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Descriptive statistics

(S,A,P) is a statistical space if (S,A,P) is probability space for all P ∈ P,
where P is a family of distributions.
Parametric case: P = {Pθ | θ ∈ Θ}, where Θ ⊂ Rk is the parameter space.
Statistical sample: X1, X2, . . . , Xn i.i.d.
Sample space (X ): set of all possible realizations x = (x1, . . . , xn) of X =
(X1, . . . , Xn).
Statistic: T = T (X) = T (X1, . . . , Xn) measurable function of the sample ele-
ments.
Basic descriptive statistics:

• Sample mean: X̄ =
1

n

∑n
i=1Xi. (Sometimes X̄n, x̄, x̄n.)

• Steiner’s Theorem:
1

n

∑n
i=1(xi − c)2 =

1

n

∑n
i=1(xi − x̄)2 + (x̄− c)2.

• Empirical variance: S2 =
1

n

∑n
i=1(Xi − X̄)2 = 1

n

∑n
i=1X

2
i − X̄2 = X2 −

X̄2.

• Corrected empirical variance: S∗2 =
n

n− 1
S2 =

1

n− 1

∑n
i=1(Xi − X̄)2.

• Standard Error of Mean: X̄
√
n/S∗.

• k-th empirical moment: Mk =
1

n

∑n
i=1X

k
i . Centered version: M c

k =

1

n

∑n
i=1(Xi − X̄)k. (S2 =M c

2 =M2 −M2
1 .)

• Skewness: M c
3/(M

c
2 )

3/2. Kurtosis: M c
4/(M

c
2 )

2 − 3.

• Empirical covariance based on (X1, Y1)
T , . . . , (Xn, Yn)

T i.i.d.:

C =
1

n

n∑
i=1

(Xi − X̄)(Yi − Ȳ ) =
1

n

n∑
i=1

XiYi − X̄Ȳ .

• Empirical correlation coefficient: R = C
SXSY

=
∑n

i=1 XiYi−nX̄Ȳ√
(
∑n

i=1 X2
i −nX̄2)(

∑n
i=1 Y 2

i −nȲ 2)
.
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• Order statistics: X∗
1 ≤ X∗

2 ≤ · · · ≤ X∗
n (neither independent, nor

identically distributed).

– Sample range: X∗
n −X∗

1 .

– Empirical median: X∗
k+1 (if n = 2k + 1), and (X∗

k + X∗
k+1)/2 (if

n = 2k).

– Proposition (Steiner in L1-norm): minc∈R
1

n

∑n
i=1 |xi−c| =

1

n

∑n
i=1 |xi−

m|.
– Empirical c.d.f.: F ∗

n(x) :=
∑n

i=1 I(Xi<x)

n (stochastic process, x is the
time).

– Glivenko–Cantelli Theorem (fundamental theorem of statistics):
supx∈R |F ∗

n(x)− F (x)| → 0, almost surely (n→ ∞).

Sufficient statistics

We take an i.i.d. sample X1, . . . , Xn from a population with distribution Pθ,
where θ is unknown parameter, and it is in the parameter space Θ, so θ ∈ Θ. For
example, if X := (X1, . . . , Xn) follow Poisson distribution, then the parameter,
now denoted by λ is in the parameter space Θ = (0,∞). The sample space is
the set of all possible n-tuples (x1, . . . , xn) that are possible realizations of the
sample. For fixed simple size n, let X ⊂ Rn denote the sample space, that is
the set of all possible realizations. In the Poisson case, it is X = {0, 1, 2, . . . }n.

Point estimation means that we want to conclude for θ based on a sample.
For this, we need a statistic that contains all important information from the
sample.

Definition 1 The likelihood function for x = (x1, . . . , xn) ∈ X and θ ∈ Θ
is Lθ(x) = Pθ(X = x) =

∏n
i=1 Pθ(Xi = xi) =

∏n
i=1 pθ(xi) in the discrete,

and Lθ(x) =
∏n

i=1 fθ(xi) in the absolutely continuous case, where pθ(x) is the
probability mass function (p.m.f.) in the discrete, and fθ(x) is the probability
density function (p.d.f.) in the continuous case.

