= ��� t for t < �
� Di�erentiation of M (t) yieldsM 0(t) = �(�� t)2 M 00(t) = 2�(�� t)3� Hen
eE[X ℄ = M 0(0) = 1� E[X2℄ = M 00(0) = 2�2� The varian
e of X is given byVar(X) = E[X2℄� (E[X ℄)2= 1�2Example 7.6d. Normal distribution. We�rst 
ompute the moment generating fun
tionof a unit normal random variable with param-eters 0 and 1.
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tation 68� Letting Z be su
h a random variable,MZ(t) = E[etZ ℄= 1p2� Z1�1 etxe�x2=2 dx
= 1p2� Z1�1 exp 8>>>>><>>>>>:�(x2 � 2tx)2 9>>>>>=>>>>>; dx= 1p2� Z1�1 exp 8>>>>><>>>>>:�(x� t)22 + t22 9>>>>>=>>>>>; dx= et2=2 1p2� Z1�1 e�(x�t)2=2 dx= et2=2�MZ(t) = et2=2�X = � + �Z � N (�; �2)MX(t) = E[etX ℄= E[et(�+�Z)℄= E[et�et�Z ℄= et�MZ(t�)= et�e(t�)2=2
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= exp 8>>>>><>>>>>:�2t22 + �t9>>>>>=>>>>>;� By di�erentiating, we obtainM 0X(t) = (� + t�2) exp 8>><>>:�2t22 + �t9>>=>>;M 00X(t) = (� + t�2)2 exp 8>><>>:�2t22 + �t9>>=>>; + �2 exp 8>><>>:�2t22 + �t9>>=>>;� Thus E[X ℄ = M 0(0) = �E[X2℄ = M 00(0) = �2 + �2implying thatVar(X) = E[X2℄� (E[X ℄)2= �2Suppose that X and Y are independent andhave moment generating fun
tions MX(t) andMY (t), respe
tively. ThenMX+Y (t) = MX(t)MY (t)Uniqueness of moment generating fun
-tion: If MX(t) exists and is �nite in some



Probability II{ Chap. 7: Properties of Expe
tation 70region about t = 0, then the distribution of Xis uniquely determined.For example, if MX(t) = (1=2)10(et + 1)10,then X is a binomial(10; 1=2).Example 7.6e. Suppose that the momentgenerating fun
tion of a random variable X isgiven by M (t) = e3(et�1). What is PfX =0g?�M (t) is the moment generating fun
tion ofa Poisson random variable with mean 3.� PfX = 0g = e�3
Example 7.6f. Sums of independent bino-mial random variables. If X and Y are in-dependent binomial random variables with pa-rameters (n; p) and (m; p), respe
tively, whatis the distribution of X + Y ?� The moment generating fun
tion of X + Y



