Chapter 8 Limit Theorems
8.1 Introduction

e The most important theoretical results in
probability theory are limit theorems.

e Laws of large numbers: The average of
a sequence of random variables converges to
the expected average.

e Central limit theorems: The sum of
a large number of random variables has a

probability distribution that is approximately
normal.

8.2 Chebyshev’s inequality and the weak
law of large numbers

Proposition 2.1 Markov’s inequality:
If X is a random variable that takes only non-
negative values, then for any value a > 0,

E[X]

a

P{X >a} <
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e For a > 0,

1 i X >a,

= 0 otherwise
o [ < %

o E[I] = P{X > a} < EX]

a

Proposition 2.2 Chebyshev’s inequal-
ity: If X is a random variable with finite

mean 4 and variance o2, then for any value

k>0,
02
P{|X_M|Zk}§?

o P{(X — p)? > K2} < ELX W o)

o P{IX —p| 2k} < T

e The importance of Markov’s and Cheby-
shev’s inequalities is that they enable us
to derive bounds on probabilities when only
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the mean, or both the mean and the vari-
ance, of the probability distribution are known.

e If the actual distribution were known, then
the desired probabilities could be exactly
computed and we would not need to resort
to bounds.

Example 8.2a. Suppose that it is known
that the number of items produced in a factory
during a week is a random variable with mean

50.

(a) What can be said about the probability that
this week’s production will exceed 757

(b) If the variance of a week’s production is
known to equal 25, then what can be said
about the probability that this week’s pro-
duction will be between 40 and 607

(2)
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e By Markov’s inequality

E|X] 50 2
PiX>Ht<—=—=—
X >T s 2 =05 = g
(b)
e By Chebyshev’s inequality
2
o 1
P{IX =50 > 10} < — =-
e Hence

I 3

Example 8.2b. If X isuniformly distributed
over the interval (0,10), then, as E[X] = b5,
Var(X) = %

e [t follows from Chebyshev’s inequality that

25
PilX =5 >4l < —— ~ 52
whereas the exact result is

P{|X —5| >4} = .20
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e Thus, although Chebyshev’s inequality is cor-
rect, the upper bound that it provides is not
particularly close to the actual probability.

e Similarly, if X is a normal random variable

with mean g and variance o2.

e Chebyshev’s inequality states that

1
P{|X_M|>20}§i

whereas the actual probability is given by

o

P{|X—u| > 20} = P{X RN 2} — 2[1—-B(2)] ~ .0456

Proposition 2.3: If Var(X) =0, then
P{X =FE[X]} =1

o P{|X —u|>1/n}=0forany n > 1.

0= lim P{|X—u|>1/n}=P{lim |X—
pl > 1/n} = P{X # pj.
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Theorem 2.1 The weak law of large
numbers: Let X{, Xo,... be a sequence
of independent and identically distributed

random variables, each having finite mean
FE|X;| = p. Then, for any € > 0,

P{X1+---+Xn
n

— p

Zs}—)() as 1 — op

e Assume the additional assumption that the

random variables have variance o2.

X+t X,
.E[ 1—|—n—|— ]—M
)
e Var (X1+-7-1-—|—Xn> — %
Xt ood X 2
.P{ LA s el < 2
n ne

e The weak law of large number was originally
proved by James Bernoulli for the special
case where the X, ~ Bernoulli random vari-
ables.

e The general form of the weak law of large
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numbers presented in Theorem 2.1 was proved
by the Russian mathematician Khintchine.

8.3 The central limit theorem

e The central limit theorem is one of the most
remarkable results in probability theory.

e [t not only provides a simple method for
computing approximate probabilities for sums
of independent random variables, but it also
helps explain the remarkable fact that the
empirical frequencies of so many natural pop-
ulations exhibit bell-shaped curves.
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Theorem 3.1 The central limit theo-
rem: Let X, Xo, ... be a sequence of in-
dependent and identically distributed random
variables each having mean 1 and variance o2.
Then the distribution of

X{ 4+ Xy —np

o\/n

tends to the standard normal as n — oo.
That is, for —oo < a < o0,

P{X1+-“+Xn—7w

1 a 2
<aqp = —— e " 2dr asn — 0o
a\/n - } V2m /_OO

Lemma 3.1: Let Z1, Z5,... be a sequence
of random variables having distribution func-
tion Fy and moment generating functions
My ,n > 1; and let Z be a random variable
having distribution function F'7z and moment
generating function My. If My (t) — My(t)
for all ¢, then Fy (t) — Fy(t) for all ¢ at
which F'7(t) is continuous.