Now we organize the sample entries into a statistic T := T (X1, . . . , Xn) =
T (X) such that, by this compression, we would not loose any information for
the parameter.

Definition 2 The statistic T (X) is sufficient for θ if the distribution of X
conditioned on T (X) does not depend on θ.

It means that T contains all the information that can be retrieved from the
sample for the parameter.

Theorem 1 (Neyman–Fisher factorization) The statistic T (X) is sufficient
for θ if and only if the likelihood function can be factorized as

Lθ(x) = gθ(T (x)) · h(x), ∀θ ∈ Θ, x ∈ X

with some measurable, nonnegative real functions g and h.

Sufficient statistics are many, even based on the same sample and for the
same parameter (e.g., the ordered sample is such). A sufficient statistic is min-
imal if it is the function of any other sufficient statistic. Minimal sufficient
statistic always exists, and it is unique up to equivalence.
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Theory of point estimation

We want to estimate θ, or its measurable function ψ(θ) by means of the statistic
T (X) on the basis of the i.i.d. sample X = (X1, . . . , Xn). The point estimator

is sometimes denoted by θ̂ or ψ̂. Criteria for the ‘goodness’ of a point estimator:

• T (X) is an unbiased estimator of ψ(θ), if Eθ(T (X)) = ψ(θ), ∀θ ∈ Θ.

• T (Xn) is an asymptotically unbiased estimator of ψ(θ), if

lim
n→∞

Eθ(T (Xn)) = ψ(θ), ∀θ ∈ Θ.

• Let T1 and T2 be both unbiased estimators of ψ(θ). T1 is at least as
efficient than T2, if Var

2
θ(T1) ≤ Var 2θ(T2), ∀θ ∈ Θ. An unbiased estimator

is efficient, if it is at least as efficient than any other unbiased estimator.
An efficient estimator is sometimes called minimum variance unbiased
estimator.

Efficient estimator does not always exist, but if yes, then it is unique (with
probability 1).

• T (Xn) is a weakly/strongly/mean square consistent estimator of ψ(θ),
if ∀θ ∈ Θ:
T (Xn) → ψ(θ) in probability/almost surely/mean square as n→ ∞.

Examples of ‘good’ estimators:

• the sample mean X̄ is always an unbiased estimator of the population
mean E(X1);

• the empirical variance is asymptotically unbiased, whereas, the corrected
empirical variance is unbiased estimator of the population variance Var (X1);

• the above are also consistent in all of the three meanings (provided the
first/second/fourth population moments exist).

Methods of point estimation:

• Maximum Likelihood Estimation (MLE): given the sample, the MLE

of θ is θ̂ if it maximizes the likelihood function. By common sense, in
case of a discrete distribution, the MLE is a possible parameter value, for
which having the actual sample is the most likely. However, θ̂ = T (X)
is a statistic, and it is asymptotically unbiased and strongly consistent
estimator of θ.

• Method of moments: if dim (θ) = k, then we find the first k moments
of the P(θ1,...,θk) distribution. If, vice versa, θj can be expressed by the
first k moments, then the same function of the empirical moments gives
θ̂j , for j = 1, . . . , k.
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Examples

1. Let X1, . . . , Xn be i.i.d. sample from Poisson distribution with parameter
λ.

Lλ(x) =

n∏
i=1

λxi

xi!
e−λ =

(
λ
∑n

i=1 xie−nλ
)
·

(
n∏

i=1

1

xi!

)
= gλ(

n∑
i=1

xi) · h(x),

so
∑n

i=1Xi is sufficient statistic for λ, akin to its one-to-one function X̄.

To find the MLE,

lnLλ(x) = ln

[
n∏

i=1

λxi

xi!
e−λ

]
= lnλ

n∑
i=1

xi −
n∑

i=1

lnxi!− λn.

