
Generalized Linear Models, Analysis of Variance

(Time Series, and Econometrics, not an exam topic in 2021)

Analysis of Variance (ANOVA)

ANOVA investigates special linear models, used for planning experiments or
quality control. Here the matrix of the deterministic predictors is a so-called
design-matrix with 0-1 entries indicating that which predictors influence the
response at all. For testing hypotheses, we will intensively use the following
theorem and its corollaries.

Theorem 1 (Fisher–Cochran) Let X = (X1, . . . , Xn)T ∼ Nn(0, In) be ran-
dom vector and the quadratic forms Q = XT InX = XTX =

∑n
i=1X

2
i and

Qj = XTAjX (j = 1, . . . , k) be such that they satisfy

Q = Q1 +Q2 + · · ·+Qk,

where the n × n symmetric matrix has rank nj (j = 1, . . . , k ≤ n). Then the
random variables Q1, Q2, . . . , Qk are independent χ2(n1)-, χ2(n2)- ,. . . , χ2(nk)-
distributed if and only if

k∑
j=1

nj = n.

We also list some propositions which follow from the Fisher–Cochran theo-
rem:

Proposition 1 Consider X ∈ Nn(0, In). Then

• (a) With some symmetric matrix A, XTAX is χ2-distributed if A2 = A.
Then the degree of freedom of the χ2-distribution=rank(A) = tr(A).

• (b) With some symmetric matrices A, B, the random variables XTAX ∼
χ2(a) and XTBX ∼ χ2(b) are independent if AB = 0 (then obviously,
a+ b ≤ n).

• (c) If Q = Q1 +Q2, Q ∼ χ2(a), Q1 ∼ χ2(b), and Q2 is positive semidefi-
nite, then Q2 ∼ χ2(a− b); further, Q1 and Q2 are independent.
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ANOVA
In the one-way case, we investigate whether different treatments (conditions)

influence significantly some continuous measurements (response). For example,
whether the GDP differs significantly in different countries. If the continuous
measurement is normally distributed, this is the generalization of the t-test for
more than two groups.

In the two-way case, two kinds of treatments are given on different levels, and
we have a two-way classified table of continuous measurements. For example,
whether the GDP differs significantly in different countries and under different
economic regulations. Then we may investigate the effect of the countries, the
effect of the regulations, and the interaction between them. We discuss these
models with precise formulas.

ANOVA models:

• One-way ANOVA: Our sample is taken in k different groups: Xij , j =

1, . . . , ni, i = 1, . . . , k, and the sample size is n =
∑k
i=1 ni. Assume

that in group i our observations follow N (bi, σ
2)-distribution. It is im-

portant that the observations are independent with the same variance
(homoskedasticity). We want to test the null-hypothesis

H0 : b1 = b2 = · · · = bk,

which is the generalization of the t-test for k groups. We use the decom-
position bi = µ+ ai, where

µ =
1

n

k∑
i=1

nibi, ai = bi − µ (i = 1, . . . , k).

Obviously,
k∑
i=1

niai = 0.

With this notation, our model is

Xij = µ+ ai + εij (j = 1, . . . , ni; i = 1, . . . , k) (1)

where εij ∼ N (0, σ2) are i.i.d. error terms. This model is, in fact, a linear
model with the n-dimensional vectors

Y := (X11, . . . , X1n1
, X21, . . . , X2n2

, . . . , Xk1, . . . , Xknk
)T

ε := (ε11, . . . , ε1n1 , ε21, . . . , ε2n2 , . . . , εk1, . . . , εknk
)T

and parameter-vector a = (a1, . . . , ak)T . With these, the above model is

Y = Ba + µ1 + ε

where the vector 1 ∈ Rn has all 1 coordinates, and the n×k design matrix
B is such that in its i-th column it contains all 0’s, except the block i,
where it contains 1’s. This ensures that in group i only the parameter ai
appears in the model equation (1).
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The parameters are estimated by the method of least squares: we minimize

k∑
i=1

ni∑
j=1

ε2ij =

k∑
i=1

ni∑
j=1

(Xij − µ− ai)2.

The least square estimates of the parameters are

µ̂ = X̄.. and âi = X̄i. − X̄.. (i = 1, . . . , k),

where

X̄i. =
1

ni

ni∑
j=1

Xij (i = 1, . . . , k) and X̄.. =
1

n

k∑
i=1

ni∑
j=1

Xij .

The minimum is

SSE = Qe =

k∑
i=1

ni∑
j=1

(Xij − m̂− âi)2 =

k∑
i=1

ni∑
j=1

(Xij − X̄i.)
2.

