
Multivariate Regression

The so-called supervised learning problem is the following: we want to ap-
proximate the random variable Y with an appropriate function of the random
variables X1, . . . , Xp with the method of least squares. That is,

E(Y − g(X1, . . . , Xp))
2

is minimized over all p-variate, measurable functions g. From probability theory
it is known, that the optimum g is

gopt(x1, . . . , xp) = E(Y |X1 = x1, . . . , Xp = xp) =

∫∞
−∞ yf(y, x1, . . . , xp)dy∫∞
−∞ f(y, x1, . . . , xp)dy

,

where f is the joint p.d.f. of the above random variables (usually they have
an absolutely continuous distribution). gopt is called regression function, and
Proposition 5 of Lesson 2 guarantees that it is linear if f is a (p+1)-dimensional
normal density. Even if our random variables do not have a multivariate normal
distribution (which is very usual by the Multivariate Central Limit Theorem),
a linear approximation makes sense. 0Frequently, we estimate the regression
parameters from a sample, and use so-called linearizing transformations.

1 Linear Regression

Given the expectation vector and covariance matrix of the random vector (Y,X1, . . . , Xp)
T ,

we want to approximate Y (target or response variable) with a linear combina-
tion of the predictor variable X = (X1, . . . , Xp)

T in such a way that the least
squares error is minimized.

The solution is the following. To minimize the function

g(a1, . . . , ap, b) = E(Y − (a1X1 + · · ·+ apXp + b))2

let us take its partial derivatives with respect to the parameters a1, . . . , ap and
b, then equal them to 0. Under some regularity conditions (which always hold
in exponential families, especially in the multivariate Gaussian case), the dif-
ferentiation with respect to the parameters results in the following system of
equations:

∂g

∂b
= −2E(Y − (a1X1 + · · ·+ apXp + b)) = 0

which results in
b = EY − a1EX1 − · · · − apEXp (1)

when ai’s are already known.

∂g

∂ai
= 2E(Y − (a1X1 + · · ·+ apXp + b))(−Xi) = 0 (i = 1, . . . , p)

which, using the solution for b, provides the following system of linear equations:

p∑
j=1

Cov(Xi, Xj)aj = Cov(Y,Xi), i = 1, . . . , p.
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Denoting by C the covariance matrix of the random vector X = (X1, . . . , Xp)
and d the p-dimensional vector of cross-covariances between the components of
X and Y , the above system of linear equations has the concise form:

Ca = d, (2)

where a = (a1, . . . , ap)
T is the vector of the parameters aj ’s.

The system of equations (2) has the unique solution

a = C−1d (3)

whenever |C| 6= 0, which holds if there are no linear relations betweenX1, . . . , Xp

(in the multivariate normal case, they do not have a deformed p-variate distri-
bution). Otherwise, we can take generalized inverse of C, and the solution is
not unique.

To show that the formulas (1) and (3) indeed give local and global minimum
of our objective function, we investigate the Hessian, which is just the covariance
matrix of all the p+ 1 variables, and is usually positive definite; hence, we get a
unique minimum. If there were linear relations between the variables Xj ’s and
Y , we may eliminate some of them to get a unique solution (see the forthcoming
sections about the dimension reduction).

The above minimization is also equivalent to some correlation maximization
problem as follows. The above minimization task is equivalent to minimizing
Var(ε) in the model

Y = l(X) + ε,

where l(X) =
∑p
i=1 aiXi + b = aTX + b is linear function of the coordinates of

X.
In view of (1), E(ε) = 0, and because the covariance is a bilinear function,

not affected by constant shifts of its variables, we get that

Cov(l(X), ε) = Cov(aTX, Y − aTX) = aTd− aTCa

= dTC−1d− dTC−1CC−1d = 0,
(4)

and consequently,
Var(Y ) = Var(l(X)) + Var(ε). (5)

Further,
Cov(l(X), Y ) = dTC−1d

which is the first term on the right hand side of (4), and

Var(l(X)) = dTC−1d

which is the second term on the right hand side of (4), are the same.