Differentiating with respect to λ, the likelihood equation is

∂ lnLλ(x)

∂λ
=

1

λ

n∑
i=1

xi − n = 0.

The solution is λ̂ = x̄, which indeed gives a local and global maximum.
So T (X) = X̄ is the MLE of λ, provided it is not 0, i.e., not all the
sample entries are zero at the same time (it can happen with positive,
albeit ‘small’ probability).

2. Let X1, . . . , Xn be i.i.d. sample from exponential distribution with pa-
rameter λ). Then

Lλ(x) =

n∏
i=1

λe−λxi = λne−λ
∑n

i=1 xi ,

that is gλ(T (x)), and h(x) = 1 · I(0,∞). Therefore,
∑n

i=1Xi is sufficient

akin to X̄ or 1
X̄
.

As for the MLE of λ,

lnLλ(x) = ln

[
n∏

i=1

λe−λxi

]
= n lnλ− λ

n∑
i=1

xi,

from which, after differentiating, we get that λ̂ = 1/x̄, that gives a local
and global maximum. Consequently, T (X) = 1/X̄ is the MLE of λ with
probability 1 (X̄ can be 0 only with probability 0).

3. Let X1, . . . , Xn be i.i.d. sample from normal (Gaussian) distribution with
unknown parameter θ = (µ, σ2). Then

Lθ(x) =
1

(
√
2πσ)n

exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2

)
=

=
1

(
√
2πσ)n

exp

(
− 1

2σ2

[
n∑

i=1

(xi − x̄)2 + n(x̄− µ)2

])
.
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It is gθ(T (x)), where T (X) = (X̄, S2) sufficient for θ, and h(x) = 1.
Obviously, (X̄, S∗2) or (

∑n
i=1Xi,

∑n
i=1X

2
i ) are also sufficient.

To find MLE,

lnLθ(x) = ln

n∏
i=1

1√
2πσ

e−
(xi−µ)2

2σ2 =

n∑
i=1

[
− ln(

√
2πσ2)− (xi − µ)2

2σ2

]
=

= −n
2
(ln(2π) + lnσ2)− 1

2σ2

n∑
i=1

(xi − µ)2.

Taking partial derivatives,

∂ lnLθ(x)

∂µ
= − 1

2σ2

n∑
i=1

2(xi − µ)(−1) = 0 =⇒ µ̂ = x̄.

and
∂ lnLθ(x)

∂σ2
= −n

2

1

σ2
+

1

2(σ2)2

n∑
i=1

(xi − µ)2 = 0.

Since the solution µ̂ = x̄ does not depend on the actual value of σ2 sub-
stituting it to the second equation, we get that σ̂2 = S2

n, that is only
asymptotically unbiased for σ2. The Hessian at (x̄, s2n) is:

H =

− n
s2n

0

0 − n
2(s2n)

2

 ,

which is negative definite, so we indeed have a local and global maximum
here.

4. Let X1, . . . , Xn be i.i. sample from continuous uniform distribution on
[a, b]. Here θ = (a, b).

Lθ(x) =

n∏
i=1

fθ(xi) =
1

(b− a)n
, if x1, . . . , xn ∈ [a, b],

and 0, otherwise. Lθ(x) = (b − a)−nI(x∗1 ≥ a, x∗n ≤ b) = gθ(x
∗
1, x

∗
n) and

h(x) = 1. So the pair (X∗
1 , X

∗
n) is sufficient for (a, b). It also gives the

MLE, as we maximize the likelihood on the constraint that [a, b] should
contain all the sample entries.

Here the moment estimate of the parameters is not the same as the MLE,
in contrast to the first three examples.

Interval estimation: The random interval (T1(X), T2(X)) is a confidence in-
terval of level at least 1− ε for ψ(θ), if Pθ(T1 < ψ(θ) < T2) ≥ 1− ε (∀θ ∈ Θ).

Note that in case of a continuous distribution, exactly 1− ε level confidence
interval can be attained. ε is usually ‘small’, e.g., 0.05 or 0.01, in which cases
we speak about 95% or 99% confidence intervals.
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