
1Chapter 8 Limit Theorems8.1 Introdu
tion� The most important theoreti
al results inprobability theory are limit theorems.� Laws of large numbers: The average ofa sequen
e of random variables 
onverges tothe expe
ted average.�Central limit theorems: The sum ofa large number of random variables has aprobability distribution that is approximatelynormal.8.2 Chebyshev's inequality and the weaklaw of large numbersProposition 2.1 Markov's inequality:If X is a random variable that takes only non-negative values, then for any value a > 0,PfX � ag � E[X ℄a



Probability II{ Chap. 8: Limit Theorems 2� For a > 0, I = 8>>>><>>>>: 1 if X � a;0 otherwise� I � Xa� E[I ℄ = PfX � ag � E[X ℄aProposition 2.2 Chebyshev's inequal-ity: If X is a random variable with �nitemean � and varian
e �2, then for any valuek > 0, PfjX � �j � kg � �2k2
� Pf(X � �)2 � k2g � E[(X��)2℄k2 = �2k2� PfjX � �j � kg � �2k2� The importan
e ofMarkov's andCheby-shev's inequalities is that they enable usto derive bounds on probabilities when only



Probability II{ Chap. 8: Limit Theorems 3the mean, or both the mean and the vari-an
e, of the probability distribution are known.� If the a
tual distribution were known, thenthe desired probabilities 
ould be exa
tly
omputed and we would not need to resortto bounds.Example 8.2a. Suppose that it is knownthat the number of items produ
ed in a fa
toryduring a week is a random variable with mean50.(a) What 
an be said about the probability thatthis week's produ
tion will ex
eed 75?(b) If the varian
e of a week's produ
tion isknown to equal 25, then what 
an be saidabout the probability that this week's pro-du
tion will be between 40 and 60?(a)



Probability II{ Chap. 8: Limit Theorems 4� By Markov's inequalityPfX > 75g � E[X ℄75 = 5075 = 23(b)� By Chebyshev's inequalityPfjX � 50j � 10g � �2102 = 14� Hen
ePfjX � 50j < 10g � 1� 14 = 34Example 8.2b. IfX is uniformly distributedover the interval (0; 10), then, as E[X ℄ = 5,Var(X) = 253 .� It follows from Chebyshev's inequality thatPfjX � 5j > 4g � 253(16) � :52whereas the exa
t result isPfjX � 5j > 4g = :20



Probability II{ Chap. 8: Limit Theorems 5� Thus, although Chebyshev's inequality is 
or-re
t, the upper bound that it provides is notparti
ularly 
lose to the a
tual probability.� Similarly, if X is a normal random variablewith mean � and varian
e �2.�Chebyshev's inequality states thatPfjX � �j > 2�g � 14whereas the a
tual probability is given byPfjX��j > 2�g = P 8><>:�������X � �� ������� > 29>=>; = 2[1��(2)℄ � :0456
Proposition 2.3: If Var(X) = 0, thenPfX = E[X ℄g = 1
� PfjX � �j > 1=ng = 0 for any n � 1.� 0 = limn!1PfjX��j > 1=ng = Pf limn!1 jX��j > 1=ng = PfX 6= �g.



Probability II{ Chap. 8: Limit Theorems 6Theorem 2.1 The weak law of largenumbers: Let X1; X2; : : : be a sequen
eof independent and identi
ally distributedrandom variables, ea
h having �nite meanE[Xi℄ = �. Then, for any " > 0,P 8>>><>>>:���������X1 + � � � +Xnn � ���������� � "9>>>=>>>; ! 0 as n!1
� Assume the additional assumption that therandom variables have varian
e �2.� E 24X1+���+Xnn 35 = �� Var 0�X1+���+Xnn 1A = �2n� P 8>>><>>>:���������X1 + � � � +Xnn � ���������� � "9>>>=>>>; � �2n"2� The weak law of large number was originallyproved by James Bernoulli for the spe
ial
ase where theXi � Bernoulli random vari-ables.� The general form of the weak law of large



Probability II{ Chap. 8: Limit Theorems 7numbers presented in Theorem 2.1 was provedby the Russian mathemati
ian Khint
hine.8.3 The 
entral limit theorem� The 
entral limit theorem is one of the mostremarkable results in probability theory.� It not only provides a simple method for
omputing approximate probabilities for sumsof independent random variables, but it alsohelps explain the remarkable fa
t that theempiri
al frequen
ies of so many natural pop-ulations exhibit bell-shaped 
urves.



