SMD Homework Exercises 1.

- 1. There are 100 students registered for an overall course, but each of them attends the lectures with probability 0.8 only, independently of each other. What size of a class (with how many chairs) to reserve if we want to give only 5% chance to the situation that a student, arriving to the class, cannot find a free chair.
- 2. Let X_1, \ldots, X_3 be an i.i.d. sample from Poisson distribution with unknown parameter. Which of the following statistics is an unbiased estimator of λ ? Why?
 - (a) \overline{X}
 - (b) X_1
 - (c) $\frac{1}{2}X_1 + \frac{1}{3}X_2$
 - (d) $\frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3$
 - (e) $\frac{1}{2}X_1 + \frac{1}{3}X_2 + \frac{1}{6}X_3$
 - (f) $\frac{1}{3} \sum_{i=1}^{3} (X_i \bar{X})^2$
 - (g) $\frac{1}{2} \sum_{i=1}^{3} (X_i \bar{X})^2$
 - (h) $\sum_{i=1}^{3} (X_i \bar{X})^2$
- 3. Prove that the corrected empirical variance is unbiased, whereas the empirical variance is asymptotically unbiased estimator of the population variance if it exists.
- 4. An old joke is that a certain professor left Princeton for Stanford, and thereby improved the average quality of both departments. Is this possible? Explain your answer!
- 5. Consider a randomly selected two-children family from a population where the genders of children are independent of each other, but the boy:girl probability at birth may differ a bit from the $\frac{1}{2}$: $\frac{1}{2}$. Find the probabilities below! How the difference between the two behaves if we get farther and farther from the $\frac{1}{2}$: $\frac{1}{2}$ ratio?
 - (a) The two children have the same gender.
 - (b) The two children have different genders.

(The same with tossing a not necessarily fair coin.)