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This is an applied research, but we must use the theory behind it.

1 COVID-graph

We follow the theory of the Lauritzen–Spiegelhalter [5] and Bolla et al. [2]
papers. You can cite page 165 of [5]. If the graph is triangulated and so, there
is a JT structure (decomposable model), then the joint probability factorizes as

p(x) =

∏k
j=1 p(xCj

)∏k
j=2 p(xSj )

=

k∏
j=1

p(xRj |xSj ),

where p is the probability mass function in the discrete case, and S1 = ∅ in the
RIP ordering.

However, this factorization, in particular, the clique potentials are obtainable
if we use the belief propagation with any starting potentials:

p ∝
k∏

j=1

ψ(xCj
).

This idea is well applicable in the current pandemic when we do not know exact
probabilities or conditional probabilities, just some proportions between them.

In our causal graph, in the RIP ordering:

C1 = {C,A,L}, R1 = {C,A,L}, S1 = ∅
C2 = {L,G, I}, R2 = {G, I}, S2 = {L}
C3 = {I,H}, R3 = {H}, S3 = {I}
C4 = {H,O}, R4 = {O}, S4 = {H}.

In this case, the factorization is

P (C,A,L) · P (L,G, I) · P (I,H) · P (H,O)

P (L) · P (I) · P (H)
= P (C,A,L)·P (G, I|L)·P (H|I)·P (O|H).

But we do not need this factorization, we only need the potentials which have
to be found for all state configurations:

ψ1 = P (A)·P (C|A)·P (L|C,A), ψ2 = P (G)·P (I|L,G), ψ3 = P (H|I), ψ4 = P (O|H).
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Here ψ1 is the same as P (A,C,L) by the product rule (see STA course). ψ3

and ψ4 also correpond to the above factorization, but ψ2 is not P (G, I|L). You
can put any product of probabilities or conditional probabilities containing all
the clique variables and only those. RATHER USE LOWER CASE LETTERS
FOR THE STATES! For example, p(i|l, g) for all possible values of I, L,G.

For the cliques of the junction tree (in the reversed RIP = Sundberg’s or-
dering), together with separators, we apply the so-called belief propagation al-
gorithm so that we update the potentials in such a way, that at the end, they
become the clique marginals. Let A and B be two consecutive cliques, and S
be the separator between them. Starting with some potentials and denoting by
∗ the newly updated potential, the algorithm is:

ψ∗S(xS) =
∑

xA\S∈XA\S

ψA(xS ,xA\S), ∀xS ∈ XS

ψ∗B(xB) = ψB(xB) ·
ψ∗S(xS)

ψS(xS)
, ∀xB ∈ XB

ψ∗∗S (xS) =
∑

xB\S∈XB\S

ψ∗B(xS ,xB\S), ∀xS ∈ XS

ψ∗A(xA) = ψA(xA) ·
ψ∗∗S (xS)

ψ∗S(xS)
, ∀xA ∈ XA.

(1)

These equations hold for any state-configurations xA,xS ,xB within the cliques.

Start with clique potentials obtained from conditional probability tables,
whereas the separator potentials can be constantly 1’s. To find all clique and
separator marginals, we first run the algorithm in the reversed RIP, that is,
in the Sundberg’s ordering Ck, . . . , C1 of the cliques. In this forward step we
start at Ck (called root), and via the separators, end at C1. The so obtained
potential of C1 is already the clique potential. To obtain all the clique potentials,
we have to run the algorithm again, that is to make a backward step (in the
RIP ordering). The starting value for the separator potentials can be ψS = 1.

It is proved in [5, 7] that at the end, ψ∗∗Ci
(xCi

) = p(xCi
) and ψ∗∗Si

(xSi
) =

p(xSi
), i = 1, . . . , k; so the iteration leads to the clique marginals. In other

wording, in the forward steps, the cliques collect the information from all of
its neighbors (parent cliques on the JT) recursively; whereas, in the backward
steps, they distribute the information to them. Therefore, it is sometimes called
message passing algorithm.

Formally, the forward steps are

ψC4
→ ψ∗S4

→ ψ∗C3
→ ψ∗S3

→ ψ∗C2
→ ψ∗S2

→ ψ∗C1

and the backward steps are

ψ∗C1
→ ψ∗∗S2

→ ψ∗∗C2
→ ψ∗∗S3

→ ψ∗∗C3
→ ψ∗∗S4

→ ψ∗∗C4
.

From the so obtained clique marginals you can marginalize for their variables
or absorb evidences.
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A=C_4 , B=C_3
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Öntapadó jegyzet
A=C_3 , B=C_2
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Öntapadó jegyzet
A=C_1 , B=C_2
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Öntapadó jegyzet
\psi_S_4 (h_1 ) =\psi_C_4 (h_1 ,o_1 ) +                           .............(h_1, o_2 )..............(h_2) =\psi_C_4 (h_2 ,o_1) +                         ..............(h_2, o_2 )..............(h_3 ) =..............(h_3 ,o1)+                           ..............(h_3 ,o2)



2 Sequences of regressions on the pain clinic data

Here the theory is the application of nonparametric regressions along a chain
graph and comparison with linear regressions. It can also be done recursively
(see ICE [1]). The data are available only for research purposes.

Past => Future: for each case in the test sample, where the nonpar. regr.
([3, 4, 6]) is based on the training sample.

•
Ẑb = E(Zb |B), Z̃b = E(Zb |B,A,U, V )

Zlin
b = lin. function(B)

•
X̂b = E(Xb |U, V ), X̃b = E(Xb |B,A,U, V )

X lin
b = lin. function(U, V )

•
X̂a = E(Xa |Xb), X̃a = E(Xa |Xb, B,A, U, V )

X lin
a = lin. function(Xb), XICE

a = E(Xa | X̂b)

•
Ẑa = E(Za |Zb, A), Z̃a = E(Za |Zb, A,B, U, V )

Zlin
a = lin. function(Zb, A), ZICE

a = E(Za | Ẑb, A)

•
Ŷ = E(Y |Za), Ỹ = E(Y |Za, Zb, A,B, U, V )

Y lin = lin. function(Za), Y ICE = E(Y | Ẑa)

Then find the following MSE: square-root of (n is the size of the test sample)

M̂SE(Zb) =
1

n

∑
test sample

(Zb − Ẑb)
2, M̃SE(Zb) =

1

n

∑
test sample

(Zb − Z̃b)
2, . . .

M̂SE(Y ) =
1

n

∑
test sample

(Y − Ŷ )2, M̃SE(Y ) =
1

n

∑
test sample

(Y − Ỹ )2,

MSElin(Y ) =
1

n

∑
test sample

(Y−Y lin)2, MSEICE(Y ) =
1

n

∑
test sample

(Y−Y ICE)2.

For the pain clinic data see [9, 10, 12], possibly refer to the psychologist.
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