Proof of the Central Limit Theorem



Probability II- Chap. 8: Limit Theorems 9

e Assume that © = 0 and o2 = 1.
o My (t) = E[e!] = M(t)

« My m(t) =M (jﬁ)

o Moy x,/yml®) = M [ J5)
o [(t) =log M(t)
— L(0) = L'(0) = 0 and L"(0) = 1.
L(t/y/n) _ %

o limy oo 1/n

Remark.

e [t can be shown that the convergence of
Theorem 3.1 is uniform in a.

e The first version of the central limit theo-
rem was proved by DeMoivre around 1733
for the special case where X; are Bernoulli
random variables with p = 1/2.

e This was subsequently extended by Laplace
to the case of arbitrary p.
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e Laplace also discovered the more general form
of the central limit theorem given in Theo-
rem 3.1.

e A truly rigorous proof of the central limit
theorem was first presented by the Russian

mathematician Liapounoff in the period 1901-
1902.

e This important theorem is illustrated by the

central limit theorem module on the text
diskette (Fig. 8.1).

o pi = P{X; =k}

®po=.25,p1 =.15,po=.1,p3 = 2,ps = .3
5 H

o %XZ-] — 10.75, Var @ Xi) — 12,6375

10 ] 10

o B |3 X;| = 10.75, Var @ XZ-) — 12,6375
:25 : 10

o B3 X;| = 53.75, Var (% XZ-) — 63.1875

:100 10
o B|Y XZ-] _ 215, Var @ XZ-) — 25275
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Example 8.3a. An astronomer is interested
in measuring, in light years, the distance from
his observatory to a distant star. Although
the astronomer has a measuring technique, he
knows that, because of changing atmospheric
conditions and normal error, each time a mea-
surement 1s made it will not yield the exact
distance but merely an estimate. As a result
the astronomer plans to make a series of mea-
surements and then use the average value of
these measurements as his estimated values of
the actual distance. If the astronomer believes
that the values of the measurements are in-
dependent and identically distributed random
variance of 4 (light years), how many measure-
ments need he make to be reasonably sure that
his estimated distance is accurate to within 4.5
light year?

e Suppose that the astronomer decides to make
n observations.
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o If Xq,...,X,, are the n measurements, then
X — nd
7 = =1t TR N(0,1)
24/
o
P{— 5 < Z%Xi —d< .5} - P{—.57" <7, < .57"
- o{4) o) ()
0 20 (V1) — 1= .95 or & (Y]] = 975
o V' — 196 or n* = (7.84)2 ~ 61.47
X X; 4
oE.gf—Z:d Var(.g 7’):
=1 n 1=1 n n
e Chebyshev’s inequality yields that
X; 4 16
P{%Z—d>.5}§ ;==
i=1n n(.5) n

e If he makes n = 16/.05 = 320 observations,
he can be 95 percent certain that his esti-
mate will be accurate to within .5 light year.

Example 8.3b. Thenumber of students that

enroll in a psychology course 1s a Poisson ran-
dom variable with mean 100. The protfessor in
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charge of the course has decided that of the
number enrolling is 120 or more he will teach
the course In two separate sections, whereas
if fewer than 120 students enroll he will teach
all of the students together in a single section.
What is the probability that the professor will
have to teach two sections?

e The exact solution e 'V OZIDQO(IOO)i/i!.
1=

e A Poisson random variable with mean 100 is
the sum of 100 independent Poisson random
variables each with mean 1.

e Use the central limit theorem to obtain an
approximate solution.

e X: The number of students that enroll in
the course.

X — 100 _ 120 — 100
P{X > 120}

JI00 = /100
| — 3(2)

0228

€ &
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Example 8.3c. If 10 fair dice are rolled,
find the approximate probability that the sum
obtained is between 30 and 40.

e X,: The value of the ¢th die.
e F|X;| =7/2 and Var(X;) = 35/12.

