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Rules of Counting and Their Use in Combinato-
rial Probability Spaces

1. Permutations. How many different orders of n objects exist?

• Without repetition (there are n different objects): n!

• With repetition (there are n objects of which n1, . . . , nr are alike):
n!

n1!...nr!

2. Variations. How many different orders of k objects selected from a set
of n objects exist?

• Without repetition (an object is selected at most once):
n(n− 1) . . . (n− k + 1) = n!

(n−k)!

• With repetition (an object may be selected several times): nk

3. Combinations. How many different ways k objects can be selected from
a set of n objects?

• Without repetition (an object is selected at most once):
n!

k!(n−k)! =
(
n
k

)
=
(
n

n−k
)
, k ≤ n

• With repetition (an object may be selected several times):(
k+n−1

k

)
=
(
k+n−1
n−1

)
, k ∈ N

Identities containing binomial coefficients:

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k 2n =

n∑
k=0

(
n

k

)
0 =

n∑
k=0

(−1)k
(
n

k

)
(
n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

) (
n+m

k

)
=

k∑
i=0

(
n

i

)(
m

k − i

)
if k ≤ min{n,m}
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Probability Space

(S,A,P), where S is the sample space (set of all possible outcomes=elementary
events), A = {A |A ⊂ S} is the Boole-algebra of the all possible events (includ-
ing ∅=impossible/null event and S=certain/sure event), and the set function
P : A → R satisfies the following AXIOMS:

1. For any A ∈ A: 0 ≤ P(A) ≤ 1

2. P(S) = 1

3. For any sequence of mutually exclusive events A1, A2, . . . : P(
∑
iAi) =∑

i P(Ai)

Propositions implied by the axioms:

• P(A) = 1− P(A)

• Probability is a monotone set function: if A ⊂ B, then P(A) ≤ P(B)

• P(
∑n
i=1Ai) =

∑n
k=1(−1)k−1Sk, Sk =

∑
1≤i1<i2<···<ik≤n P(Ai1Ai2 . . . Aik)

(inclusion–exclusion)

De Morgan identities:

n∑
i=1

Ai =

n∏
i=1

Ai and

n∏
i=1

Ai =

n∑
i=1

Ai

Examples of probability spaces:

• Combinatorial: the sample space has finite number of equally like out-
comes, P(A) = |A|/|S|.

• Geometric: the sample space is a region with finite measure µ (length,
area, volume), P(A) = µ(A)/µ(S).

Conditional Probability, Bayes Rule

• Definition. P(A|B) = P(AB)
P(B) , P(B) > 0. With B fixed, Q(A) := P(A|B).

(S,A,Q) is also a probability space with all of its consequences.

• Definition. B1, B2, . . . is a complete set of mutually exclusive (disjoint)
events, if BiBj = ∅ (i 6= j) and

∑
i P(Bi) = 1.

• Theorem (of complete probability). Let B1, B2, . . . be a complete set of
mutually exclusive events and A be an arbitrary event. Then

P(A) =
∑
i

P(A|Bi) · P(Bi).
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• Bayes’ Theorem. Let B1, B2, . . . be a complete set of mutually exclusive
events and A be an arbitrary event. Then

P(Bk|A) =
P(A|Bk) · P(Bk)∑
i P(A|Bi) · P(Bi)

, k = 1, 2, . . .

• Theorem (factorization). Let A1, A2, . . . , An be arbitrary events. Then

P(A1A2 . . . An) = P(A1) · P(A2|A1) . . .P(An|A1 . . . An−1).

Independence

• Definition. A and B are independent if

P(AB) = P(A) · P(B).

Remark: If P(A) 6= 0 and P(B) 6= 0, then the independence of A and
B means that P(A|B) = P(A) and P(B|A) = P(B); also, then A and
B cannot be exclusive and independent at the same time. S and ∅ are
independent of any other event.

• Definition. The events A1, . . . , An are (completely) independent if

P(A1 . . . An) = P(A1) . . .P(An).

(If P(AiAj) = P(Ai)P(Aj) for i 6= j, then A1 . . . An are pairwise indepen-
dent; this is weaker than independence.)

Random variables

• Random Variable (r.v.): an X : S → R stochastic function that is mea-
surable with respect to A. It means that

A = {s |X(s) ∈ B} ∈ A ∀B ∈ B,

where B denotes the set of Borel-sets of R. Distribution of X: the collec-
tion of the probabilities P(A)’s of the above A’s. Of course, we need not
give all of them.

• Special types of random variables:

1. Discrete probability distributions: X takes on values x1, x2, . . . .
P(X = xi) = pi, i = 1, 2, . . . (

∑
i pi = 1). The collection of pi’s is

called probability mass function (p.m.f.) of X. The mode of X: the
value(s) taken on with the largest probability.

2. (Absolutely) continuous probability distributions: The range
of X is not countable and for any x ∈ R: P(X = x) = 0. However,
there is an f : R→ R nonnegative, integrable function such that∫ ∞

−∞
f(x) dx = 1 and

∫
B

f(x) dx = P(X ∈ B), ∀B ∈ B.