Definition 1 The multiple correlation between the target variable Y and the
predictor variables X1, . . . , Xp is

Corr(Y, l(X)) =
Cov(l(X), Y )√
Var(Y )Var(l(X)

=
dTC−1d√

dTC−1d
√

Var(Y )
=

√
dTC−1d√
Var(Y )

which is nonnegative and denoted by rY (X1,...,Xp) = rYX.

2



It is easy to see that in the p = 1 case this is the absolute value of the usual
correlation coefficient between Y and the only predictor X.

The square of the multiple correlation coefficient can be written in the fol-
lowing form:

r2YX =
dTC−1d

Var(Y )
=

Var(l(X))

Var(Y )
.

Therefore, the equation (5) gives rise to the following decomposition of the
variance of Y :

Var(Y ) = r2YXVar(Y ) + (1− r2YX)Var(Y ). (6)

Here the first term is the variance of Y explained by the predictor variables,
and the second term is the so-called residual variance, that is, the variance of
the error term ε. Observe that r2YX = 1 is equivalent to Var(ε) = 0, i.e., there
is a linear relation between Y and the components of X with probability 1. The
other extreme case r2YX = 0 means that Var(l(X)) = 0, i.e., the best linear
approximation is constant with probability 1, consequently a1 = · · · = ap = 0,
or equivalently, a = 0 and d = 0; in other words, Y is uncorrelated with all the
Xj ’s, and hence, its best linear approximation is its own expectation.

Without proof we state that the above l(X) has the maximal possible cor-
relation with Y among all possible linear combinations of the components of
X.

Proposition 1 For any linear combination h(X) of X1, . . . , Xp, the following
relation holds true:

rY (X1,...,Xp) = Corr(Y, l(X) ≥ |Corr(Y, h(X)|.

Consequently, when subtracting l(X) from Y , ε can be considered as the
residual after eliminating the effect of the variables X1, . . . , Xp from Y .

Definition 2 If two target variables Y1 and Y2 are expressed as (different) lin-
ear combinations of the same predictor X:

Y1 = l1(X) + ε1 andY2 = l2(X) + ε2,

then the partial correlation between Y1 and Y2 after eliminating the effect of X
is the usual Pearson correlation coefficient between the error terms ε1 and ε2.
We use the notation

rY1Y2|X = Corr(ε1, ε2).

Note that in the p = 1 case, when the only predictor is denoted by X, the
following formula is used to calculate the partial correlation:

rY1Y2|X =
Corr(Y1, Y2)− Corr(Y1, X) · Corr(Y2, X)√

(1− Corr2(Y1, X)) · (1− Corr2(Y2, X))
.

In fact, the partial correlation measures the correlation between two random
variables after eliminating the effect of some nuisance variables. Indeed, in mul-
tivariate data structures, it can happen that the Pearson correlation coefficient
between two variables does not reflect the pure association between them. Be-
cause the correlations are highly interlaced through the correlation matrix, we
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cannot just pull out two of them. Other variables, which are strongly intercorre-
lated with both, will disturb their relation; therefore, first we have to eliminate
the effect of these nuisance variables. For example, if we consider the correlation
between the kiwi consumption and the number of registered cancer cases during
the years (in the US), we experience a high correlation between them. However,
it does not mean that kiwi causes cancer, it just means that there are other
variables (the time and the increasing living standard, which makes rise to buy
more tobacco and alcoholic drinks for example, that may cause cancer).

In case of an i.i.d. sample (Y1,X
1), . . . ,(Yn,X

n) we estimate the parameters
by the formulas (1 ), (3), where we substitute the empirical quantities (ML-
estimators) for C and d. The squared multiple correlation coefficient R2 is also
estimated from the sample, and it gives the proportion of the total variation of
Y which is explained by the predictor variables. In the next section we will use
hypothesis testing for the significance of R2.

Note, that with some linearization formulas we can use linear regression in
the following models:

• Multiplicative model :
Y ∼ bX1

a1 . . . Xp
ap .

After taking the logarithms, one gets

lnY ∼ ln b+ a1 lnX1 + · · ·+ ap lnXp,

therefore, we can use linear regression for the log-log data. While, the
linear regression performs well for data from a multivariate normal dis-
tribution, this model favors lognormally distributed data (for example,
chemical concentrations).

