
1Chapter 8 Limit Theorems8.1 Introdution� The most important theoretial results inprobability theory are limit theorems.� Laws of large numbers: The average ofa sequene of random variables onverges tothe expeted average.�Central limit theorems: The sum ofa large number of random variables has aprobability distribution that is approximatelynormal.8.2 Chebyshev's inequality and the weaklaw of large numbersProposition 2.1 Markov's inequality:If X is a random variable that takes only non-negative values, then for any value a > 0,PfX � ag � E[X ℄a



Probability II{ Chap. 8: Limit Theorems 2� For a > 0, I = 8>>>><>>>>: 1 if X � a;0 otherwise� I � Xa� E[I ℄ = PfX � ag � E[X ℄aProposition 2.2 Chebyshev's inequal-ity: If X is a random variable with �nitemean � and variane �2, then for any valuek > 0, PfjX � �j � kg � �2k2
� Pf(X � �)2 � k2g � E[(X��)2℄k2 = �2k2� PfjX � �j � kg � �2k2� The importane ofMarkov's andCheby-shev's inequalities is that they enable usto derive bounds on probabilities when only



Probability II{ Chap. 8: Limit Theorems 3the mean, or both the mean and the vari-ane, of the probability distribution are known.� If the atual distribution were known, thenthe desired probabilities ould be exatlyomputed and we would not need to resortto bounds.Example 8.2a. Suppose that it is knownthat the number of items produed in a fatoryduring a week is a random variable with mean50.(a) What an be said about the probability thatthis week's prodution will exeed 75?(b) If the variane of a week's prodution isknown to equal 25, then what an be saidabout the probability that this week's pro-dution will be between 40 and 60?(a)



Probability II{ Chap. 8: Limit Theorems 4� By Markov's inequalityPfX > 75g � E[X ℄75 = 5075 = 23(b)� By Chebyshev's inequalityPfjX � 50j � 10g � �2102 = 14� HenePfjX � 50j < 10g � 1� 14 = 34Example 8.2b. IfX is uniformly distributedover the interval (0; 10), then, as E[X ℄ = 5,Var(X) = 253 .� It follows from Chebyshev's inequality thatPfjX � 5j > 4g � 253(16) � :52whereas the exat result isPfjX � 5j > 4g = :20



Probability II{ Chap. 8: Limit Theorems 5� Thus, although Chebyshev's inequality is or-ret, the upper bound that it provides is notpartiularly lose to the atual probability.� Similarly, if X is a normal random variablewith mean � and variane �2.�Chebyshev's inequality states thatPfjX � �j > 2�g � 14whereas the atual probability is given byPfjX��j > 2�g = P 8><>:�������X � �� ������� > 29>=>; = 2[1��(2)℄ � :0456
Proposition 2.3: If Var(X) = 0, thenPfX = E[X ℄g = 1
� PfjX � �j > 1=ng = 0 for any n � 1.� 0 = limn!1PfjX��j > 1=ng = Pf limn!1 jX��j > 1=ng = PfX 6= �g.



Probability II{ Chap. 8: Limit Theorems 6Theorem 2.1 The weak law of largenumbers: Let X1; X2; : : : be a sequeneof independent and identially distributedrandom variables, eah having �nite meanE[Xi℄ = �. Then, for any " > 0,P 8>>><>>>:���������X1 + � � � +Xnn � ���������� � "9>>>=>>>; ! 0 as n!1
� Assume the additional assumption that therandom variables have variane �2.� E 24X1+���+Xnn 35 = �� Var 0�X1+���+Xnn 1A = �2n� P 8>>><>>>:���������X1 + � � � +Xnn � ���������� � "9>>>=>>>; � �2n"2� The weak law of large number was originallyproved by James Bernoulli for the speialase where theXi � Bernoulli random vari-ables.� The general form of the weak law of large



Probability II{ Chap. 8: Limit Theorems 7numbers presented in Theorem 2.1 was provedby the Russian mathematiian Khinthine.8.3 The entral limit theorem� The entral limit theorem is one of the mostremarkable results in probability theory.� It not only provides a simple method foromputing approximate probabilities for sumsof independent random variables, but it alsohelps explain the remarkable fat that theempirial frequenies of so many natural pop-ulations exhibit bell-shaped urves.



