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Abstract Ordered sequences of univariate or multivariate regressions provide statis-
tical models for analysing data from randomized, possibly sequential interventions,
from cohort or multi-wave panel studies, but also from cross-sectional or retrospec-
tive studies. Conditional independences are captured by what we name regression
graphs, provided the generated distribution shares some properties with a joint Gaus-
sian distribution. Regression graphs extend purely directed, acyclic graphs by two
types of undirected graph, one type for components of joint responses and the other
for components of the context vector variable. We review the special features and
the history of regression graphs, prove criteria for Markov equivalence and discuss
the notion of a simpler statistical covering model. Knowledge of Markov equivalence
provides alternative interpretations of a given sequence of regressions, is essential for
machine learning strategies and permits to use the simple graphical criteria of regres-
sion graphs on graphs for which the corresponding criteria are in general more com-
plex. Under the known conditions that a Markov equivalent directed acyclic graph
exists for any given regression graph, we give a polynomial time algorithm to find
one such graph.
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1 Introduction

A common framework to model, analyse and interpret data for several, partially or-
dered joint or single responses is a sequence of multivariate or univariate regressions
where the responses may be continuous or discrete or of both types. Each response
is to be generated by a set of its regressors, called its directly explanatory variables.
Based on prior knowledge or on statistical analysis, one is to decide which of the vari-
ables in a set of potentially explanatory ones are needed for the generating process.
Thus, for each response, a first ordering determines what is potentially explanatory,
named the past of the response, and what can never be directly explanatory, named
the future. Furthermore, no variable is taken to be explanatory for itself.

Corresponding regression graphs consist of nodes and of edges coupling distinct
nodes. The nodes represent the variables and the edges stand for conditional depen-
dences, directed or undirected. The directly explanatory variables for an individual
response variable Yi show in the graph as the set of nodes from which arrows start
and point to node i. These nodes are commonly named the parents of node i.

Every missing edge corresponds to a conditional independence statement. Edges
are arrows for directed dependences and lines for undirected dependences among
variables on equal standing, that is, among components of joint responses or of con-
text variables. Undirected dependences are often also called associations. A given
regression graph reflects a particular type of study which may be a simple experi-
ment, a more complex sequence of interventions or an observational study.

One of the common features of pure experiments and of sequences of interven-
tions with randomized, proportional allocation of individuals to treatments, is that,
by study design, some variables can be regarded to act just like independent random
variables. For instance, in an experiment with proportional numbers of individuals
assigned randomly to each level combination of several experimental conditions, the
set of explanatory variables contains no edge in the corresponding regression graph,
reflecting a situation like mutual independence. Similarly, with fully randomized in-
terventions, each treatment variable has exclusively arrows starting from its node but
no incoming arrow. After statistical analysis, some conditional independences may
be appropriate additional simplifications which show as further missing edges.

Sequences of interventions give a time-ordering for some of the variables. A time
order is also present in cohort or multi-wave panel studies and in retrospective studies
which focus on investigating effects of variables at one fixed time point in the past,
without the chance of intervening. By contrast, in a strictly cross-sectional study, in
which observations for all variables are obtained at the same time, any particular
variable ordering is only assumed rather than implied by actual time.

The node set is at the planning stage of empirical studies partitioned into ordered
sequences of single or joint responses, Ya , Yb , Yc, . . . , that we call blocks of variables
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on equal standing and draw them in figures as boxes. This determines for the follow-
ing statistical analyses that within each block there are undirected edges and between
blocks there are directed edges, the arrows. The first block on the left contains the
primary responses of Ya and the last block on the right contains context variables,
also named the background variables. After statistical analyses, arrows may start
from nodes within any block but always end at a node in one of the blocks in the
future. Thus, there are no arrows pointing to context variables and all arrows point in
the same direction, from right to left. An intermediate variable is a response to some
variables and also explanatory for other variables so that it has both incoming and
outgoing arrows in the regression graph.

As an example, we take data from a retrospective study with 283 adult females
answering questions about their childhood when visiting their general practitioner,
mostly for some minor health problems; see Hardt et al. (2008). A well-fitting graph
is shown in Fig. 1. It contains two binary variables, A and B , and six quantitative
variables. Except for the directly recorded feature, age in years, all other variables
are derived from answers to questionnaires, coded so that high values correspond to
high scores.

The three blocks, a, b and c, reflect here a time-ordering of vector variables, Ya,Yb

and Yc , with Ya representing the joint response of primary interest, Yb an intermedi-
ate vector variable and Yc a context vector variable. The three individual components
of the primary response Ya are variables capturing how the respondent recollects
aspects of her relationship to the mother. The intermediate variable Yb has two com-
ponents that reflect severe distress during childhood. The three components of the
context variable Yc capture background information about the respondent and about
her family.

The graph in Fig. 1, derived after statistical analyses, shows, among other inde-
pendences, that Ya is conditionally independent of Yc given Yb , written compactly in
terms of sets of nodes as a ⊥⊥ c|b. None of the components of Yc has an arrow point-
ing directly to a component of Ya , but sequences of arrows lead indirectly from c to
a via b.

This says, for instance, that prediction of Ya is not improved by knowing the con-
text variable Yc if information on the more recent intermediate variable Yb is avail-
able. More interpretations of the independences are given later. When some edges are
missing and each edge present corresponds to a substantial dependence, the graph

Fig. 1 A well-fitting regression
graph for data on n = 283 adult
females; within boxes are
Ya,Yb,Yc ; corresponding
ordered partitioning of the node
set on top of the boxes
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may also be viewed as a research hypothesis on which variables are needed to gener-
ate the joint distribution; see Wermuth and Lauritzen (1990). The goodness-of-fit of
such a hypothesis can be tested in future studies.