• Polynomial regression: Now we want to approximate Y with a given degree
polynomial of X:

Y ∼ a1X + a2X
2 + · · ·+ apX

p + b.

The solution is obtained by applying multivariate linear regression for Y
with the predictor variables Xj = Xj , j = 1, . . . , p.

2 The linear model (with deterministic predic-
tors)

Now our model is the following.

Yi =

p∑
j=1

ajxij + εi (i = 1, . . . , n),

where xij is the prescribed value of the j-th predictor in the i-th measurement.
Since the measurement is burdened with the random noise εi, the measured
value Yi of the target variable in the i-th measurement is a random variable.
For simplicity, the constant term is zero (in fact, it would be Ȳ −

∑p
j=1 aj x̄j , but

we assume that it has already been subtracted from the left hand sides). We also
assume that E(εi = 0), Var(εi) = σ2 (i = 1, . . . , n), and the measurement errors
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are uncorrelated. Because of their equal (but unknown) variance they are called
homoscedastic errors. Therefore, E(Yi) =

∑p
j=1 ajxij and Var(Yi) = σ2 (i =

1, . . . , n), and the Yi’s are also uncorrelated. Very frequently, the measurement
errors are Gaussian, and thus, the random variables εi ∼ N (0, σ2) are also
independent, akin to the Yi’s.

With the notation

Y := (Y1, . . . , Yn)T , ε := (ε1, . . . , εn)T

and X = (xij) (i = 1, . . . , n; j = 1, . . . , p), our model equation can be put into
the following matrix form:

Y = Xa + ε,

where the parameter vector a = (a1, . . . , ap)
T is estimated by the method of

least squares, i.e.,
n∑
i=1

ε2i = ‖Y −Xa‖2

is minimized with respect to a.
Here (Y,X)T = (Y,x1, . . . ,xp)

T is the data matrix, where xj denotes the
j-th column of the matrix X. If the solution is denoted by â, a simple linear
algebra guarantees that Xâ is the projection of the random vector Y onto
F = Span{x1, . . . ,xp} ⊂ Rn. Let us denote the n× n matrix of this projection
by P. Consequently, Xâ = PY and Y −Xâ = (I − P)Y are orthogonal, and
latter vector is also orthogonal to any vector Xb ∈ F . Therefore,

(Xb)T · (Y −Xa) = 0, ∀b ∈ Rp.

From this,
bTXT (Y −Xa) = 0, ∀b ∈ Rp

holds, which implies that
XT (Y −Xa) = 0.

In summary, â is the solution of the so-called Gauss normal equation

XTXa = XTY.

This equation is always consistent, since XTY is in F , which is also spanned
by the column vectors of XTX. In the rank r of F (this is also the rank of X)
is equal to p(≤ n), then we have a unique solution:

â = (XTX)−1XTY.

From here,
PY = Xâ = X(XTX)−1XTY,

therefore
P = X(XTX)−1XT .

If the rank of X is less than p, then there are infinitely many solutions,
including the one, obtained by the Moore–Pen rose inverse:

â = (XTX)+XTY.
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Proposition 2 If rank(X) = p ≤ n and ε ∼ Nn(0, σ2In), then â ∼ Np(a, σ2(XTX)−1).

Therefore â is an unbiased estimator of a. In the Gaussian case, â is also
the ML-estimate of a. Further, the ML-estimate of σ2 is

σ̂2 =
SSE

n

that is biased. The unbiased estimate of σ2 is SSE
n−p−1 or SSE

n−p depending on,

whether there is or there is no constant term (intercept) in the model (when
the variables are previously transformed to have zero mean, there is no constant
term).

The forthcoming Gauss–Markov theorem states that â is also efficient among
the linear, unbiased estimators.

Theorem 1 (Gauss –Markov Theorem) For any other unbiased linear es-
timator ã of a:

Var(â) ≤ Var(ã).

This means that the difference of the right-hand and left-hand side p × p co-
variance matrices is positive semidefinite. Shortly, â provides a BLUE (Best,
Linear, Unbiased Estimate) for a.