Probability II{ Chap. 8: Limit Theorems 8Theorem 3.1 The entral limit theo-rem: Let X1; X2; : : : be a sequene of in-dependent and identially distributed randomvariables eah having mean � and variane �2.Then the distribution ofX1 + � � � +Xn � n��pntends to the standard normal as n ! 1.That is, for �1 < a <1,P 8><>:X1 + � � � +Xn � n��pn � a9>=>;! 1p2� Z a�1 e�x2=2dx as n!1
Lemma 3.1: Let Z1; Z2; : : : be a sequeneof random variables having distribution fun-tion FZn and moment generating funtionsMZn, n � 1; and let Z be a random variablehaving distribution funtion FZ and momentgenerating funtionMZ . IfMZn(t)!MZ(t)for all t, then FZn(t) ! FZ(t) for all t atwhih FZ(t) is ontinuous.Proof of the Central Limit Theorem



Probability II{ Chap. 8: Limit Theorems 9� Assume that � = 0 and �2 = 1.�MXi(t) = E[etXi℄ = M (t)�MXi=pn(t) = M 0B� tpn1CA�MPni=1Xi=pn(t) = 264M 0B� tpn1CA375n� L(t) = logM (t){ L(0) = L0(0) = 0 and L00(0) = 1.� limn!1 L(t=pn)1=n = t22Remark.� It an be shown that the onvergene ofTheorem 3.1 is uniform in a.� The �rst version of the entral limit theo-rem was proved by DeMoivre around 1733for the speial ase where Xi are Bernoullirandom variables with p = 1=2.� This was subsequently extended by Laplaeto the ase of arbitrary p.



Probability II{ Chap. 8: Limit Theorems 10� Laplae also disovered the more general formof the entral limit theorem given in Theo-rem 3.1.� A truly rigorous proof of the entral limittheorem was �rst presented by the Russianmathematiian Liapouno� in the period 1901-1902.� This important theorem is illustrated by theentral limit theorem module on the textdiskette (Fig. 8.1).� pk = PfXi = kg� p0 = :25; p1 = :15; p2 = :1; p3 = :2; p4 = :3� E 26645X1 Xi3775 = 10:75;Var 0BB�5X1 Xi1CCA = 12:6375� E 266410X1 Xi3775 = 10:75;Var 0BB�10X1 Xi1CCA = 12:6375� E 266425X1 Xi3775 = 53:75;Var 0BB�10X1 Xi1CCA = 63:1875� E 2664100X1 Xi3775 = 215;Var 0BB�10X1 Xi1CCA = 252:75



Probability II{ Chap. 8: Limit Theorems 11Example 8.3a. An astronomer is interestedin measuring, in light years, the distane fromhis observatory to a distant star. Althoughthe astronomer has a measuring tehnique, heknows that, beause of hanging atmospherionditions and normal error, eah time a mea-surement is made it will not yield the exatdistane but merely an estimate. As a resultthe astronomer plans to make a series of mea-surements and then use the average value ofthese measurements as his estimated values ofthe atual distane. If the astronomer believesthat the values of the measurements are in-dependent and identially distributed randomvariane of 4 (light years), how many measure-ments need he make to be reasonably sure thathis estimated distane is aurate to within�:5light year?� Suppose that the astronomer deides to maken observations.