P{30§ > X; <40

} {30 —35 _x0 X, -35 40-35
= < <
1=1

350 — 350 - 350
12 12 12

e

.65

Q

Q

Example 8.3d. Let X;,7 = 1,...,10 be
independent random variables, each uniformly
distributed over (0,1). Calculate an approxi-

: 10
mation to P{‘Zl X; > 6}.
1=

10
P{%XZ->6}

10 x, —5 6—5}

10(5)  {10(y)
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1 — ®(V1.2)
16

€ &

: ., 10
e Hence only 16 percent of the time will '21 X;
1=

will be greater than 6.

Central limit theorems also exist when the X;
are independent but not necessarily identically
distributed random variables.

Theorem 3.2 Central limit theorem
for independent random variables:
Let X1, X9, ... be a sequence of independent
random variables having respective means and
variances p; = E[X;],07 = Var(X;). If (a)
the X; are uniformly bounded; that is, if for
some M, P{|X;| < M} =1 for all 4, and (b)
=2 07 = 00, then

s (X — )

n Y
2;—=1 03

P <af— da) asn — oo

8.4 The strong law of large numbers
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e The strong law of large numbers is proba-
bly the best-known result in probability the-
ory.

e [t states that the average of a sequence of
independent of random variables having a
common distribution will, with probability
1, converge to the mean of that distribution.

Theorem 4.1 The strong law of large
numbers: Let X{, Xo... be a sequence of
independent and identically distributed ran-
dom variables, each having a finite mean
p=F|X;|. Then, with probability 1,
X1+ Xo+ -+ Xy

n

> 1 as n — 00!

Application:

e Suppose that a sequence of independent tri-
als of some experiment is performed.

e Let I/ be a fixed event of the experiment
and denote by P(F) the probability that £
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occurs on any particular trial.

1 if F occurs on the 2th trial

X, = . . .
¢ 0 if £ does not occur on the ith trial

X14+Xo+-4+X, _
o S1tAYE ANy PIX] = P(E)

Proof of the Strong Law of Large Num-
bers:

e Assume that 4 = E|X;] = 0 and E[X;L] =
K < oo.

1=1
o B[Syl Xi, X7 X, X7X7, X7 X Xy, Xi X; X X,
E[X}Xj] = E[X;]|E[X;] =0
2 ] v 2
BIX7X Xy = BEIXTIEXGE[X;] =0
E[X; X; X, X|| = E|X;|E|X;|E[ X E[ X)) =0
E[X/X;] = E[X{]E[X]]

o E[S;] = nE[X/] + 6(3) E[X7 X7
o Var(X7) = E[X}] — (E[X7))* > 0
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o [/|S;] =nK +3n(n—1)K

52 K | 3K
*EL = m e

s K 3K

_nzln n=1ln n
With probability 1. 1 S%—o li Sn _
e \VWith probability il 1T < m P

0.
o If u = F|X;| # 0, consider X; — pu.

[llustrations of strong law:
pr = P{X; =k}, FEX;] =205
po=.1,p1 = .2,p0 = .3, p3=.35,py = .05
on =100, X = 1.89;
e n = 1000, X = 2.078:
e n = 10000, X = 2.0416

Weak law of large numbers v.s. strong law of
large numbers:
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e WLLN states that for any specified large
value n*, (X7 + -+ + X,,#)/n* is likely to
be near pu. However, it does not say that
(X714 -+ Xy)/n is bound to stay near
for all values of n larger than n™*.

e SLLN states that with probability 1, for any
positive value e,

Z -

I n H

will be greater than € only a finite number

of times.

n X;

e The strong law of large numbers was orig-
inally proved, in the special case of Bernoulli
random variables, by the French mathemati-
cian Borel.

e The general form of the strong law presented
in Theorem 4.1 by the Russian mathemati-
cian A.N. Kolmogorov.

8.5 Other inequalities

Only p and ¢ are known:
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Chebyshev inequality:

-

P{IX—p>a} < P{X —p[>a} < 5

Proposition 5.1 One-sided Chebyshev
inequality: If X is a random variable with
mean 0 and finite variance o2, then for any

a >0,

g2

02+a2

P{X >a} <

olfb>0 then X >a<=X+b>a+0.