In view of P = X(XTX)−1XT , the minimum of our objective function is

SSE := ‖Y −Xâ‖2 = (Y −Xâ)T (Y −Xâ),

called residual variance. It can also be written as

SSE = (Y −PY)T (Y −PY) = ((I−P)Y)T ((I−P)Y) =

= YT (I−P)2Y = YT (I−P)Y.

Since I−P is a projection of rank n− p, SSE has σ2χ2(n− p)-distribution.
To make inference on the significance of the regression, we will intensively

use the sample counterpart of the variance decomposition (6):

SST = SSR+ SSE = R2 · SST + (1−R2) · SST,

where SST =
∑n
i=1(Yi − Ȳ )2 is the total variation of the measurements (sum

of squares total),

SSE =

n∑
i=1

ε2i =

n∑
i=1

(Yi −
p∑
j=1

âjxij)
2

is the residual sum of squares (sum of squares due to error), and SSR = SST −
SSE is the part of the total variation explained by the regression (sum of squares
due to regression). Further, R is the sample estimate of the multiple correlation
coefficient.

777
We investigate the alternative

H0 : a = 0 versus H1 : a 6= 0.
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Under H0, SSR has σ2χ(p)-distribution, and independent of SSE (see also the
ANOVA setup of Lesson 7). Therefore,

F =
SSR/p

SSE/(n− p)
=

R2

1−R2
· n− p

p
∼ F(p, n− p) (7)

has Fisher F -distribution with degrees of freedom p and n−p (in fact, n−p−1
if there is a constant term as well). If this F ≥ Fα(p, n− p) (the upper α-point,
or equivalently, the (1−α)-quantile value) of this F -distribution, then we reject
H0 with significance α. This means that the regression is significant, and it
makes sense to approximate the target variable with the predictors.

When we reject the null-hypothesis, we may further investigate whether the
coefficients aj ’s significantly differ from zero. For j = 1, . . . , p we investigate
the alternative

H0j : aj = 0 versus H1j : aj 6= 0.

Under H0j , âj has zero expectation, and standardizing by its standard error

sj =

√
SSE/(n− p)∑n
i=1(xij − x̄j)2

(which is based on Proposition 2), then under H0j , the test statistic

tj =
âj − 0

sj
∼ t(n− p)

follows Student’s t-distribution with degrees of freedom n− p; in fact, n− p− 1
if there is a constant term (intercept) as well in the model.

If this tj ≥ tα/2(n− p) (the upper α/2-point, or equivalently, the (1−α/2)-
quantile value) of this t-distribution, then we reject H0j with significance α, and
conclude that the predictor variable j significantly influences the response.

Estimating parameter functions
Sometimes we want to estimate not directly a, but some linear combintion

bTa of its coordinates, where b ∈ Rp is a given vector. (For example, it may
contain the unit prices of products, the mass production of which are the coor-
dinates of a.)

Definition 3 The parameter function bTa is estimable (linearly and on an
unbiased way) if there exists a vector c ∈ Rn such that E(cTY) = bTa.

Proposition 3 The parameter function bTa is estimable if and only if b is in
the linear subspace of Rp spanned by the row vectors of X.

Proof : The following are equivalent:

cTE(Y) = bTa ∀a ∈ Rp

cTXa = bTa ∀a ∈ Rp

cTX = bT

b = XT c
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that means that b is within the linear subspace spanned by the column vectors
of XT , i.e., the row vectors of X.

If r = p, then it is true for any b ∈ Rp. If r < p, then it is true only for
special b’s. The Gauss–Markov theorem implyes the following (sometimes this
is called Gauss–Markov theorem).

Theorem 2 In the r = p case, for any b ∈ Rp, bT â is a linear and unbiased
estimate of bTa, and among such estimates it has minimum variance, i.e.,
BLUE (Best Linear Unbiased Estimate).

Constructing confidence intervals and testing hypotheses for the pa-
rameter function: We saw that in the r = p case, Varâ = σ2(XTX)−1), and
so,

Var(bT â) = bTVar(â)b = σ2bT (XTX)−1)b.