Probability II{ Chap. 7: Properties of Expe
tation 71is given byMX+Y (t) = MX(t)MY (t)= (pet + 1� p)n(pet + 1� p)m= (pet + 1� p)m+n� Thus X + Y is binomial distributed withparameters m + n and p.Example 7.6g. Sums of independent Pois-son random variables. Cal
ulate the distri-bution of X + Y when X and Y are indepen-dent Poisson random variables with means �1and �2, respe
tively.�MX+Y (t) = MX(t)MY (t)= expf�1(et � 1)g expf�2(et � 1)g= expf(�1 + �2)(et � 1)g� Thus X +Y is Poisson distributed with pa-rameters �1 + �2.
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tation 72Example 7.6h. Sums of independent nor-mal random variables. Show that if X andY are independent normal random variableswith parameters (�1; �21) and (�2; �22), respe
-tively, thenX+Y is normal with mean �1+�2and varian
e �21 + �22.�MX+Y (t) = MX(t)MY (t)= exp 8>>>>><>>>>>:�21t22 + �1t9>>>>>=>>>>>; exp 8>>>>><>>>>>:�22t22 + �2t9>>>>>=>>>>>;= exp 8>>>>><>>>>>:(�21 + �22)t22 + (�1 + �2)t9>>>>>=>>>>>;Example 7.6i. Compute the moment gen-erating fun
tion of a 
hi-squared random vari-able with n degrees of freedom.�We 
an represent su
h a random variable asZ21 + � � � + Z2n
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tation 73�M (t) = (E[etZ2℄)n where Z is a standardnormal.E[etZ2℄ = 1p2� Z 1�1 etx2e�x2=2 dx= 1p2� Z 1�1 e�x2=2�2 dx where �2 = (1� 2t)�1= �= (1� 2t)�1=2�M (t) = (1� 2t)�n=2Example 7.6j. Moment generating fun
-tion of the sum of a random number of ran-dom variables. LetX1; X2; : : : be a sequen
eof independent and identi
ally distributed ran-dom variables, and let N be a nonnegative,integer-valued random variable that is indepen-dent of the sequen
e Xi, i � 1. We want to
ompute the moment generating fun
tion ofY = NXi=1Xi� Condition on NE[expftNX1 XigjN = n℄ = E[expft nX1 XigjN = n℄



Probability II{ Chap. 7: Properties of Expe
tation 74= E[expft nX1 Xig℄= [MX(t)℄nwhere MX(t) = E[etXi℄� E[etY jN ℄ = (MX(t))N�M 0Y (t) = E[N (MX(t))N�1M 0X(t)℄
E[Y ℄ = M 0Y (0)= E[N (MX(0))N�1M 0X(0)℄= E[NE[X ℄℄= E[N ℄E[X ℄� E[Y 2℄ = M 00Y (0)= E[N(N � 1)(E[X ℄)2 +NE[X2℄℄= (E[X ℄)2(E[N 2℄� E[N ℄) + E[N ℄E[X2℄= E[N ℄(E[X2℄� (E[X ℄)2) + (E[X ℄)2E[N 2℄= E[N ℄Var(X) + (E[X ℄)2E[N 2℄Var(Y ) = E[N ℄Var(X) + (E[X ℄)2(E[N 2℄� (E[N ℄)2)= E[N ℄Var(X) + (E[X ℄)2Var(N)
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tation 75Example 7.6k. Let Y denote a uniform ran-dom variable on (0; 1), and suppose that 
ondi-tional on Y = p, the random variable X has abinomial distribution with parameters n and p.In Example 7.4j we showed that X is equallylikely to take on any of the values 0; 1; : : : ; n.Establish this result by using moment generat-ing fun
tions.� E[etXjY = p℄ = (pet + 1� p)nE[etX ℄ = Z 10 (pet + 1� p)n dp= 1et � 1 Z et1 yn dy
= 1n + 1et(n+1) � 1et � 1= 1n + 1(1 + et + e2t + � � � + ent)�X is uniformly distributed on 0; 1; : : : ; n.7.6.1 Joint moment generating fun
-tions
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tation 76�M (t1; : : : ; tn) = E[et1X1+���+tnXn℄�MXi(t) = E[etXi℄ = M (0; : : : ; 0; t; 0; : : : ; 0)� If X1; : : : ; Xn are independent if and onlyif M (t1; : : : ; tn) = MX1(t1) � � �MXn(tn)Example 7.6l. Let X and Y be indepen-dent normal random variables, ea
h with mean� and varian
e �2. In Example 7.7a of Chap.6 we showed that X + Y and X � Y are inde-pendent.� Let us now establish this result by 
omput-ing their joint moment generating fun
tion.E[et(X+Y )+s(X�Y )℄ = E[e(t+s)X+(t�s)Y ℄= E[e(t+s)X ℄E[e(t�s)Y ℄= e�(t+s)+�2(t+s)2=2e�(t�s)+�2(t�s)2=2= e2�t+�2t2e�2s2� But we re
ognize the pre
eding as the jointmoment generating fun
tion of the sum ofa normal random variables with mean 2�
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tation 77and varian
e 2�2 and an independent nor-mal random variable with mean 0 and vari-an
e 2�2.� As the joint moment generating fun
tion uniquelydetermines the joint distribution, it thus fol-lows thatX+Y andX�Y are independentnormal random variables.Example 7.6m. Suppose that the numberof events that o