With

SSR = Qa = ‖Bâ‖2 =

k∑
i=1

niâ
2
i =

k∑
i=1

ni(X̄i. − X̄..)
2,

we can decompose the total variation of the sample (SST = Q) into
between-groups (SSR = Qa) and within-groups (SSE = Qe) variation as
follows:

Q =

k∑
i=1

ni∑
j=1

(Xij − X̄..)
2 =

k∑
i=1

ni∑
j=1

[(Xij − X̄i.) + (X̄i. − X̄..)]
2 =

=

k∑
i=1

ni∑
j=1

(Xij − X̄i.)
2 +

k∑
i=1

ni∑
j=1

(X̄i. − X̄..)
2 =

=

k∑
i=1

ni(X̄i. − X̄..)
2 +

k∑
i=1

ni∑
j=1

(Xij − X̄i.)
2 = Qa +Qe.

This decomposition is summarized in the 1-way ANOVA table:

Cause of the dispersion Sum of squares Degrees of Empirical

freedom variance

Between groups Qa =
∑k
i=1 ni(X̄i. − X̄..)

2 k − 1 s2a = Qa

k−1

Within groups Qe =
∑k
i=1

∑ni

j=1(Xij − X̄i.)
2 n− k s2e = Qe

n−k

Total Q =
∑k
i=1

∑ni

j=1(Xij − X̄..)
2 n− 1 -

In the above model, we first investigate the null-hypothesis µ = 0. If
we reject it, we investigate the null-hypothesis, that there is no difference
between the groups:

H0 : a1 = · · · = ak = 0, briefly, a = 0.
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In view of the Fisher–Cochran theorem and its consequences, Qe ∼ σ2χ2(n−
k), irrespective whether H0 holds or not. However, the expectation of the
linear expressions in Qa is

E(X̄i. − X̄..) = E(X̄i.)− E(X̄..) = ai −
1

n

k∑
j=1

njaj (i = 1, . . . , k) ,

which can be zero for all i only if H0 holds. In this case, with the Fisher–
Cochran theorem and its consequences, Qa ∼ σ2χ2(k−1); further, Qe and
Qa are independent of each other. Observe that the degrees of freedom in
the decomposition

Q = Qa +Qe

are added together:

n− 1 = (k − 1) + (n− k).

Therefore, with the notation

s2a =
Qa
k − 1

and s2e =
Qe
n− k

,

the test statistic

F =
s2a
s2e

=
Qa
Qe
· n− k
k − 1

∼ F(k − 1, n− k)

follows Fisher F-distribution with the above degrees of freedom under H0.
Summarizing, if F ≥ Fα(k − 1, n − k), i.e., the between-group variances
are significantly larger than the within-group-ones, then we reject H0 with
significance α.

• Bartlett-test for testing equality of the variances of the groups:

H0 : σ1 = · · · = σk.

Based on the above grouped sample, the test statistic is

B2 =
2.3026

c

(
f lgS∗2 −

k∑
i=1

fi lgS∗2
i

)
,

where fi = ni − 1 (i = 1, . . . , k); f =
∑k
i=1 fi; S

∗2
1 , . . . ,S∗2

k are the
corrected empirical variance within the groups, and

S∗2 =
1

f

k∑
i=1

fiS
∗2
i , c = 1 +

1

3(k − 1)

(
k∑
i=1

1

fi
− 1

f

)
.

Bartlett proved that for ’large’ sample sizes, B2 asymptotically follows
χ2(k − 1)-distribution. Therefore, if B2 ≥ χ2

α(k − 1), then we reject H0

with significance α.
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• Two-way ANOVA without interaction: We have two-way classified data
in k · p groups. Here one observation per group suffices. Let Xij de-
note the continuous measurements (i = 1, . . . , k; j = 1, . . . , p), the sample
size is n = kp. We assume that there is no interaction between the two
treatments (based on the levels of which we form the groups).

In our model, the independent, homoskedastic sample entries have Xij ∼
N (µ+ai+bj , σ

2) distribution. Therefore, our linear model is the following:

Xij = µ+ ai + bj + εij , (i = 1, . . . , k; j = 1, . . . , p) (2)

where εij ∼ N (0, σ2) are i.i.d. errors. The parameters ai’s and bj ’s
denote the non-interacting effects of the levels of the two treatments. We
can assume (with the choice of µ) that

k∑
i=1

ai = 0 and

p∑
j=1

bj = 0.

Here we do not specify the design matrices, but (2) also fits into the
framework of linear models.

