Sufficient Statistics and Estimation

Marianna Bolla, Prof, DSc. Institute of Mathematics, BME

August 31, 2023

Descriptive statistics

 $(\mathcal{S}, \mathcal{A}, \mathcal{P})$ is a statistical space if $(\mathcal{S}, \mathcal{A}, \mathbb{P})$ is probability space for all $\mathbb{P} \in \mathcal{P}$, where \mathcal{P} is a family of distributions.

Parametric case: $\mathcal{P} = \{ \mathbb{P}_{\theta} \mid \theta \in \Theta \}$, where $\Theta \subset \mathbb{R}^k$ is the parameter space.

Statistical sample: X_1, X_2, \ldots, X_n i.i.d. Sample space (\mathcal{X}) : set of all possible realizations $\mathbf{x} = (x_1, \ldots, x_n)$ of $\mathbf{X} = (x_1, \ldots, x_n)$ $(X_1,\ldots,X_n).$

Statistic: $T = T(\mathbf{X}) = T(X_1, \dots, X_n)$ measurable function of the sample elements.

Basic descriptive statistics:

- Sample mean: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. (Sometimes $\bar{X}_n, \bar{x}, \bar{x}_n$.)
- Steiner's Theorem: $\frac{1}{n} \sum_{i=1}^{n} (x_i c)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2 + (\bar{x} c)^2$.
- Empirical variance: $S^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 \bar{X}^2 = \overline{X^2} \overline{X^2}$ \bar{X}^2 .
- Corrected empirical variance: $S^{*2} = \frac{n}{n-1}S^2 = \frac{1}{n-1}\sum_{i=1}^n (X_i \bar{X})^2$.
- Standard Error of Mean: $\bar{X}\sqrt{n}/S^*$.
- k-th empirical moment: $M_k = \frac{1}{n} \sum_{i=1}^n X_i^k$. Centered version: $M_k^c =$ $\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^k. \ (S^2 = M_2^c = M_2 - M_1^2.)$
- Skewness: $M_3^c/(M_2^c)^{3/2}$. Kurtosis: $M_4^c/(M_2^c)^2 3$.
- Empirical covariance based on $(X_1, Y_1)^T, \dots, (X_n, Y_n)^T$ i.i.d.:

$$C = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}) = \frac{1}{n} \sum_{i=1}^{n} X_i Y_i - \bar{X} \bar{Y}.$$

• Empirical correlation coefficient: $R = \frac{C}{S_X S_Y} = \frac{\sum_{i=1}^n X_i Y_i - n\bar{X}\bar{Y}}{\sqrt{(\sum_{i=1}^n X_i^2 - n\bar{X}^2)(\sum_{i=1}^n Y_i^2 - n\bar{Y}^2)}}$

- Order statistics: $X_1^* \leq X_2^* \leq \cdots \leq X_n^*$ (neither independent, nor identically distributed).
 - Sample range: $X_n^* X_1^*$.
 - Empirical median: X_{k+1}^* (if n = 2k + 1), and $(X_k^* + X_{k+1}^*)/2$ (if n = 2k).
 - Proposition (Steiner in L_1 -norm): $\min_{c \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n |x_i c| = \frac{1}{n} \sum_{i=1}^n |x_i c|$
 - Empirical c.d.f.: $F_n^*(x) := \frac{\sum_{i=1}^n I(X_i < x)}{n}$ (stochastic process, x is the time).
 - Glivenko-Cantelli Theorem (fundamental theorem of statistics): $\sup_{x \in \mathbb{R}} |F_n^*(x) F(x)| \to 0$, almost surely $(n \to \infty)$.

Sufficient statistics

We take an i.i.d. sample X_1, \ldots, X_n from a population with distribution \mathbb{P}_{θ} , where θ is unknown parameter, and it is in the parameter space Θ , so $\theta \in \Theta$. For example, if $\mathbf{X} := (X_1, \ldots, X_n)$ follow Poisson distribution, then the parameter, now denoted by λ is in the parameter space $\Theta = (0, \infty)$. The sample space is the set of all possible n-tuples (x_1, \ldots, x_n) that are possible realizations of the sample. For fixed simple size n, let $\mathcal{X} \subset \mathbb{R}^n$ denote the sample space, that is the set of all possible realizations. In the Poisson case, it is $\mathcal{X} = \{0, 1, 2, \ldots\}^n$.

Point estimation means that we want to conclude for θ based on a sample. For this, we need a statistic that contains all important information from the sample.

Definition 1 The likelihood function for $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{X}$ and $\theta \in \Theta$ is $L_{\theta}(\mathbf{x}) = \mathbb{P}_{\theta}(\mathbf{X} = \mathbf{x}) = \prod_{i=1}^{n} \mathbb{P}_{\theta}(X_i = x_i) = \prod_{i=1}^{n} p_{\theta}(x_i)$ in the discrete, and $L_{\theta}(\mathbf{x}) = \prod_{i=1}^{n} f_{\theta}(x_i)$ in the absolutely continuous case, where $p_{\theta}(x)$ is the probability mass function (p.m.f.) in the discrete, and $f_{\theta}(x)$ is the probability density function (p.d.f.) in the continuous case.