ur is a Poisson random vari-able with mean �, and that ea
h event is inde-pendently 
ounted with probability p. Showthat the number of 
ounted events and thenumber of un
ounted events are independentPoisson random variables with respe
tive means�p and �(1� p).�X : The total number of events.�X
: The number of them that are 
ounted.� Condition on X :E[esX
+t(X�X
)jX = n℄ = etnE[e(s�t)X
jX = n℄



Probability II{ Chap. 7: Properties of Expe
tation 78= etn(pes�t + 1� p)n= (pes + (1� p)et)n� E[esX
+t(X�X
)jX ℄ = (pes + (1� p)et)X� E[esX
+t(X�X
)℄ = E[(pes + (1� p)et)X ℄� E[esX
+t(X�X
)℄ = e�(pes+(1�p)et�1)= e�p(es�1)e�(1�p)(et�1)
7.7 Additional properties of normal ran-dom variables7.7.1 The multivariate normal distri-bution� Z1; : : : ; Zn are a set of n independent unitnormal.� For some 
onstants aij and �i,X1 = a11Z1 + � � � + a1nZn + �1...Xi = ai1Z1 + � � � + ainZn + �i



Probability II{ Chap. 7: Properties of Expe
tation 79...Xm = am1Z1 + � � � + amnZn + �mthen the random variables X1; : : : ; Xm aresaid to have a multivariate normal distribu-tion.�Xi is a normal random variable withE[Xi℄ =�i and Var(Xi) = nXj=1 a2ij.� mXi=1 tiXi is a normal random variable withE[ mXi=1 tiXi℄ = mXi=1 ti�i and Var 0BB� mXi=1 tiXi1CCA =mXi=1 mXj=1 titjCov(Xi; Xj).� M(t1; : : : ; tm) = exp 8><>: mXi=1 ti�i + 12 mXi=1 mXj=1 titjCov(Xi; Xj)9>=>; =exp 8><>:t0� + t0�t2 9>=>;7.7.2 The joint distribution of the sam-ple mean and sample varian
eLet Xi � N (�; �2).
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tation 80� �X = nXi=1Xi=n � N (�; �2=n)� Cov( �X;Xi � �X) = 0 for i = 1; : : : ; n.� �X;X1� �X; : : : ;Xn� �X are all linear 
om-binations of the independent standard nor-mals (Xi � �X)=�.� Consider Y � N (�; �2=n) independent ofXi's.� Y;X1 � �X; : : : ;Xn � �X also has a multi-variate normal and has the same expe
tedvalues and 
ovarian
es as the random vari-ables �X;X1 � �X; : : : ;Xn � �X .� Then �X;X1 � �X; : : : ;Xn � �X also has amultivariate normal.� But sin
e a multivariate normal distributionis determined 
ompletely by its expe
ted val-ues and 
ovarian
es, we 
an 
on
lude that�X is independent of Xi � �X 's.� (n� 1)S2 = nXi=1(Xi � �)2 � n( �X � �)2
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� (n� 1)S2�2 + 0BBBB� �X � ��=pn 1CCCCA2 = nXi=1 0BBB�Xi � �� 1CCCA2� Use moment generating fun
tion.� (1�2t)�(n�1)=2(1�2t)�1=2 = (1�2t)�n=2Proposition 7.1: If X1; : : : ; Xn are in-dependent and identi
ally distributed normalrandom variables with mean � and varian
e�2, then the sample mean X and sample vari-an
e S2 are independent. X is a normalrandom variable with mean � and varian
e�2=n; (n � 1)S2=�2 is a 
hi-squared randomvariable with n� 1 degrees of freedom.*7.8 General de�nition of expe