Minimizing the objective function

k∑
i=1

p∑
j=1

ε2ij =

k∑
i=1

p∑
j=1

(Xij − µ− ai − bj)2

by the method of least squares, we obtain the following estimates of the
parameters:

µ̂ = X̄.. ,

âi = X̄i. − X̄.. (i = 1, . . . , k) ,

b̂j = X̄.j − X̄.. (j = 1, . . . , p) ,

,

where

X̄i. =
1

p

p∑
j=1

Xij (i = 1, . . . , k)

X̄.j =
1

k

k∑
i=1

Xij (j = 1, . . . , p)

X̄.. =
1

n

k∑
i=1

p∑
j=1

Xij .

With this, the minimum of our objective function is

SSE = Qe =

k∑
i=1

p∑
j=1

(Xij − µ̂− âi − b̂j)2.

Further, we have the decomposition

Q = Qa +Qb +Qe (3)
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of the total variance (SST = Q) into the variances caused by the a-effects,
b-effects and the error (Qa, Qb, Qe, where SSR = Qa +Qb).

This decomposition is summarized in the 2-way ANOVA table (without
interaction):

Cause of the dispersion Sum of squares Degree of Empirical

freedom variance

a-effects Qa = p
∑k
i=1(X̄i. − X̄..)

2 k − 1 s2a = Qa

k−1

b-effects Qb = k
∑p
j=1(X̄.j − X̄..)

2 p− 1 s2b = Qb

p−1

Random error Qe =
∑k
i=1

∑p
j=1(Xij − X̄i. − X̄.j + X̄..)

2 (k − 1)(p− 1) s2e = Qe

(k−1)(p−1)

Total Q =
∑k
i=1

∑p
j=1(Xij − X̄..)

2 kp− 1 -

If we have rejected the null-hypothesis µ = 0, we compare the levels of
both treatments, separately. To compare a-effects, we investigate

H0a : a1 = a2 = · · · = ak = 0, briefly, a = 0.

To compare b-effects, we investigate

H0b : b1 = b2 = · · · = bp = 0, briefly, b = 0.

In view of the Fisher–Cochran theorem and its consequences, since the
degrees of freedoms of the terms in (3) are added together,

kp− 1 = (k − 1) + (p− 1) + (k − 1)(p− 1),

we have the following facts:

– Qe/σ
2 ∼ χ2((k−1)(p−1)), irrespective whether the above hypotheses

hold or not.

– Under H0a, Qa/σ
2 ∼ χ2(k − 1) and is independent of Qe.

– Under H0b, Qb/σ
2 ∼ χ2(p− 1) and is independent of Qe.

Therefore, under H0a, the test statistic

Fa =
s2a
s2e
∼ F(k − 1, (k − 1)(p− 1)),

and if Fa ≥ Fα(k− 1, (k− 1)(p− 1)), then we reject H0a with significance
α.

Likewise, Therefore, under H0b, the test statistic

Fb =
s2b
s2e
∼ F(p− 1, (k − 1)(p− 1)),

and if Fb ≥ Fα(p− 1, (k− 1)(p− 1)), then we reject H0b with significance
α.
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• Two-way ANOVA with interaction: Here we also have two-way classi-
fied data in k · p groups, but we have more than one (say, n) observa-
tions per cell, since there is interaction between the two treatments. The
independent, homoskedastic sample entries are Xijl (i = 1, . . . , k; j =
1, . . . , p; l = 1, . . . , n). The sample size is kpn. Supposing that Xijl ∼
N (µ+ ai + bj + cij , σ

2), our linear model is the following:

Xijl = µ+ ai + bj + cij + εijl, (i = 1, . . . , k; j = 1, . . . , p),

where εijl ∼ N (0, σ2) are i.i.d. errors, ai’s and bj ’s denote the effects of
the two treatments, whereas cij ’s are the interactions. We assume that

k∑
i=1

ai = 0,

p∑
j=1

bj = 0,

k∑
i=1

cij = 0 (j = 1, . . . , p) és

p∑
j=1

cij = 0 (i = 1, . . . , k).

This model is also a linear one.

By the method of least squares, the minimum of

k∑
i=1

p∑
j=1

n∑
l=1

ε2ijl =

k∑
i=1

p∑
j=1

n∑
l=1

(Xijl − µ− ai − bj − cij)2

with respect to the parameters µ, a1, . . . , ak, b1, . . . , bp , under the above
constraints, is attained at

µ̂ = X̄... ,

âi = X̄i.. − X̄... (i = 1, . . . , k) ,

b̂j = X̄.j. − X̄... (j = 1, . . . , p) ,

ĉij = X̄ij. − X̄i.. − X̄.j. + X̄... (i = 1, . . . , k; j = 1, . . . , p) ,

where

X̄i.. =
1

pn

p∑
j=1

n∑
l=1

Xijl (i = 1, . . . , k)