Probability II{ Chap. 8: Limit Theorems 8Theorem 3.1 The 
entral limit theo-rem: Let X1; X2; : : : be a sequen
e of in-dependent and identi
ally distributed randomvariables ea
h having mean � and varian
e �2.Then the distribution ofX1 + � � � +Xn � n��pntends to the standard normal as n ! 1.That is, for �1 < a <1,P 8><>:X1 + � � � +Xn � n��pn � a9>=>;! 1p2� Z a�1 e�x2=2dx as n!1
Lemma 3.1: Let Z1; Z2; : : : be a sequen
eof random variables having distribution fun
-tion FZn and moment generating fun
tionsMZn, n � 1; and let Z be a random variablehaving distribution fun
tion FZ and momentgenerating fun
tionMZ . IfMZn(t)!MZ(t)for all t, then FZn(t) ! FZ(t) for all t atwhi
h FZ(t) is 
ontinuous.Proof of the Central Limit Theorem



Probability II{ Chap. 8: Limit Theorems 9� Assume that � = 0 and �2 = 1.�MXi(t) = E[etXi℄ = M (t)�MXi=pn(t) = M 0B� tpn1CA�MPni=1Xi=pn(t) = 264M 0B� tpn1CA375n� L(t) = logM (t){ L(0) = L0(0) = 0 and L00(0) = 1.� limn!1 L(t=pn)1=n = t22Remark.� It 
an be shown that the 
onvergen
e ofTheorem 3.1 is uniform in a.� The �rst version of the 
entral limit theo-rem was proved by DeMoivre around 1733for the spe
ial 
ase where Xi are Bernoullirandom variables with p = 1=2.� This was subsequently extended by Lapla
eto the 
ase of arbitrary p.



Probability II{ Chap. 8: Limit Theorems 10� Lapla
e also dis
overed the more general formof the 
entral limit theorem given in Theo-rem 3.1.� A truly rigorous proof of the 
entral limittheorem was �rst presented by the Russianmathemati
ian Liapouno� in the period 1901-1902.� This important theorem is illustrated by the
entral limit theorem module on the textdiskette (Fig. 8.1).� pk = PfXi = kg� p0 = :25; p1 = :15; p2 = :1; p3 = :2; p4 = :3� E 26645X1 Xi3775 = 10:75;Var 0BB�5X1 Xi1CCA = 12:6375� E 266410X1 Xi3775 = 10:75;Var 0BB�10X1 Xi1CCA = 12:6375� E 266425X1 Xi3775 = 53:75;Var 0BB�10X1 Xi1CCA = 63:1875� E 2664100X1 Xi3775 = 215;Var 0BB�10X1 Xi1CCA = 252:75



Probability II{ Chap. 8: Limit Theorems 11Example 8.3a. An astronomer is interestedin measuring, in light years, the distan
e fromhis observatory to a distant star. Althoughthe astronomer has a measuring te
hnique, heknows that, be
ause of 
hanging atmospheri

onditions and normal error, ea
h time a mea-surement is made it will not yield the exa
tdistan
e but merely an estimate. As a resultthe astronomer plans to make a series of mea-surements and then use the average value ofthese measurements as his estimated values ofthe a
tual distan
e. If the astronomer believesthat the values of the measurements are in-dependent and identi
ally distributed randomvarian
e of 4 (light years), how many measure-ments need he make to be reasonably sure thathis estimated distan
e is a

urate to within�:5light year?� Suppose that the astronomer de
ides to maken observations.