Probability II{ Chap. 8: Limit Theorems 12� IfX1; : : : ; Xn are the nmeasurements, thenZn = Pni=1Xi � nd2pn � N (0; 1)� P (�:5 � Pni=1Xin � d � :5) = P 8<:�:5pn2 � Zn � :5pn2 9=;� �0�pn4 1A� �0��pn4 1A = 2�0�pn4 1A� 1� 2� 0B�pn�4 1CA� 1 = :95 or � 0B�pn�4 1CA = :975� pn�4 = 1:96 or n� = (7:84)2 � 61:47� E 26664 nXi=1Xin 37775 = d Var 0BBB� nXi=1Xin 1CCCA = 4n� Chebyshev's inequality yields thatP 8>>><>>>:��������� nXi=1Xin � d��������� > :59>>>=>>>; � 4n(:5)2 = 16n� If he makes n = 16=:05 = 320 observations,he an be 95 perent ertain that his esti-mate will be aurate to within .5 light year.Example 8.3b. The number of students thatenroll in a psyhology ourse is a Poisson ran-dom variable with mean 100. The professor in



Probability II{ Chap. 8: Limit Theorems 13harge of the ourse has deided that of thenumber enrolling is 120 or more he will teahthe ourse in two separate setions, whereasif fewer than 120 students enroll he will teahall of the students together in a single setion.What is the probability that the professor willhave to teah two setions?� The exat solution e�100 1Xi=120(100)i=i!.� A Poisson random variable with mean 100 isthe sum of 100 independent Poisson randomvariables eah with mean 1.� Use the entral limit theorem to obtain anapproximate solution.�X : The number of students that enroll inthe ourse.PfX � 120g = P 8>>><>>>:X � 100p100 � 120� 100p100 9>>>=>>>;� 1� �(2)� :0228



Probability II{ Chap. 8: Limit Theorems 14Example 8.3. If 10 fair die are rolled,�nd the approximate probability that the sumobtained is between 30 and 40.�Xi: The value of the ith die.� E[Xi℄ = 7=2 and Var(Xi) = 35=12.P 8<:30 � 10Xi=1Xi � 409=; = P 8>><>>:30� 35r35012 � P10i=1Xi � 35r35012 � 40� 35r35012 9>>=>>;� 2� 0BB�vuuut671CCA� 1� :65
Example 8.3d. Let Xi; i = 1; : : : ; 10 beindependent random variables, eah uniformlydistributed over (0,1). Calulate an approxi-mation to P 8>><>>: 10Xi=1Xi > 69>>=>>;.� P 8>><>>:10X1 Xi > 69>>=>>; = P 8>>>>>><>>>>>>:P101 Xi � 5vuut10( 112) > 6� 5vuut10( 112)

9>>>>>>=>>>>>>;



Probability II{ Chap. 8: Limit Theorems 15� 1� �(p1:2)� :16� Hene only 16 perent of the time will 10Xi=1Xiwill be greater than 6.Central limit theorems also exist when the Xiare independent but not neessarily identiallydistributed random variables.Theorem 3.2 Central limit theoremfor independent random variables:Let X1; X2; : : : be a sequene of independentrandom variables having respetive means andvarianes �i = E[Xi℄,�2i = Var(Xi). If (a)the Xi are uniformly bounded; that is, if forsome M , PfjXij < Mg = 1 for all i, and (b)P1i=1 �2i =1, thenP 8>>>><>>>>:Pni=1(Xi � �i)sPni=1 �2i � a9>>>>=>>>>; ! �(a) as n!1
8.4 The strong law of large numbers



Probability II{ Chap. 8: Limit Theorems 16� The strong law of large numbers is proba-bly the best-known result in probability the-ory.� It states that the average of a sequene ofindependent of random variables having aommon distribution will, with probability1, onverge to the mean of that distribution.Theorem 4.1 The strong law of largenumbers: Let X1; X2 : : : be a sequene ofindependent and identially distributed ran-dom variables, eah having a �nite mean�=E[Xi℄: Then, with probability 1,X1 +X2 + � � � +Xnn ! � as n!1y
Appliation:� Suppose that a sequene of independent tri-als of some experiment is performed.� Let E be a �xed event of the experimentand denote by P (E) the probability that E