X̄.j. =
1

kn

k∑
i=1

n∑
l=1

Xijl (j = 1, . . . , p)

X̄ij. =
1

n

n∑
l=1

Xijl (i = 1, . . . , k; j = 1, . . . , p)

X̄... =
1

kpn

k∑
i=1

p∑
j=1

n∑
l=1

Xijl.
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The least square estimates of the parameters are

m̂ = X̄... ,

âi = X̄i.. − X̄... (i = 1, . . . , k) ,

b̂j = X̄.j. − X̄... (j = 1, . . . , p) ,

ĉij = X̄ij. − X̄i.. − X̄.j. + X̄... (i = 1, . . . , k; j = 1, . . . , p) ,

and the minimum is

SSE = Qe =

k∑
i=1

p∑
j=1

n∑
l=1

(Xijl − m̂− âi − b̂j − ĉij)2.

For the decomposition

Q = Qa +Qb +Qc +Qe

we again have the ANOVA-table:

Cause of dispersion Sum of squares Degree of Empirical

freedom variance

a-effects Qa = pn
∑k
i=1(X̄i.. − X̄...)

2 k − 1 s2a = Qa

k−1

b-effects Qb = kn
∑p
j=1(X̄.j. − X̄...)

2 p− 1 s2b = Qb

p−1

ab-interaction Qc = n
∑k
i=1

∑p
j=1(X̄ij. − X̄i.. − X̄.j. + X̄...)

2 (k − 1)(p− 1) s2c = Qc

(k−1)(p−1)

Random error Qe =
∑k
i=1

∑p
j=1

∑n
l=1(Xijl − X̄ij.)

2 kp(n− 1) s2e = Qe

kp(n−1)

Total Q =
∑k
i=1

∑p
j=1

∑n
l=1(Xijl − X̄...)

2 kpn− 1 -

After rejecting the null-hypothesis µ = 0, we investigate the interaction:

H0ab : cij = 0, (i = 1, . . . , k; j = 1, . . . , p).

If we accept it (no interaction), we investigate separately

H0a : a1 = a2 = · · · = ak = 0

and
H0b : b1 = b2 = · · · = bp = 0.

Using the Fisher–Cochran theorem and its consequences, further, the ad-
ditivity of the degrees of freedoms,

kpn− 1 = (k − 1) + (p− 1) + (k − 1)(p− 1) + kp(n− 1),

we have the following facts:

– Qe/σ
2 ∼ χ2(kp(n− 1)), always.

8



– Under H0a, Qa/σ
2 ∼ χ2(k − 1) and is independent of Qe.

– Under H0b, Qb/σ
2 ∼ χ2(p− 1) and is independent of Qe.

– Under H0ab, Qc/σ
2 ∼ χ2((k − 1)(p− 1)) and is independent of Qe.

Therefore, we have the following test statistics: Under H0ab,

Fab =
s2c
s2e
∼ F((k − 1)(p− 1), kp(n− 1)),

Under H0a,

Fa =
s2a
s̃2e
∼ F(k − 1, kpn− k − p+ 1).

Under H0b,

Fb =
s2b
s̃2e
∼ F(k − 1, kpn− k − p+ 1).

Then you can make the conclusions at significance α.

Note that the are so-called mixed ANOVA models, with different number
of observations per cell, or with more than two factors. In these cases, we
have to build up a design-matrix and use the Gauss normal equations to
estimate the parameters or organize the experiments is simple patterns,
e.g. Latin squares in the 3-way case.

• The ANOVA model can be extended to multivariate, grouped observa-
tions. In the 1-way Multivariate Analysis of Variance (MANOVA) setup,
our p-variate measurements

Yij ∼ Np(m + ai,C) (j = 1, . . . , ni; i = 1, . . . , k)

are assigned to k different groups, where
∑k
i=1 ai = 0 is assumed. Our

inference is based on the decomposition

T = B + W

of n times the p × p sample covariance matrix into between- and within-
group covariance matrices in the following way:

T =

k∑
i=1

ni∑
j=1

(Yij − Ȳ..)(Yij − Ȳ..)
T

B =

k∑
i=1

ni(Ȳi. − Ȳ..)(Ȳi. − Ȳ..)
T

W =

k∑
i=1

ni∑
j=1

(Yij − Ȳi.)(Yij − Ȳi.)
T

(4)

where Ȳ.. = 1
n

∑k
i=1

∑ni

j=1 Yij is the sample mean vector, while Ȳi. =
1
ni

∑ni

j=1 Yij is the mean vector of group i (i = 1, . . . , k).
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