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1. Continuous distributions

1.1. One-sample, two-sided z-test
There are complaints that the bread (written 1 kg on it) weights less. We
randomly select n breads, their weights are X1, . . . , Xn, n = 25. The sample
average is 0.98 kg. What to do? The 0.02 kg difference can be caused by
randomness. Even if X1, . . . , Xn ∼ N (µ0, σ0) with µ0= 1 kg and σ0 = 0.05,
there are fluctuations. Investigate the alternative:

H0 : µ = µ0(= 1 kg) versus H1 : µ 6= µ0.

By the assumption of innocence, the jury assumes H0 and we must have enough
evidence to prove the contrary: H1.

If we construct, say, a 95% confidence interval for the population mean, the
hypothetical µ0=1 kg should be in it with high probability. If not, then

• either the complementary event happens, but this has small 5% probabi-
lity;

• we rather suspect, that the population mean is not 1 kg, and reject H0.

We can only rule the Type I error probability (now 0.05): we reject H0 if
it is true (the jury sentences an innocent). The Type II error probability is
opposite: we accept H0 if not true (the jury acquits someone who is guilty). Its
probability increases if we decrease the Type I error probability, so selecting the
Type I error probability (called significance, and denoted by α) raises ethical
issues.

To simplify things, first we construct the test statistic:

Z =
X̄ − µ0

σ0

√
n

and select a significance (now α = 0.05), then find the critical value

zα/2 = Φ−1
(

1− α

2

)
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from the standard normal distribution table. When we constructed confidence
interval last week, we saw that

P
(
µ0 ∈

(
X̄ −

zα/2σ0√
n

, X̄ +
zα/2σ0√

n

))
= P

(
|Z| < zα/2

)
= 1− α .

Therefore, our decision is: if |z| < zα/2, then we accept, and if |z| ≥ zα/2, then
we reject H0 with significance α. The region

R = {x : |z(x)| ≥ zα/2}

is called rejection or critical region.
In our numerical example: x̄ = 0.98, µ0 = 1, n = 25 and let σ0 = 0.05. So

z = −2. With sign. α = 0.05 zα/2 = 1.96, therefore, with sign. 0.05 we reject
H0 and the decision of the lower court: the shop is guilty. They work with
sign. 0.05, i.e., give 0.05 prob. to the event that an innocent is convicted (jury
basically defends the innocents, and they must have enough evidence to convict
someone).

Then the shop goes to the higher court. They work with sign. α = 0.01,
because they are more strict and better defend the innocents (give only 0.01
prob. to the event that an innocent is convicted). Now zα/2 = 2.58, our
|z| = 2 < 2.58, so the higher court cannot reject H0 and acquits the shop.

From the table we can see that with α = 0.0456, zα/2 = 2, so 0.0456 is the
smallest possible sign., at which we can reject H0. Program packages output
this sometimes called P-value and if it is small enough, we can reject H0.

Investigate the Type I error prob. (α) and the Type II error prob. (β),
which also depends on the true value of µ:

α = Pµ0

(
|Z| ≥ zα/2

)
per def, and if µ 6= µ0:

β(µ) = P
(
|Z| < zα/2 |µ

)
.

Sometimes the so-called power function γ is used, which is

γ(µ) = 1− β(µ) = P
(
|Z| ≥ zα/2 |µ

)
.

The theory guarantees the existence of a Uniformly Most Powerful (UMP)
test in this situation (Neyman-Pearson): given α, the UMP test has the largest
possible power (so the smallest possible Type II error) for any µ. This means,
that if the jury convicts innocents with given prob, then they acquit any criminal
with the smallest possible prob.

In our example,

γ(µ) = 1− P
(
−zα/2 <

X̄ − µ0

σ0

√
n < zα/2 |µ

)
=

= 1−
(
−zα/2 −∆n <

X̄ − µ
σ0

√
n < aα/2 −∆n

)
=

= 1− Φ(zα/2 −∆n) + Φ(−zα/2 −∆n) =

= 2− Φ(zα/2 −∆n)− Φ(zα/2 + ∆n),
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1. ábra. Power function of the one-sample two-sided z-test

where
∆n =

µ− µ0

σ0

√
n

and X̄−µ
σ0

√
n ∼ N (0, 1), if µ is the true population mean.

From this form, it is easy to see that if n → ∞ (more and more witnesses)
or µ gets farther and farther from µ0 (more and more guilty), then γ(µ) → 1
and β(µ)→ 0, see Fig. 1.

1.2. One-sample, one-sided z-test
The shop example is better formulated as

H0 : µ ≥ µ0 versus H1 : µ < µ0

(the accuse is only about smaller breads, if larger, no problem). Then the
rejection region is

R = {x : z(x) ≤ −zα},

see the formulas to hypothesis testing.
Then with sign. 0.05 and 0.025 we reject H0. From −zα = −2 we get that

the smallest possible α (P-value) at which we can reject H0 is α = 0.0228. (In
the two-sided situation the P-value was the double of this: 0.0456.) So, in the
one-sided, modified accuse case, we can sooner convict the shop than in the
two-sided situation.