Now we organize the sample entries into a *statistic* $T := T(X_1, ..., X_n) = T(\mathbf{X})$ such that, by this compression, we would not loose any information for the parameter.

Definition 2 The statistic $T(\mathbf{X})$ is sufficient for θ if the distribution of \mathbf{X} conditioned on $T(\mathbf{X})$ does not depend on θ .

It means that T contains all the information that can be retrieved from the sample for the parameter.

Theorem 1 (Neyman–Fisher factorization) The statistic T(X) is sufficient for θ if and only if the likelihood function can be factorized as

$$L_{\theta}(\mathbf{x}) = q_{\theta}(T(\mathbf{x})) \cdot h(\mathbf{x}), \quad \forall \theta \in \Theta, \quad \mathbf{x} \in \mathcal{X}$$

 $with \ some \ measurable, \ nonnegative \ real \ functions \ g \ and \ h.$

Sufficient statistics are many, even based on the same sample and for the same parameter (e.g., the ordered sample is such). A sufficient statistic is *minimal* if it is the function of any other sufficient statistic. Minimal sufficient statistic always exists, and it is unique up to equivalence.

Theory of point estimation

We want to estimate θ , or its measurable function $\psi(\theta)$ by means of the statistic $T(\mathbf{X})$ on the basis of the i.i.d. sample $\mathbf{X} = (X_1, \dots, X_n)$. The point estimator is sometimes denoted by $\hat{\theta}$ or $\hat{\psi}$. Criteria for the 'goodness' of a point estimator:

- $T(\mathbf{X})$ is an **unbiased** estimator of $\psi(\theta)$, if $\mathbb{E}_{\theta}(T(\mathbf{X})) = \psi(\theta)$, $\forall \theta \in \Theta$.
- $T(\mathbf{X}_n)$ is an asymptotically unbiased estimator of $\psi(\theta)$, if

$$\lim_{n \to \infty} \mathbb{E}_{\theta}(T(\mathbf{X}_n)) = \psi(\theta), \quad \forall \theta \in \Theta.$$

• Let T_1 and T_2 be both unbiased estimators of $\psi(\theta)$. T_1 is **at least as efficient** than T_2 , if $\operatorname{Var}_{\theta}^2(T_1) \leq \operatorname{Var}_{\theta}^2(T_2)$, $\forall \theta \in \Theta$. An unbiased estimator is **efficient**, if it is at least as efficient than any other unbiased estimator. An efficient estimator is sometimes called *minimum variance unbiased estimator*.

Efficient estimator does not always exist, but if yes, then it is unique (with probability 1).

• $T(\mathbf{X}_n)$ is a weakly/strongly/mean square **consistent** estimator of $\psi(\theta)$, if $\forall \theta \in \Theta$:

 $T(\mathbf{X}_n) \to \psi(\theta)$ in probability/almost surely/mean square as $n \to \infty$.

Examples of 'good' estimators:

- the sample mean \bar{X} is always an unbiased estimator of the population mean $\mathbb{E}(X_1)$;
- the empirical variance is asymptotically unbiased, whereas, the corrected empirical variance is unbiased estimator of the population variance $Var(X_1)$;
- the above are also consistent in all of the three meanings (provided the first/second/fourth population moments exist).

Methods of point estimation:

- Maximum Likelihood Estimation (MLE): given the sample, the MLE of θ is $\hat{\theta}$ if it maximizes the likelihood function. By common sense, in case of a discrete distribution, the MLE is a possible parameter value, for which having the actual sample is the most likely. However, $\hat{\theta} = T(\mathbf{X})$ is a statistic, and it is asymptotically unbiased and strongly consistent estimator of θ .
- **Method of moments**: if $\dim(\theta) = k$, then we find the first k moments of the $\mathbb{P}_{(\theta_1,\ldots,\theta_k)}$ distribution. If, vice versa, θ_j can be expressed by the first k moments, then the same function of the empirical moments gives $\hat{\theta}_j$, for $j = 1,\ldots,k$.

Examples

1. Let X_1, \ldots, X_n be i.i.d. sample from Poisson distribution with parameter λ .

$$L_{\lambda}(\mathbf{x}) = \prod_{i=1}^n \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} = \left(\lambda^{\sum_{i=1}^n x_i} e^{-n\lambda}\right) \cdot \left(\prod_{i=1}^n \frac{1}{x_i!}\right) = g_{\lambda}(\sum_{i=1}^n x_i) \cdot h(\mathbf{x}),$$

so $\sum_{i=1}^{n} X_i$ is sufficient statistic for λ , akin to its one-to-one function \bar{X} . To find the MLE,

$$\ln L_{\lambda}(\mathbf{x}) = \ln \left[\prod_{i=1}^{n} \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} \right] = \ln \lambda \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \ln x_i! - \lambda n.$$

Differentiating with respect to λ , the likelihood equation is

$$\frac{\partial \ln L_{\lambda}(\mathbf{x})}{\partial \lambda} = \frac{1}{\lambda} \sum_{i=1}^{n} x_i - n = 0.$$

The solution is $\hat{\lambda} = \bar{x}$, which indeed gives a local and global maximum. So $T(\mathbf{X}) = \bar{X}$ is the MLE of λ , provided it is not 0, i.e., not all the sample entries are zero at the same time (it can happen with positive, albeit 'small' probability).

