LUKACS’ THEOREM AND CONSEQUENCES

Definition: Let &;,...,&, ~ N(0,1) be i.i.d. rv’s. Then the distribution of the
rv &= &2 is called x? (chi2) distribution with degrees of freedom (d.f.) n.
Definition: Let n ~ A(0,1) and £ ~ x?(n) be independent rv’s. Then the

distribution of "

VEm

is called Student t-distribution with degrees of freedom (d.f.) n and denoted by
t(n) (Student=V. Gosset).

Lukacs’ Theorem. Let X1, Xo,..., X,, ~ N (1, 0) be i.i.d. rv’s. Then
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2. nS2/o% ~ x%(n — 1), or equivalently, (n — 1)S:?/0% ~ x%(n — 1);
3. X and S? are independent rv’s, or equivalently, X and S*? are indepen-

dent rv’s.

Consequences:

e Recall that in case of X1, Xs,..., X,, ~ N(u,00) i.i.d. sample, where oq
is known, for any 0 < o < 1, the 1 — « level confidence interval for p is
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where z,/7 is the 1 — « /2 quantile value of the standard normal distribu-
tion.

e In case of Xy, Xo,...,X,, ~ N(u,0) i.i.d. sample, where o is unknown,
by Lukacs’ Theorem,
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therefore, for any 0 < a < 1, the 1 — « level confidence interval for p is
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where ¢,/2(n —1) is the 1 — /2 quantile value of the ¢(n — 1) distribution.
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e Going further, in view of the expectation and variance of the x?(n — 1)
distribution,
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This is another proof that the corrected empirical variance is an unbiased
estimator of the true (population) variance of the normal distribution.
Also,
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as n — oo. Consequently, S;“L2 is an unbiased estimator with “small”
variance in the normal case.

Therefore, for “large” n (n > 30), even in case of unknown variance the
confidence interval of can be updated to
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whereas is mainly applicable for “small” (n < 30) sample sizes.