2
o P{X > a} < IO — o5k,

2,12
e miny, m occurs at b = 0% /a.

o2

o Let b= 0?/a, then P{X >a} < 2+a

Example 8.5a. If the number of items pro-
duced in a factory during a week is a random
variable with mean 100 and variance 400, com-
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pute an upper bound on the probability that
this week’s production will be at least 120.

e One-sided Chebyshev inequality:

P{X > 120} = P{X =100 > 20} < 152%57% = }

e Markov’s inequality:
P{X > 120} < B =3

Corollary 5.1: If F[X| = pu, Var(X) =
02, then for a > 0,

2
o
P{X >p+a} <
Xz p a}_02+a2
g2
PiX < pu— <
s p a}_02+a2

Example 8.5b. A set of 200 people, con-
sisting of 100 men and 100 women, is randomly
divided into 100 pairs of 2 each. Give an up-
per bound to the probability that at most 30 of
these pairs will consist of a man and a woman.
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o
1 if man 7 is paired with a woman
X; = .
0 otherwise
100
o X = > X;
1=1

o | X;| = P{X; =1} = %
e Similarly, for ¢ # j,
EXiXj] = PiXi=1X; =1}

100 99
= P{Xi = JP{X; = 1Xi=1} = 0o o
o
100
ElX] = ¥ E[X;]
Z
100
= (100)-—
199
~ 50.25
o
100
Var(X) = > Var(X;) +2% ¥ Cov(X;, X))
7 1<
_ 100t00 99 ,(100)[100 99 (100)2
N 199199 2 11199197 (199

~ 25.126
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e The Chebyshev inequality yields that
25.126

P{X <30} < P{|X—50.25| > 20.25} <
(X <30} < P | 2025} < 5o,

~ .061

P{X < 30}

P{X < 50.25 — 20.25}
25.126

25.126 + (20.25)2
058

VAN

2

o M(t) = Ele!]
e Fort >0
P{X >a} = P{e!* > €}
< Ele!*]e™ by Markov’s inequalit
e Similarly, for t < 0,
P{X <a} = P{!* > %)
< E[etX]e—ta

Proposition 5.2 Chernoff bounds:

P{X >a} < e 'M(t) forallt>0
P{X <al} < e 'M(t) forallt<0
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The best bound on P{X > a} uses the t that
minimizes e "M (t).

Example 8.5c. Chernoff bounds for the
standard normal random variable. If Z is
a standard normal random variable, then its

. . 2
moment generating function is M (t) = et /2.

e Chernoff bound on P{Z > a} is given by
P{Z > a} < et /2 forall t > 0

e Now the value of £, t¢ > 0, that minimizes
o7 /2—ta ;

is the value that minimizes ¢°/2 —
ta, which is t = a.
e Thus for a > 0 we see that
P{Z > a} < e~ @/?
e Similarly, we can show that for a < 0,

P{Z <a} < e~ @/?

Example 8.5d. Chernoff bounds for the
Poisson random wvariable. It X 1s a Pois-
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son random variable with parameter A, then its

t
moment generating function is M (¢) = A€ —1),

e Chernoff bound on P{X >4} is
P{X >i} < ML=t 45

e Minimizing the right side of the above is
equivalent to minimizing A(ef — 1) —it, and
calculus shows that the minimal value oc-
curs when et =i/,

e Provided that ¢/ > 1, this minimizing val-
ues of 7 will be positive.

e Therefore, assuming that ¢ > A and letting
el = /)X in the Chernoff bound yields that

P{X > i} < Mi/AD (A)Z
()

or, equivalently,
e
il

P{X >i} <°©

Example 8.5e. Consider a gambler who on
every play is equally likely, independent of the
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past, to either win or lose 1 unit. That is, it X
1s the gambler’s

1
P{X;, =1} = P{X, = -1} = 5
e S, = =1 X, denote the gambler’s win-

nings after n plays.
e Use the Chernoff bound on P{S;, > a}.
e The moment generating function of X, is
tX et + 6_t
e | =
2
e Now, using the McLaurin expansions of e
and e

El

2 43 2
el +et = 1+t+++---+(1—t+—+---
21 3 21 3l

t2 4
s 1+++---}

since (2n)! > n!2"
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e Therefore, Ee!*] < et/2

e Since the moment generating function of the
sum of independent random variables is the
product of their moment generating func-
tions, we have that