2. Let X_1, \ldots, X_n be i.i.d. sample from exponential distribution with parameter λ). Then

$$L_{\lambda}(\mathbf{x}) = \prod_{i=1}^{n} \lambda e^{-\lambda x_i} = \lambda^n e^{-\lambda \sum_{i=1}^{n} x_i},$$

that is $g_{\lambda}(T(\mathbf{x}))$, and $h(\mathbf{x}) = 1 \cdot I_{(0,\infty)}$. Therefore, $\sum_{i=1}^{n} X_i$ is sufficient akin to \bar{X} or $\frac{1}{\bar{X}}$.

As for the MLE of λ ,

$$\ln L_{\lambda}(\mathbf{x}) = \ln \left[\prod_{i=1}^{n} \lambda e^{-\lambda x_i} \right] = n \ln \lambda - \lambda \sum_{i=1}^{n} x_i,$$

from which, after differentiating, we get that $\hat{\lambda} = 1/\bar{x}$, that gives a local and global maximum. Consequently, $T(\mathbf{X}) = 1/\bar{X}$ is the MLE of λ with probability 1 (\bar{X} can be 0 only with probability 0).

3. Let X_1, \ldots, X_n be i.i.d. sample from normal (Gaussian) distribution with unknown parameter $\theta = (\mu, \sigma^2)$. Then

$$L_{\theta}(\mathbf{x}) = \frac{1}{(\sqrt{2\pi}\sigma)^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right) =$$
$$= \frac{1}{(\sqrt{2\pi}\sigma)^n} \exp\left(-\frac{1}{2\sigma^2} \left[\sum_{i=1}^n (x_i - \bar{x})^2 + n(\bar{x} - \mu)^2\right]\right).$$

It is $g_{\theta}(T(\mathbf{x}))$, where $T(\mathbf{X}) = (\bar{X}, S^2)$ sufficient for θ , and $h(\mathbf{x}) = 1$. Obviously, (\bar{X}, S^{*2}) or $(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2)$ are also sufficient. To find MLE,

$$\ln L_{\theta}(\mathbf{x}) = \ln \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}} = \sum_{i=1}^{n} \left[-\ln(\sqrt{2\pi\sigma^{2}}) - \frac{(x_{i}-\mu)^{2}}{2\sigma^{2}} \right] =$$
$$= -\frac{n}{2} (\ln(2\pi) + \ln\sigma^{2}) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i}-\mu)^{2}.$$

Taking partial derivatives,

$$\frac{\partial \ln L_{\theta}(\mathbf{x})}{\partial \mu} = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} 2(x_i - \mu)(-1) = 0 \Longrightarrow \hat{\mu} = \bar{x}.$$

and

$$\frac{\partial \ln L_{\theta}(\mathbf{x})}{\partial \sigma^2} = -\frac{n}{2} \frac{1}{\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^{n} (x_i - \mu)^2 = 0.$$

Since the solution $\hat{\mu} = \bar{x}$ does not depend on the actual value of σ^2 substituting it to the second equation, we get that $\hat{\sigma}^2 = S_n^2$, that is only asymptotically unbiased for σ^2 . The Hessian at (\bar{x}, s_n^2) is:

$$H = \begin{pmatrix} -\frac{n}{s_n^2} & 0\\ 0 & -\frac{n}{2(s_n^2)^2} \end{pmatrix},$$

which is negative definite, so we indeed have a local and global maximum here.

4. Let X_1, \ldots, X_n be i.i. sample from continuous uniform distribution on [a, b]. Here $\theta = (a, b)$.

$$L_{\theta}(\mathbf{x}) = \prod_{i=1}^{n} f_{\theta}(x_i) = \frac{1}{(b-a)^n}, \text{ if } x_1, \dots, x_n \in [a, b],$$

and 0, otherwise. $L_{\theta}(\mathbf{x}) = (b-a)^{-n}I(x_1^* \geq a, x_n^* \leq b) = g_{\theta}(x_1^*, x_n^*)$ and $h(\mathbf{x}) = 1$. So the pair (X_1^*, X_n^*) is sufficient for (a, b). It also gives the MLE, as we maximize the likelihood on the constraint that [a, b] should contain all the sample entries.

Here the moment estimate of the parameters is not the same as the MLE, in contrast to the first three examples.

Interval estimation: The random interval $(T_1(\mathbf{X}), T_2(\mathbf{X}))$ is a confidence interval of level at least $1 - \varepsilon$ for $\psi(\theta)$, if $\mathbb{P}_{\theta}(T_1 < \psi(\theta) < T_2) \ge 1 - \varepsilon$ $(\forall \theta \in \Theta)$.

Note that in case of a continuous distribution, exactly $1-\varepsilon$ level confidence interval can be attained. ε is usually 'small', e.g., 0.05 or 0.01, in which cases we speak about 95% or 99% confidence intervals.