Probability II{ Chap. 8: Limit Theorems 12� IfX1; : : : ; Xn are the nmeasurements, thenZn = Pni=1Xi � nd2pn � N (0; 1)� P (�:5 � Pni=1Xin � d � :5) = P 8<:�:5pn2 � Zn � :5pn2 9=;� �0�pn4 1A� �0��pn4 1A = 2�0�pn4 1A� 1� 2� 0B�pn�4 1CA� 1 = :95 or � 0B�pn�4 1CA = :975� pn�4 = 1:96 or n� = (7:84)2 � 61:47� E 26664 nXi=1Xin 37775 = d Var 0BBB� nXi=1Xin 1CCCA = 4n� Chebyshev's inequality yields thatP 8>>><>>>:��������� nXi=1Xin � d��������� > :59>>>=>>>; � 4n(:5)2 = 16n� If he makes n = 16=:05 = 320 observations,he 
an be 95 per
ent 
ertain that his esti-mate will be a

urate to within .5 light year.Example 8.3b. The number of students thatenroll in a psy
hology 
ourse is a Poisson ran-dom variable with mean 100. The professor in
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harge of the 
ourse has de
ided that of thenumber enrolling is 120 or more he will tea
hthe 
ourse in two separate se
tions, whereasif fewer than 120 students enroll he will tea
hall of the students together in a single se
tion.What is the probability that the professor willhave to tea
h two se
tions?� The exa
t solution e�100 1Xi=120(100)i=i!.� A Poisson random variable with mean 100 isthe sum of 100 independent Poisson randomvariables ea
h with mean 1.� Use the 
entral limit theorem to obtain anapproximate solution.�X : The number of students that enroll inthe 
ourse.PfX � 120g = P 8>>><>>>:X � 100p100 � 120� 100p100 9>>>=>>>;� 1� �(2)� :0228



Probability II{ Chap. 8: Limit Theorems 14Example 8.3
. If 10 fair di
e are rolled,�nd the approximate probability that the sumobtained is between 30 and 40.�Xi: The value of the ith die.� E[Xi℄ = 7=2 and Var(Xi) = 35=12.P 8<:30 � 10Xi=1Xi � 409=; = P 8>><>>:30� 35r35012 � P10i=1Xi � 35r35012 � 40� 35r35012 9>>=>>;� 2� 0BB�vuuut671CCA� 1� :65
Example 8.3d. Let Xi; i = 1; : : : ; 10 beindependent random variables, ea
h uniformlydistributed over (0,1). Cal
ulate an approxi-mation to P 8>><>>: 10Xi=1Xi > 69>>=>>;.� P 8>><>>:10X1 Xi > 69>>=>>; = P 8>>>>>><>>>>>>:P101 Xi � 5vuut10( 112) > 6� 5vuut10( 112)

9>>>>>>=>>>>>>;



Probability II{ Chap. 8: Limit Theorems 15� 1� �(p1:2)� :16� Hen
e only 16 per
ent of the time will 10Xi=1Xiwill be greater than 6.Central limit theorems also exist when the Xiare independent but not ne
essarily identi
allydistributed random variables.Theorem 3.2 Central limit theoremfor independent random variables:Let X1; X2; : : : be a sequen
e of independentrandom variables having respe
tive means andvarian
es �i = E[Xi℄,�2i = Var(Xi). If (a)the Xi are uniformly bounded; that is, if forsome M , PfjXij < Mg = 1 for all i, and (b)P1i=1 �2i =1, thenP 8>>>><>>>>:Pni=1(Xi � �i)sPni=1 �2i � a9>>>>=>>>>; ! �(a) as n!1
8.4 The strong law of large numbers



Probability II{ Chap. 8: Limit Theorems 16� The strong law of large numbers is proba-bly the best-known result in probability the-ory.� It states that the average of a sequen
e ofindependent of random variables having a
ommon distribution will, with probability1, 
onverge to the mean of that distribution.Theorem 4.1 The strong law of largenumbers: Let X1; X2 : : : be a sequen
e ofindependent and identi
ally distributed ran-dom variables, ea
h having a �nite mean�=E[Xi℄: Then, with probability 1,X1 +X2 + � � � +Xnn ! � as n!1y
Appli
ation:� Suppose that a sequen
e of independent tri-als of some experiment is performed.� Let E be a �xed event of the experimentand denote by P (E) the probability that E