Probability II{ Chap. 8: Limit Theorems 17ours on any partiular trial.Xi = 8>>>><>>>>: 1 if E ours on the ith trial0 if E does not our on the ith trial� X1+X2+���+Xnn ! E[X ℄ = P (E)Proof of the Strong Law of Large Num-bers:� Assume that � = E[Xi℄ = 0 and E[X4i ℄ =K <1.� Sn = nXi=1Xi� E[S4n℄: X4i ; X3iXj; X2iX2j ; X2iXjXk; XiXjXkXlE[X3iXj℄ = E[X3i ℄E[Xj℄ = 0E[X2iXjXk℄ = E[X2i ℄E[Xj℄E[Xk℄ = 0E[XiXjXkXl℄ = E[Xi℄E[Xj℄E[Xk℄E[Xl℄ = 0E[X2iX2j ℄ = E[X2i ℄E[X2j ℄� E[S4n℄ = nE[X4i ℄ + 6 n2!E[X2iX2j ℄� Var(X2i ) = E[X4i ℄� (E[X2i ℄)2 � 0



Probability II{ Chap. 8: Limit Theorems 18� E[S4n℄ = nK + 3n(n� 1)K� E 2664S4nn4 3775 � Kn3 + 3Kn2� E 2666664 1Xn=1 S4nn4 3777775 � 1Xn=1 Kn3 + 3Kn2 <1
�With probability 1, limn!1 S4nn4 = 0, limn!1 Snn =0.� If � = E[Xi℄ 6= 0, onsider Xi � �.Illustrations of strong law:pk = PfXi = kg; E[Xi℄ = 2:05p0 = :1; p1 = :2; p2 = :3; p3 = :35; p4 = :05� n = 100; �X = 1:89;� n = 1000; �X = 2:078;� n = 10000; �X = 2:0416Weak law of large numbers v.s. strong law oflarge numbers:



Probability II{ Chap. 8: Limit Theorems 19�WLLN states that for any spei�ed largevalue n�, (X1 + � � � + Xn�)=n� is likely tobe near �. However, it does not say that(X1+ � � �+Xn)=n is bound to stay near �for all values of n larger than n�.� SLLN states that with probability 1, for anypositive value �, ���������nX1 Xin � ����������will be greater than � only a �nite numberof times.� The strong law of large numbers was orig-inally proved, in the speial ase of Bernoullirandom variables, by the Frenh mathemati-ian Borel.� The general form of the strong law presentedin Theorem 4.1 by the Russian mathemati-ian A.N. Kolmogorov.8.5 Other inequalitiesOnly � and �2 are known:



Probability II{ Chap. 8: Limit Theorems 20Chebyshev inequality:PfX � � � ag � PfjX � �j � ag � �2a2Proposition 5.1 One-sided Chebyshevinequality: If X is a random variable withmean 0 and �nite variane �2, then for anya > 0, PfX � ag � �2�2 + a2� If b > 0, then X � a() X + b � a + b.� PfX � ag � E[(X+b)2℄(a+b)2 = �2+b2(a+b)2� minb �2+b2(a+b)2 ours at b = �2=a.� Let b = �2=a, then PfX � ag � �2�2+a2.Example 8.5a. If the number of items pro-dued in a fatory during a week is a randomvariable with mean 100 and variane 400, om-



Probability II{ Chap. 8: Limit Theorems 21pute an upper bound on the probability thatthis week's prodution will be at least 120.� One-sided Chebyshev inequality:PfX � 120g = PfX � 100 � 20g � 400400+(20)2 = 12�Markov's inequality:PfX � 120g � E(X)120 = 56Corollary 5.1: If E[X ℄ = �, Var(X) =�2, then for a > 0,PfX � � + ag � �2�2 + a2PfX � �� ag � �2�2 + a2Example 8.5b. A set of 200 people, on-sisting of 100 men and 100 women, is randomlydivided into 100 pairs of 2 eah. Give an up-per bound to the probability that at most 30 ofthese pairs will onsist of a man and a woman.