The power function, fixing n and α is

γ(µ) = P(Z ≤ −zα|µ) = Pµ(
X̄ − µ
σ0

√
n+ ∆n ≤ −zα) = Φ(−zα −∆n).

Here γ(µ) decreases in µ, see Fig. 2.
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2. ábra. Power function of the one-sample one-sided z-test

2. Discrete distributions
In the reference book (Chapter 6), the Problem (cure-rate, p. 167) deals with
the one-sided and Ex. 6.1 (cat-food) with the two sided problem (underlying
Bernoulli distribution with binomial test statistic). Please, read the different
strategies (rejection regions). These are small sample exercises. In the large
sample case, we can use z-test for the population proportions, and get surpri-
singly other results.

In case of 15 cats, Fig. 3 shows the power curves under strategies

a : Xk = {X ≤ 4 or X ≥ 11}, b : Xk = {X ≤ 3 or X ≥ 12},

and the smallest rejection region, containing our evidence that 5 cats eat A:

c : Xk = {X ≤ 5 or X ≥ 10}.

Now X1, . . . , X15 is i.i.d. Bernoulli sample with parameter p (0 < p < 1),
where Xi = 1 if cat i eats A, and 0, otherwise. The test statistic is X =∑15
i=1Xi ∼ B15(p), and the underlying alternative:

H0 : p = 0.5 versus H1 : p 6= 0.5.

Here, strategy (b) has the smallest significance (Type I error): α = γ(0.5) =
0.036 and strategy (c) has the largest: 0.302. However, for p 6= 0.5, the Type II
error β(p) = 1− γ(p) is the smallest in strategy (c).

So the divison 5:10 of the cats is not enough evidence to reject H0, but in
case of 150 cats, this is a strong evidence as follows.

2.1. Testing the population proportion for large samples,
two-sided alternative

Now n = 150 ≥ 30, and so, by the special case of the CLT (Moivre–Laplace
theorem), X =

∑n
i=1Xi ∼ Bn(p) is approximately N (np,

√
np(1− p)). There-

fore, the population proportion X̄ is approximately N (p,
√

p(1−p)
n ), where for
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3. ábra. The power function based on 15 cats under the three strategies, α =
γ(0.5).

p, r = X̄, and for the standard deviation,
√

r(1−r)
n are efficient estimators.

Therefore, for the alternative

H0 : p = 0.5 versus H1 : p 6= 0.5

the test statistic
Z =

r − 0.5√
r(1− r)

√
n

is approximately standard normal under H0. The rejection region is the same
as that of the two-sided z-test:

R = {|z| ≥ zα/2}.

If 50 out of the 150 cats eat A, then r = 1
3 and z = −4.33. This is on the

boundary of R such that zα/2 = | − 4.33|. From the standard normal table, the
corresponding α is near 0 (with many 0 decimals). So the P-value is practically
0, we can reject H0 wit a very small significance (Type I error, that we state the
difference of the foods without any reason, is very small, indeed). Also, we need
not worry about the possibly larges Type II error, as it is always ’small’ if n is
’large’. So 50 out of 150 is a strong evidence that the foods appeal differently
to cats. Of course, 40:110 or 30:120 are much stronger.

Note that accepting H0 is equivalent that the hypothetical p0 = 0.5 is within
the confidence interval of level 1− α constructed for p:

r ± zα/2

√
r(1− r)

n
. (1)

2.2. Testing the population proportion for large samples,
one-sided alternative

We revisit the patient recovery exercise with n = 200 patients trying the new
pill.
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Now X1, . . . , Xn is i.i.d. Bernoulli sample with parameter p (0 < p < 1);
Xi = 1 if patient i recovers from the pill, and 0 if not. Since n is large, by the
CLT (Moivre–Laplace theorem), X =

∑n
i=1Xi ∼ Bn(p) and so, X̄ is approxi-

mately normal, as before. Here, for the alternative

H0 : p ≤ 0.6 versus H1 : p > 0.6

the test statistic is
Z =

r − 0.6√
r(1− r)

√
n,

that is approximately standard normal if p = 0.6 (boundary of H0). The rejec-
tion region is:

R = {z ≥ zα}.

Because of the monotonic nature of the power function, this is good for compo-
site H0 too.

If 140 out of 200 patients recover, then r = 140
200 and z = 5.09. This is on

the boundary of R with zα = 5.09; so, α is again 0, practically. Therefore, 140
recover out of 200 is a strong evidence to prove that the new pill is more efficient
than the old one. Note that 14 out of 20 was not strong enough, but this is the
law of large numbers.