Ele!n] = (B[e!*))"
< 6er152/2

e Using the result above along with the Cher-
noff bound given that

P{Sy, > a} < etant’/2 > 0

e The value of ¢ that minimizes the right side
of the above is the value that minimizes
nt?/2 — ta, and this values is t = a/n.

e Supposing that a > 0 (so that this minimiz-
ing t is positive) and letting t = a/n in the
preceding inequality yields that

P{S, > n} < e~ 45 g
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e For instance, this inequality yields that

P{Sp > 6} < e 36/20 ~ 1653

whereas the exact probability is

P{S1p > 6} = P{gambler wins at least 8 of the first 10 games}

_ @G+ 56
B 210 = 021 ¥ O

Definition: A twice-differentiable real-
valued function f(x) is said to be convex if
f(x) > 0 for all z; similarly, it is said to be
concave if f(z) <0.

e Convex functions: f(z) = 22, €%, —gzl/n
for x > 0.

o If f(x) is convex, then g(x) = —f(x) is
concave.

Proposition 5.3 Jensen’s inequality:
If f(x) is a convex function, then

E[f(X)] = f(E[X])

provided that the expectations exist and are
finite.
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o f(z) = f(u)+ f/(w)(x —p) + f"(&)(x -
1)?/2

-f( ) > f(p)+f (1) (z—p) since f(§) > 0.
Elf(X)] > f(p)+ f'(n)E[X — p] = f(p)

Example 8.5f. An investor is faced with
the following choices: She can either invest all
of her money in a risky proposition that would
lead to a random return X that has mean m; or
she can put the money into a risk-free venture

that will lead to a return of m with probability
1.

e Suppose that her decision will be made on
the basis of maximizing the expected value
of u(R), where R is her return and w is her
utility function.

e By Jensen’s inequality it follows that if u is a
concave function, then Flu(X)] < u(m), so
the risk-free alternative is preferable; whereas
if u is convex, then E|u(X)| > u(m), so the
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risk investment alternative would be pre-
ferred.

8.6 Bounding the error probability when
approximating a sum of independent
Bernoulli random variables by a Pois-
son random variable

e X, ~ Bernoulli(p;)
e Y; ~ Poisson(p;)

e Construct a sequence of independent Bernoulli

random variables X1, ..., X, with parame-
ters pi,...,pp such that P{X,; # Y;} < p%
for each 1.

n n
e X =13 X;jandY = T Y]
1= 1=

° P{X =+ Y} < ,glpzz
1=
e Next we will show that
P{X € A}~ P{Y € A}| < ¥ 7
1=

— U; ~ Bernoulli(1 — (1 — p;)eP?)
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— (1 —p;)eli < 1lsincee P >1—p.
—X; =01t Y; =U; =0 and 1 otherwise.
— P{X; =0} = P{Y; = 0}P{U; = 0} =

P{X;#Y;} = P{X; =1Y; #1}
= P{Y,;=0,X;, =1} + P{Y; > 1
= P{Y;=0,U; =1} + P{Y; > 1
= pg—pze_pi
= P
— X # Y implies that X; # Y for some .
P{X #Y} < P{X; #Y, for some i}
< L P{X;#Y)

<

.

no 9
> D
1=1

— For any event B, I = 1 if B occurs and
0 otherwise.

~lexemy — Liveay < lixavy
—-P{X eA}-P{Y e A} < P{X #Y}



Probability II- Chap. 8: Limit Theorems 32

—|P{X € A} — P{Y € A}| < P{X #

Y}
_If)\ — g Ps,
1=1
—A\7
e )\
PIE Xjeal- 5 © < § g2
1=1 icA 1l =1

—If p; = p and X ~ Binomial(p), then

e Z‘Lpi(l )" - e e_nifnpy < np”
Summary
e Markov inequality:
P{XZa}SE[C;X] a >0

e Chebyshev inequality:

1
P{|X—u|2k0}§p k>0

e Strong law of large numbers
X1+ Xo+---+ Xy

n

> 1 as n — 00
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e Central limit theorem

X1+ Xo+---+ X, —nu }
<a
a\/n -

lim P{

n—00

33