Probability II{ Chap. 8: Limit Theorems 17o

urs on any parti
ular trial.Xi = 8>>>><>>>>: 1 if E o

urs on the ith trial0 if E does not o

ur on the ith trial� X1+X2+���+Xnn ! E[X ℄ = P (E)Proof of the Strong Law of Large Num-bers:� Assume that � = E[Xi℄ = 0 and E[X4i ℄ =K <1.� Sn = nXi=1Xi� E[S4n℄: X4i ; X3iXj; X2iX2j ; X2iXjXk; XiXjXkXlE[X3iXj℄ = E[X3i ℄E[Xj℄ = 0E[X2iXjXk℄ = E[X2i ℄E[Xj℄E[Xk℄ = 0E[XiXjXkXl℄ = E[Xi℄E[Xj℄E[Xk℄E[Xl℄ = 0E[X2iX2j ℄ = E[X2i ℄E[X2j ℄� E[S4n℄ = nE[X4i ℄ + 6 n2!E[X2iX2j ℄� Var(X2i ) = E[X4i ℄� (E[X2i ℄)2 � 0



Probability II{ Chap. 8: Limit Theorems 18� E[S4n℄ = nK + 3n(n� 1)K� E 2664S4nn4 3775 � Kn3 + 3Kn2� E 2666664 1Xn=1 S4nn4 3777775 � 1Xn=1 Kn3 + 3Kn2 <1
�With probability 1, limn!1 S4nn4 = 0, limn!1 Snn =0.� If � = E[Xi℄ 6= 0, 
onsider Xi � �.Illustrations of strong law:pk = PfXi = kg; E[Xi℄ = 2:05p0 = :1; p1 = :2; p2 = :3; p3 = :35; p4 = :05� n = 100; �X = 1:89;� n = 1000; �X = 2:078;� n = 10000; �X = 2:0416Weak law of large numbers v.s. strong law oflarge numbers:



Probability II{ Chap. 8: Limit Theorems 19�WLLN states that for any spe
i�ed largevalue n�, (X1 + � � � + Xn�)=n� is likely tobe near �. However, it does not say that(X1+ � � �+Xn)=n is bound to stay near �for all values of n larger than n�.� SLLN states that with probability 1, for anypositive value �, ���������nX1 Xin � ����������will be greater than � only a �nite numberof times.� The strong law of large numbers was orig-inally proved, in the spe
ial 
ase of Bernoullirandom variables, by the Fren
h mathemati-
ian Borel.� The general form of the strong law presentedin Theorem 4.1 by the Russian mathemati-
ian A.N. Kolmogorov.8.5 Other inequalitiesOnly � and �2 are known:



Probability II{ Chap. 8: Limit Theorems 20Chebyshev inequality:PfX � � � ag � PfjX � �j � ag � �2a2Proposition 5.1 One-sided Chebyshevinequality: If X is a random variable withmean 0 and �nite varian
e �2, then for anya > 0, PfX � ag � �2�2 + a2� If b > 0, then X � a() X + b � a + b.� PfX � ag � E[(X+b)2℄(a+b)2 = �2+b2(a+b)2� minb �2+b2(a+b)2 o

urs at b = �2=a.� Let b = �2=a, then PfX � ag � �2�2+a2.Example 8.5a. If the number of items pro-du
ed in a fa
tory during a week is a randomvariable with mean 100 and varian
e 400, 
om-



Probability II{ Chap. 8: Limit Theorems 21pute an upper bound on the probability thatthis week's produ
tion will be at least 120.� One-sided Chebyshev inequality:PfX � 120g = PfX � 100 � 20g � 400400+(20)2 = 12�Markov's inequality:PfX � 120g � E(X)120 = 56Corollary 5.1: If E[X ℄ = �, Var(X) =�2, then for a > 0,PfX � � + ag � �2�2 + a2PfX � �� ag � �2�2 + a2Example 8.5b. A set of 200 people, 
on-sisting of 100 men and 100 women, is randomlydivided into 100 pairs of 2 ea
h. Give an up-per bound to the probability that at most 30 ofthese pairs will 
onsist of a man and a woman.