2.3. Comparing two population proportions for large samp-
les

Now, we have two independent Bernoulli samples, with sizes n1 ≥ 30, n2 ≥
30, and population proportions r1, r2. For example, we want to compare the
recovery rate in two patient groups. Then

Z =
r1 − r2√

r1(1−r1)
n1

+ r2(1−r2)
n2

under H0 (that p1 = p2) is approximately N (0, 1).
Note that in this two-sample, two-sided case, the acceptance of H0 is equi-

valent to the fact that p1 − p2 is within the confidence interval

r1 − r2 ± zα/2

√
r1(1− r1)

n1
+
r2(1− r2)

n2
.

Remark: instead of the standard deviation,
√

r̂(1−r̂)
n can as well be used,

where r̂ = n1r1+n2r2
n and n = n1 + n2. With this pooled s.d.,

Z ′ =
r1 − r2√

r̂(1− r̂)
√

1
n1

+ 1
n2

,

resembling the formula of the independent sample t-test in the next section.
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3. Two-sample t-test
Let X1, . . . , Xn1 ∼ N (µ1, σ) be i.i.d. sample, and independently of it, let
Y1, . . . , Yn2 ∼ N (µ2, σ) be another i.i.d. sample. Here n1, n2 < 30 and the
unknown s.d. σ is assumed to be the same in the two samples. For this, first
we perform an F -test, see the next section.

First test the following two-sided alternative:

H0 : µ1 = µ2 vers. H1 : µ1 6= µ2 (2)

We construct a statistic the distribution of which under H0 is Student t. Indeed,
under H0

X̄ − Ȳ ∼ N
(

0,

√
n1 + n2

n1n2
σ

)
,

standardize it, and put it into the numerator of the t-statistic to be constructed.
By the Lukács’s theorem,

(n1 − 1)S∗X
2/σ2 ∼ χ2(n1 − 1)

and independently of this,

(n2 − 1)S∗Y
2/σ2 ∼ χ2(n2 − 1),

therefore,
(n1 − 1)S∗X

2 + (n2 − 1)S∗Y
2

σ2
∼ χ2(n1 + n2 − 2).

The squareroot of this divided by the d.f. n1+n2−2 is put into the denominator.
The numerator and denominator are independent r.v.’s by the Lukács’s theorem.
Therefore, the test statistic is

X̄−Ȳ−0√
n1+n2
n1n2

σ√
(n1−1)S∗

X
2+(n2−1)S∗

Y
2/σ2

n1+n2−2

∼ t(n1 + n2 − 2),

where the unknown (but same) σ cancels, and we get that

t =
X̄ − Ȳ
spooled

√
n1n2

n1 + n2
=

X̄ − Ȳ

spooled

√
1
n1

+ 1
n2

,

where

spooled =

√
(n1 − 1)S∗X

2 + (n2 − 1)S∗Y
2/σ2

n1 + n2 − 2

is the pooled s.d., and the pooled variance s2
pooled is unbiased estimator of σ2.

For the two-sided alternative (4) the rejection region defining the α-sign.
test is:

R = {|t| ≥ tα/2(n1 + n2 − 2)}.

. Likewise, for the one-sided alternative

H0 : µ1 ≤ µ2 vers. H1 : µ1 > µ2, (3)
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the test statistic is the same, but the rejection region defining the α-sign. test
is:

R = {t ≥ tα(n1 + n2 − 2)}.

If in (3) we want to test the opposite direction, we simply interchange the
rolecast of the X − Y samples.

Note that the acceptance of Ho in (4) is equivalent that 0 is within the
confidence interval of level 1− α:

x̄− ȳ ± tα/2(n1 + n2 − 2)spooled

√
1

n1
+

1

n2
.

This was the independent sample t-test. IMPORTANT: in case of PARED
(MATCHED) SAMPLES, one-sample test should be used for the differences
Xi − Yi, i = 1, . . . , n.

Note tat when the equality of variances is rejected (see the upcoming F -
test), then a modified t-test, e.g., the Welch-test, should be used. In case of the
paired sample case, it is not needed as we have only one sample Di = Xi − Yi,
i = 1, . . . , n.

4. F -test
Let X1, . . . , Xn1

∼ N (µ1, σ1) be i.i.d. sample, and independently of it, let
Y1, . . . , Yn2

∼ N (µ2, σ2) be another i.i.d. sample.
We test the following two-sided alternative:

H0 : σ1 = σ2 vers. H1 : σ1 6= σ2 (4)

We construct a statistic the distribution of which under H0 is Fischer F (by
definition, this is the distribution of the ratio of two independent χ2-distributed
r.v.’s, each divided with its own d.f.).

Because of the above considerations,

F =
S∗X

2

S∗Y
2

follows F(n1 − 1, n2 − 1) distribution under H0. However in the F -table only
values at least 1 can be seen. So our test statistic is actually

F ∗ = max{S
∗
X

2

S∗Y
2 ,
S∗Y

2

S∗X
2 } ≥ 1

and the rejection region is

R = {F ∗ ≥ Fα/2(f1 − 1, f2 − 1)},

where f1 is the sample size of the sample having the largest, while f2 is the size
of the sample having the smallest empirical variance.
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