Let us consider the estimable parameter function θ = bTa, and its least square
estimate θ̂ = bT â. To make inferences on θ, we assume multivariate normality
of ε, consequently, that of Y. By Proposition 2, â is also multivariate normally
distributed, and so, θ̂ ∼ N (θ, σ2bT (XTX)−1)b) and SSE ∼ σ2χ2(n − p) are

independent. Therefore, by the standardized θ̂ and SSE a Student t-statistic
and confidence interval for θ can be constructed.

Likewise, we can also test the hypothesis

H0 : θ = θ0

by means of the above t-statistic.
If we consider k independent estimable parameter functions θ1 = bT1 a, . . . , θk =

bTk a and investigate
H0 : θ1 = θ10, . . . , θk = θk0

then from two independent χ2 variables an F -statistic can be constructed.
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Examples for Multivariate Regression

The following examples are from the book
Gary Koop: Analysis of economic data, Wiley, 2005.

1. Example: Consider the following Multivariate Regression problem emerg-
ing in Electric Power Industry in the USA.

Y = cost of production (million dollar/year)

X1 = yield (kWh/year)

X2 = cost of labour (dollar/year/worker)

X3 = cost of capital (dollar/unit)

X4 = cost of fuel (dollar/million BTU)

Regression results:

Coefficient Standard error t-value p-value Lower 95% Upper 95%

Intercept -70.49511 12.69501 -5.55298 1.76E-07 -95.6347 -45.3556

X1 0.00474 0.00011 43.22597 3.41E-74 0.004514 0.004948

X2 0.00363 0.00106 3.43660 0.000814 0.001537 0.005717

X3 0.28008 0.12949 2.16301 0.032557 0.023663 0.536503

X4 0.78346 0.16759 4.72566 6.391E-06 0.455154 1.11177

R2 = 0.94, the p-value of the H0 : R2 = 0 is 9.73E − 73.

This shows that the regression is significant, and all the predictors are
significant, exceptX3. We can see thatX3 has relatively ’small’ correlation
with the other variables, where the correlation matrix of the predictors is

1
0.056399 1
0.021481 −0.078686 1
0.053507 0.318349 0.155224 1

 .

When we leave out X3 from the regression, the results do not change
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significantly:

Coefficient Standard error t-value p-value Lower 95% Upper 95%

Intercept -49.75804 8.44931 -5.88900 3.68E-08 -71.8765 -27.6396

X1 0.00473 0.00011 42.6218 6.4E-74 0.004445 0.005027

X2 0.00331 0.00006 3.12145 0.002259 0.000535 0.006091

X4 0.851586 0.165266 5.15282 1.03E-06 0.418956 1.284216

R2 = 0.94, the p-value of the H0 : R2 = 0 is 3.5E − 73.

If there were collinearities between the variables, we could not simply
leave out one.

2. Example: the following Multivariate Regression problem is to predict the
apartment prices in the USA.

Y = selling price

X1 = site area

X2 = number of bedrooms

X3 = number of bathrooms

X4 = number of levels

Regression results:

Coefficient Standard error t-value p-value Lower 95% Upper 95%

Intercept -4009.5500 3603.109 -1.1128 0.266287 -11087.3 3068.248

X1 5.42917 0.36925 14.70325 2.05E-41 4.703835 6.154513

X2 2824.61379 1214.808 2.325153 0.020433 438.2961 5210.931

X3 17105.1745 1734.434 9.862107 3.29E-21 13698.12 20512.22

X4 7634.897 1007.974 7.574494 1.57E-13 5654.874 9614.92

R2 = 0.54, the p-value of the H0 : R2 = 0 is 1.18E − 88.

Therefore, the predicted price is

Ŷ = −4009.55 + 5.43X1 + 2824.6X2 + 17105.17X3 + 7634.90X4.

This means that in the apartments with the same number of bedrooms,
bathrooms, and levels, the increase of the site with 1 foot2 will result in
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the increase of the price with 5.43 dollar. Likewise, keeping the site are,
number of bathrooms, and levels fixed, a 3-bedroom apartment costs with
2824.6 dollar more than a 2-bedroom one, on average, ’ceteris paribus’.

In fact, here 1-, 2-, or 3-way ANOVA can also be used with the discrete
variables X2, X3, X4, as well as an Analysis of Covariance with the site
area as concomitant variable.
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