Probability II{ Chap. 8: Limit Theorems 22� Xi = 8>>>><>>>>: 1 if man i is paired with a woman0 otherwise�X = 100Xi=1Xi� E[Xi℄ = PfXi = 1g = 100199� Similarly, for i 6= j,E[XiXj℄ = PfXi = 1;Xj = 1g= PfXi = 1gPfXj = 1jXi = 1g = 100199 99197� E[X ℄ = 100Xi=1E[Xi℄= (100)100199� 50:25� Var(X) = 100Xi=1Var(Xi) + 2X Xi<j Cov(Xi; Xj)= 100100199 99199 + 20BBBB�1002 1CCCCA 266664100199 99197 � 0BBB�1001991CCCA2377775� 25:126



Probability II{ Chap. 8: Limit Theorems 23� The Chebyshev inequality yields thatPfX � 30g � PfjX�50:25j � 20:25g � 25:126(20:25)2 � :061� PfX � 30g = PfX � 50:25� 20:25g� 25:12625:126 + (20:25)2� :058�M (t) = E[etX ℄� For t > 0PfX � ag = PfetX � etag� E[etX ℄e�ta by Markov's inequality� Similarly, for t < 0,PfX � ag = PfetX � etag� E[etX ℄e�taProposition 5.2 Cherno� bounds:PfX � ag � e�taM (t) for all t > 0PfX � ag � e�taM (t) for all t < 0



Probability II{ Chap. 8: Limit Theorems 24The best bound on PfX � ag uses the t thatminimizes e�taM (t).Example 8.5
. Cherno� bounds for thestandard normal random variable. If Z isa standard normal random variable, then itsmoment generating fun
tion is M (t) = et2=2.� Cherno� bound on PfZ � ag is given byPfZ � ag � e�taet2=2 for all t > 0� Now the value of t, t > 0, that minimizeset2=2�ta is the value that minimizes t2=2�ta, whi
h is t = a.� Thus for a > 0 we see thatPfZ � ag � e�a2=2� Similarly, we 
an show that for a < 0,PfZ � ag � e�a2=2Example 8.5d. Cherno� bounds for thePoisson random variable. If X is a Pois-



Probability II{ Chap. 8: Limit Theorems 25son random variable with parameter �, then itsmoment generating fun
tion isM (t) = e�(et�1).� Cherno� bound on PfX � ig isPfX � ig � e�(et�1)e�it t > 0�Minimizing the right side of the above isequivalent to minimizing �(et�1)� it, and
al
ulus shows that the minimal value o
-
urs when et = i=�.� Provided that i=� > 1, this minimizing val-ues of i will be positive.� Therefore, assuming that i > � and lettinget = i=� in the Cherno� bound yields thatPfX � ig � e�(i=��1) 0BBB��i 1CCCAior, equivalently,PfX � ig � e�� (e�)iiiExample 8.5e. Consider a gambler who onevery play is equally likely, independent of the



Probability II{ Chap. 8: Limit Theorems 26past, to either win or lose 1 unit. That is, if Xiis the gambler'sPfXi = 1g = PfXi = �1g = 12� Sn = Pni=1Xi denote the gambler's win-nings after n plays.� Use the Cherno� bound on PfSn � ag.� The moment generating fun
tion of Xi isE[etX ℄ = et + e�t2� Now, using the M
Laurin expansions of etand e�tet + e�t = 1 + t + t22! + t33! + � � � + 0BB�1� t + t22! � t33! + � � �1CCA= 2 8>><>>:1 + t22! + t44! + � � �9>>=>>;= 2 1Xn=0 t2n(2n)!� 2 1Xn=0 (t2=2)nn! sin
e (2n)! � n!2n= 2et2=2



Probability II{ Chap. 8: Limit Theorems 27� Therefore, E[etX ℄ � et2=2.� Sin
e the moment generating fun
tion of thesum of independent random variables is theprodu
t of their moment generating fun
-tions, we have thatE[etSn℄ = (E[etX ℄)n� ent2=2� Using the result above along with the Cher-no� bound given thatPfSn � ag � e�taent2=2 t > 0� The value of t that minimizes the right sideof the above is the value that minimizesnt2=2� ta, and this values is t = a=n.� Supposing that a > 0 (so that this minimiz-ing t is positive) and letting t = a=n in thepre
eding inequality yields thatPfSn � ng � e�a2=2n a > 0