tation� There exist random variables that are nei-ther dis
rete nor 
ontinuous.�X � Bernoulli(1=2) and Y � uniform[0; 1℄.� Then W = X if X = 1 and Y if X 6= 1 isneither a dis
rete nor a 
ontinuous random
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tation 82variable.� In order to de�ne the expe
tation of an arbi-trary random variable, we require the notionof a Stieltjes integral.� a = x0 < x1 < x2 < � � � < xn = bZ ba g(x) dx = limn!1 nXi=1 g(xi)(xi � xi�1)Z ba g(x) dF (x) = limn!1 nXi=1 g(xi)[F (xi)� F (xi�1)℄Z 1�1 g(x) dF (x) = lima!�1;b!1 Z ba g(x)dF (x)Z 1�1 g(x) dF (x) = Z 1�1 g+(x) dF (x)� Z 1�1 g�(x) dF (x)E[X ℄ = Z 1�1 xdF (x)� Use of Stieltjes integrals avoids the ne
es-sity of having to give separate statements oftheorems for the 
ontinuous and the dis
rete
ases.� Stieltjes integrals are mainly of theoreti
alinterest be
ause they yield a 
ompa
t wayof de�ning and dealing with the propertiesof expe
tation.Summary
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tation 83� Expe
tation:{ Dis
rete:E[g(X;Y )℄ = Xy Xx g(x; y)p(x; y){ Continuous:E[g(X;Y )℄ = Z1�1 Z1�1 g(x; y)f (x; y)dxdy{ E[X + Y ℄ = E[X ℄ +E[Y ℄{ E 2664 nXi=1Xi3775 = nXi=1E[Xi℄�Covarian
e:{ Cov(X;Y ) = E[(X�E[X ℄)(Y�E[Y ℄)℄ =E[XY ℄� E[X ℄E[Y ℄{ Cov 0BBB� nXi=1Xi; mXj=1Yj1CCCA = nXi=1 mXj=1Cov(Xi; Xj){ Var 0BB� nXi=1Xi1CCA = nXi=1Var(Xi)+2 Xi<j Cov(Xi; Xj)�Correlation:�(X;Y ) = Cov(X;Y )sVar(X)Var(Y )�Conditional expe
ted value:



Probability II{ Chap. 7: Properties of Expe
tation 84{ Dis
rete 
ase:E[X j Y = y℄ = X xPfX = x j Y = yg{ Continuous 
ase:E[X j Y = y℄ = Z xfXjY (xjy)dx� E[X ℄ = E[E[XjY ℄℄{ Dis
rete 
ase:E[X ℄ = Xy PfY = yg{ Continuous 
ase:E[X ℄ = Z E[X j Y = y℄f(y)dy�Conditional varian
e:Var(XjY = y) = E[(X�E[XjY = y℄)2jY = y℄�Conditional varian
e formula:Var(X) = E[Var(XjY )℄ + Var(E[XjY ℄)�Moment generating fun
tion: M (t) =E[etX ℄{ E[Xn℄ = dndtnM (t)jt=0
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tation 85{ The moment generating fun
tion uniquelydetermines the distribution fun
tion of therandom variable.{ The moment generation fun
tion of thesum of independent random variables isequal to the produ
t of their moment gen-eration fun
tion.� If X1; : : : ; Xn are all linear 
ombinations ofa �nite set of independent standard normalrandom variables, then they are said to havea multivariate normal distibution.� If X1; : : : ; Xn are independent and identi-
ally distributed normal random variables,then their sample meanX = PXi=n andsample varian
e S2 = X(Xi�X)2=(n�1) are independent.{X is a normal variable with mean � andvarian
e �2=n{ (n�1)S2=�2 is a 
hi-square random vari-able with n� 1 degrees of freedom.