3



f is called probability density function (p.d.f.) of X.

Cumulative distribution function (c.d.f.) of X: F : R→ R such that

F (x) = P(X < x) =

∫ x

−∞
f(t) dt, x ∈ R.

F is continuous, increasing, limx→−∞ F (x) = 0, limx→∞ F (x) = 1.
F is almost everywhere differentiable (at the points of continuity of
f) and for such x’s: F ′(x) = f(x).

P(a < X < b) = F (b)− F (a) =

∫ b

a

f(x) dx (a < b).

(For discrete distributions the above F is a stepwise constant, in-
creasing, left-continuous function.)

• Expectation of X (center of gravity of the mass distribution):

1. E(X) =
∑
i xipi (if it is absolutely convergent).

2. E(X) =
∫∞
−∞ xf(x) dx (if it is absolutely convergent).

For X ≥ 0: 1.E(X) =
∑∞
i=0 P(X > i) if X ∈ N, 2. E(X) =

∫∞
0

(1 −
F (x)) dx.

• Variance of X (inertia with resp. to the center of gravity of the mass
distribution):

Var (X) = E(X − EX)2 = E(X2)− E2(X), provided E(X2) <∞.

Standard deviation of X: D(X) =
√

Var (X) ≥ 0 and =0 if and only if
P(X = cst.) = 1.

• k-th Moment ofX: Mk(X) = E(Xk), k-th Central Moment ofX: M c
k(X) =

E(X − EX)k (if exists, then also exists for 1 ≤ s < k). E(X) = M1(X),
Var (X) = M c

2 (X) = M2(X)− [M1(X)]2.

• Steiner’s Theorem: E(X − c)2 = E(X − EX)2 + (EX − c)2 ≥ Var (X),
min. if c = EX.

• p-quantile value or 100p-percentile of X is xp if F (xp) = p. Median:
0.5-quantile value.

Examples to Notable Distributions, Prob. Mod-
els (see TABLES)

1. We have N balls, M red and N −M white, mixed in an urn. n balls are
selected randomly without replacement (or at the same time). Suppose
that n ≤ min{M,N−M}. What is the probability that among the selected
n balls there are k red ones (k = 0, 1, . . . , n).

2. We have N balls, M red and N −M white, mixed in an urn. n balls are
selected randomly with replacement. What is the probability that among
the selected (visited) n balls there are k red ones (k = 0, 1, . . . , n).
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3. What is the probability that by a 5-lottery ticket one wins a prize (one
has at least a 2-hit)? (5 numbers are selected from {1, 2, . . . , 90})

4. In a class of 20 students 8 are not prepared for the class. The teacher
selects 5 students at random and asks them. Give the distribution of the
number of students who are not able to answer the teacher’s question
among the selected 5.

5. What is the probability that we have a k-hit by filling in a TOTO ticket
at random (k = 0, 1, . . . , 13)? (bet 1, 2, or x on the outcome of each of 13
soccer matches)

6. Give the distribution of the number of girls in a family having n children.
Give the mode of this random variable! (The gender of the children is
independent of each other with probability 1/2–1/2.) Equivalent problem:
n fair coins are tossed, or a fair coin is tossed n times; give the distribution
of the number of heads.

7. Waiting for the first boy. Consider the following population model: each
family waits for a boy, and once they have him, they do not want more
children. Give the boys/girls proportion in this population. (The gender
of children is independent of each other with probability 1/2–1/2.)

8. Cookies are made in a big bakery: the blueberries are mixed into the mass
and then the cookies are formed randomly. About how many blueberries
have to be planned for a cookie, if they want to make the probability of
possible complaints (of not having any blueberry in the cookie) as small
as 0.01. Give the mode of the actual number of blueberries in a cookie!

9. Let X denote the lifetime of a radioactive isotope. Assuming, it has ex-
ponential distribution, prove the Markovian (ever-lasting) property of it:

P(X > t+ s |X > s) = P(X > t), t, s > 0.

If the halving time (median) is 100 years, find the parameter λ and the
expected lifetime.

10. Let X ∼ N (µ, σ2) be Gaussian random variable. Calculate P(µ − σ <
X < µ+ σ) and P(µ− 2σ < X < µ+ 2σ).

The following theorem states that the Gaussian distribution has a distin-
guished importance. Let X1, X2, . . . be i.i.d. r.v.’s (they are independent and
identically distributed) with (existing) expectation µ and standard deviation σ.
Let

X̄ :=
X1 + · · ·+Xn

n
, n = 1, 2, . . . .

Obviously, E(X̄) = µ and D(X̄) = σ√
n

.

Central Limit Theorem (CLT): In the above setup, the standardized X̄ is
approximately Gaussian:

Z =
X̄ − µ
σ/
√
n

=
X̄ − µ
σ

√
n→ N (0, 1), n→∞

in terms of the convergence in distribution (convergence of distribution func-
tions).

5