Probability II{ Chap. 8: Limit Theorems 28� For instan
e, this inequality yields thatPfS10 � 6g � e�36=20 � :1653whereas the exa
t probability isPfS10 � 6g = Pfgambler wins at least 8 of the �rst 10 gamesg= �108 �+ �109 �+ �1010�210 = 561024 � :0547De�nition: A twi
e-di�erentiable real-valued fun
tion f (x) is said to be 
onvex iff 00(x) � 0 for all x; similarly, it is said to be
on
ave if f 00(x) � 0.
� Convex fun
tions: f (x) = x2; eax;�x1=nfor x � 0.� If f (x) is 
onvex, then g(x) = �f (x) is
on
ave.Proposition 5.3 Jensen's inequality:If f (x) is a 
onvex fun
tion, thenE[f (X)℄ � f (E[X ℄)provided that the expe
tations exist and are�nite.



Probability II{ Chap. 8: Limit Theorems 29� f (x) = f (�) + f 0(�)(x � �) + f 00(�)(x ��)2=2� f (x) � f (�)+f 0(�)(x��) sin
e f 00(�) � 0.� E[f (X)℄ � f (�) + f 0(�)E[X � �℄ = f (�)Example 8.5f. An investor is fa
ed withthe following 
hoi
es: She 
an either invest allof her money in a risky proposition that wouldlead to a random returnX that has meanm; orshe 
an put the money into a risk-free venturethat will lead to a return ofm with probability1.� Suppose that her de
ision will be made onthe basis of maximizing the expe
ted valueof u(R), where R is her return and u is herutility fun
tion.� By Jensen's inequality it follows that if u is a
on
ave fun
tion, then E[u(X)℄ � u(m), sothe risk-free alternative is preferable; whereasif u is 
onvex, then E[u(X)℄ � u(m), so the



Probability II{ Chap. 8: Limit Theorems 30risk investment alternative would be pre-ferred.8.6 Bounding the error probability whenapproximating a sum of independentBernoulli random variables by a Pois-son random variable�Xi � Bernoulli(pi)� Yi � Poisson(pi)� Constru
t a sequen
e of independent Bernoullirandom variables X1; : : : ; Xn with parame-ters p1; : : : ; pn su
h that PfXi 6= Yig � p2ifor ea
h i.�X = nXi=1Xi and Y = nXi=1Yi.� PfX 6= Y g � nXi=1 p2i� Next we will show thatjPfX 2 Ag � PfY 2 Agj � nXi=1 p2i{ Ui � Bernoulli(1� (1� pi)epi)



Probability II{ Chap. 8: Limit Theorems 31{ (1� pi)epi � 1 sin
e e�p � 1� p.{Xi = 0 if Yi = Ui = 0 and 1 otherwise.{ PfXi = 0g = PfYi = 0gPfUi = 0g =1� pi{ PfXi = 1g = piPfXi 6= Yig = PfXi = 1; Yi 6= 1g= PfYi = 0; Xi = 1g + PfYi > 1g= PfYi = 0; Ui = 1g + PfYi > 1g= pi � pie�pi= p2i{X 6= Y implies that Xi 6= Yi for some i.PfX 6= Y g � PfXi 6= Yi for some ig� nXi=1PfXi 6= Yig� nXi=1 p2i{ For any event B, IB = 1 if B o

urs and0 otherwise.{ IfX2Ag � IfY 2Ag � IfX 6=Y g{ PfX 2 Ag�PfY 2 Ag � PfX 6= Y g



Probability II{ Chap. 8: Limit Theorems 32{ jPfX 2 Ag � PfY 2 Agj � PfX 6=Y g{ If � = nXi=1 pi,�����������P 8>><>>: nXi=1Xi 2 A9>>=>>;� Xi2A e���ii! ����������� � nXi=1 p2i{ If pi = p and X � Binomial(p), then����������� Xi2A 0BBBB�ni 1CCCCApi(1� p)n�i� Xi2A e�np(np)ii! ����������� � np2
Summary�Markov inequality:PfX � ag � E[X ℄a a > 0�Chebyshev inequality:PfjX � �j � k�g � 1k2 k > 0� Strong law of large numbersX1 +X2 + � � � +Xnn ! � as n!1



Probability II{ Chap. 8: Limit Theorems 33�Central limit theoremlimn!1P 8><>:X1 +X2 + � � � +Xn � n��pn � a9>=>; = 1p2� Z a�1 e�x2=2 dx