Probability II{ Chap. 8: Limit Theorems 22� Xi = 8>>>><>>>>: 1 if man i is paired with a woman0 otherwise�X = 100Xi=1Xi� E[Xi℄ = PfXi = 1g = 100199� Similarly, for i 6= j,E[XiXj℄ = PfXi = 1;Xj = 1g= PfXi = 1gPfXj = 1jXi = 1g = 100199 99197� E[X ℄ = 100Xi=1E[Xi℄= (100)100199� 50:25� Var(X) = 100Xi=1Var(Xi) + 2X Xi<j Cov(Xi; Xj)= 100100199 99199 + 20BBBB�1002 1CCCCA 266664100199 99197 � 0BBB�1001991CCCA2377775� 25:126



Probability II{ Chap. 8: Limit Theorems 23� The Chebyshev inequality yields thatPfX � 30g � PfjX�50:25j � 20:25g � 25:126(20:25)2 � :061� PfX � 30g = PfX � 50:25� 20:25g� 25:12625:126 + (20:25)2� :058�M (t) = E[etX ℄� For t > 0PfX � ag = PfetX � etag� E[etX ℄e�ta by Markov's inequality� Similarly, for t < 0,PfX � ag = PfetX � etag� E[etX ℄e�taProposition 5.2 Cherno� bounds:PfX � ag � e�taM (t) for all t > 0PfX � ag � e�taM (t) for all t < 0



Probability II{ Chap. 8: Limit Theorems 24The best bound on PfX � ag uses the t thatminimizes e�taM (t).Example 8.5. Cherno� bounds for thestandard normal random variable. If Z isa standard normal random variable, then itsmoment generating funtion is M (t) = et2=2.� Cherno� bound on PfZ � ag is given byPfZ � ag � e�taet2=2 for all t > 0� Now the value of t, t > 0, that minimizeset2=2�ta is the value that minimizes t2=2�ta, whih is t = a.� Thus for a > 0 we see thatPfZ � ag � e�a2=2� Similarly, we an show that for a < 0,PfZ � ag � e�a2=2Example 8.5d. Cherno� bounds for thePoisson random variable. If X is a Pois-



Probability II{ Chap. 8: Limit Theorems 25son random variable with parameter �, then itsmoment generating funtion isM (t) = e�(et�1).� Cherno� bound on PfX � ig isPfX � ig � e�(et�1)e�it t > 0�Minimizing the right side of the above isequivalent to minimizing �(et�1)� it, andalulus shows that the minimal value o-urs when et = i=�.� Provided that i=� > 1, this minimizing val-ues of i will be positive.� Therefore, assuming that i > � and lettinget = i=� in the Cherno� bound yields thatPfX � ig � e�(i=��1) 0BBB��i 1CCCAior, equivalently,PfX � ig � e�� (e�)iiiExample 8.5e. Consider a gambler who onevery play is equally likely, independent of the



Probability II{ Chap. 8: Limit Theorems 26past, to either win or lose 1 unit. That is, if Xiis the gambler'sPfXi = 1g = PfXi = �1g = 12� Sn = Pni=1Xi denote the gambler's win-nings after n plays.� Use the Cherno� bound on PfSn � ag.� The moment generating funtion of Xi isE[etX ℄ = et + e�t2� Now, using the MLaurin expansions of etand e�tet + e�t = 1 + t + t22! + t33! + � � � + 0BB�1� t + t22! � t33! + � � �1CCA= 2 8>><>>:1 + t22! + t44! + � � �9>>=>>;= 2 1Xn=0 t2n(2n)!� 2 1Xn=0 (t2=2)nn! sine (2n)! � n!2n= 2et2=2



Probability II{ Chap. 8: Limit Theorems 27� Therefore, E[etX ℄ � et2=2.� Sine the moment generating funtion of thesum of independent random variables is theprodut of their moment generating fun-tions, we have thatE[etSn℄ = (E[etX ℄)n� ent2=2� Using the result above along with the Cher-no� bound given thatPfSn � ag � e�taent2=2 t > 0� The value of t that minimizes the right sideof the above is the value that minimizesnt2=2� ta, and this values is t = a=n.� Supposing that a > 0 (so that this minimiz-ing t is positive) and letting t = a=n in thepreeding inequality yields thatPfSn � ng � e�a2=2n a > 0



Probability II{ Chap. 8: Limit Theorems 28� For instane, this inequality yields thatPfS10 � 6g � e�36=20 � :1653whereas the exat probability isPfS10 � 6g = Pfgambler wins at least 8 of the �rst 10 gamesg= �108 �+ �109 �+ �1010�210 = 561024 � :0547De�nition: A twie-di�erentiable real-valued funtion f (x) is said to be onvex iff 00(x) � 0 for all x; similarly, it is said to beonave if f 00(x) � 0.
� Convex funtions: f (x) = x2; eax;�x1=nfor x � 0.� If f (x) is onvex, then g(x) = �f (x) isonave.Proposition 5.3 Jensen's inequality:If f (x) is a onvex funtion, thenE[f (X)℄ � f (E[X ℄)provided that the expetations exist and are�nite.



Probability II{ Chap. 8: Limit Theorems 29� f (x) = f (�) + f 0(�)(x � �) + f 00(�)(x ��)2=2� f (x) � f (�)+f 0(�)(x��) sine f 00(�) � 0.� E[f (X)℄ � f (�) + f 0(�)E[X � �℄ = f (�)Example 8.5f. An investor is faed withthe following hoies: She an either invest allof her money in a risky proposition that wouldlead to a random returnX that has meanm; orshe an put the money into a risk-free venturethat will lead to a return ofm with probability1.� Suppose that her deision will be made onthe basis of maximizing the expeted valueof u(R), where R is her return and u is herutility funtion.� By Jensen's inequality it follows that if u is aonave funtion, then E[u(X)℄ � u(m), sothe risk-free alternative is preferable; whereasif u is onvex, then E[u(X)℄ � u(m), so the



Probability II{ Chap. 8: Limit Theorems 30risk investment alternative would be pre-ferred.8.6 Bounding the error probability whenapproximating a sum of independentBernoulli random variables by a Pois-son random variable�Xi � Bernoulli(pi)� Yi � Poisson(pi)� Construt a sequene of independent Bernoullirandom variables X1; : : : ; Xn with parame-ters p1; : : : ; pn suh that PfXi 6= Yig � p2ifor eah i.�X = nXi=1Xi and Y = nXi=1Yi.� PfX 6= Y g � nXi=1 p2i� Next we will show thatjPfX 2 Ag � PfY 2 Agj � nXi=1 p2i{ Ui � Bernoulli(1� (1� pi)epi)



Probability II{ Chap. 8: Limit Theorems 31{ (1� pi)epi � 1 sine e�p � 1� p.{Xi = 0 if Yi = Ui = 0 and 1 otherwise.{ PfXi = 0g = PfYi = 0gPfUi = 0g =1� pi{ PfXi = 1g = piPfXi 6= Yig = PfXi = 1; Yi 6= 1g= PfYi = 0; Xi = 1g + PfYi > 1g= PfYi = 0; Ui = 1g + PfYi > 1g= pi � pie�pi= p2i{X 6= Y implies that Xi 6= Yi for some i.PfX 6= Y g � PfXi 6= Yi for some ig� nXi=1PfXi 6= Yig� nXi=1 p2i{ For any event B, IB = 1 if B ours and0 otherwise.{ IfX2Ag � IfY 2Ag � IfX 6=Y g{ PfX 2 Ag�PfY 2 Ag � PfX 6= Y g



Probability II{ Chap. 8: Limit Theorems 32{ jPfX 2 Ag � PfY 2 Agj � PfX 6=Y g{ If � = nXi=1 pi,�����������P 8>><>>: nXi=1Xi 2 A9>>=>>;� Xi2A e���ii! ����������� � nXi=1 p2i{ If pi = p and X � Binomial(p), then����������� Xi2A 0BBBB�ni 1CCCCApi(1� p)n�i� Xi2A e�np(np)ii! ����������� � np2
Summary�Markov inequality:PfX � ag � E[X ℄a a > 0�Chebyshev inequality:PfjX � �j � k�g � 1k2 k > 0� Strong law of large numbersX1 +X2 + � � � +Xnn ! � as n!1



Probability II{ Chap. 8: Limit Theorems 33�Central limit theoremlimn!1P 8><>:X1 +X2 + � � � +Xn � n��pn � a9>=>; = 1p2� Z a�1 e�x2=2 dx