Two models are Markov equivalent whenever their associated graphs capture the
same independence structure, that is, the graphs lead to the same set of implied inde-
pendence statements. Markov equivalent models cannot be distinguished on the basis
of statistical goodness-of-fit tests for any given set of data. This may pose a problem
in machine learning contexts. More precisely, knowledge about Markov equivalent
models is essential for designing search procedures that converge with an increasing
sample size to a true generating graph; see Castelo and Kocka (2003) for searches
within the class of directed acyclic graphs, which consist exclusively of arrows and
capture independences of ordered sequences in single response regressions.

More importantly though, Markov equivalent models may offer alternative inter-
pretations of a given well-fitting model or open the possibility of using different types
of fitting algorithms.

As we shall see in Sect. 7, the graph for nodes A,R,B,P,Q in blocks b and c

of Fig. 1 is Markov equivalent to both graphs of Fig. 2. From knowing the Markov
equivalence to the graph in Fig. 2(a), the joint response model for Yb given Ya may
also be fitted in terms of univariate regressions and from the Markov equivalence to
the graph in Fig. 2(b); one knows for instance directly, using Proposition 1 below,
that sexual abuse is independent of age and schooling given knowledge about family
distress and family status.

Regression graphs are a subclass of the maximal ancestral graphs of Richard-
son and Spirtes (2002) and both are subclasses of the summary graphs of Wermuth
(2011). The two types are called corresponding graphs if they result after marginal-
izing over a node set m and conditioning on a disjoint node set c from a given di-
rected acyclic graph. Both are independence-preserving graphs in the sense that they
give the independence structure implied by the generating graph for all the remain-
ing nodes and further conditioning or marginalizing can be carried out just as if the
possibly much larger generating graph were used. The summary graph permits, in
addition, to trace possible distortions of generating dependences as they arise in con-
ditional dependences among the remaining variables, for instance in parameters of
the maximal ancestral graph models.

In Sect. 2, we introduce further concepts and the notation needed to state at the end
of Sect. 2 some of the main results of the paper and related results in the literature.
In Sect. 3, a well-fitting regression graph is derived for data of chronic pain patients.
Sections 4, 5 and 6 may be skipped if one wants to turn directly to formal definitions,

Fig. 2 Two Markov equivalent graphs to the one of Yb,Yc of Fig. 1
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Fig. 3 A typical first ordering: here of five vector variables, Ya, . . . , Ye ; primary response Ya listed on the
left, context variable Ye on the right, intermediate variables in-between

new results and proofs in Sect. 7. Section 4 reviews linear recursion relations that
are mimicked by graphs and lead to the standard and to special ways of combining
probability statements, summarized here in Sect. 5. In Sect. 6, some of the previous
results in the literature for graphs and for Markov equivalences are highlighted. The
Appendix contains details of the regressions analyses in Sect. 3.

2 Some further concepts and notation

Figure 3 shows five ordered blocks, to introduce the notion of connected components
of the graph to represent conditionally independent responses given their common
past.

In the example of a regression graph in Fig. 4 corresponding to Fig. 3, Ya is a sin-
gle response, Yb has two component variables, both of Yc and Ye have four and Yd

has three. Each of the blocks b to e shows two stacked boxes, that is, subsets of nodes
that are without any edge joining them. This is to indicate that disconnected com-
ponents of a given response are conditionally independent given their past and that
disconnected components of the context variables are completely independent.

Graphs with dashed lines are covariance graphs denoted by GN
cov, those with full

lines are concentration graphs denoted by GN
con; see Wermuth and Cox (1998). The

names are to remind one of their parameterization in regular joint Gaussian distri-
butions, for which the covariance matrix is invertible and gives the concentration
matrix. A zero ik-element in GN

cov means i ⊥⊥ k and a zero ik-element in GN
con means

i ⊥⊥ k|{1, . . . , d} \ {i, k}; see Wermuth (1976a) or Cox and Wermuth (1996), Sect. 3.4.
The regression graph of Fig. 4 is consistent with the first ordering in Fig. 3 since

no additional ordering is introduced, as it would have been by arrows within blocks a

to e. After statistical analysis, blocks of the first ordering are often subdivided into
the connected components of the graph, gj , shown here in Fig. 4 with the help of
the stacked boxes. For several nodes in gj , each pair of nodes (i, k) is connected by
at least one undirected ik-path within gj . An ik-path connects its endpoint nodes
i, k via a sequence of edges coupling distinct other nodes along the path, named the
path’s inner nodes.

For a regression graph, GN
reg, the node set N has an ordered partitioning into

two subsets, N = (u, v), distinguishing response nodes within u from context nodes
within v. The connected components gj , for j = 1, . . . , J , are the disconnected, undi-
rected graphs that remain after removing all arrows from the graph. Thus, the dis-
played, stacked boxes in Fig. 4 are just a visual aid. We say that there is an edge
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Fig. 4 A regression graph for 14 variables corresponding to blocks a to e of Fig. 3

between subsets a and b of N if there is an edge with one node in a and the other
node in b. Then, the subgraph induced by nodes a ∪ b is said to be connected in a

and b.
For any one block of stacked boxes, different orderings are possible. We speak of

a compatible ordering if each arrow starting at a node in any gj points to a node in
g<j = g1 ∪ · · · ∪ gj−1, but never to a node in g>j = gj+1 ∪ · · · ∪ gJ , the past of gj .

Full lines are edges coupling context variables within v. Dashed lines couple joint
responses within u. The regression graph is complete if every node pair is coupled.
In this case, the statistical model is saturated as it is unconstrained for some given
family of distributions.

Let g1, . . . , gJ denote any compatible ordering of the connected components
of GN

reg, then a corresponding joint density factorizes as

fN =
J∏

j=1

fgj |g>j
(1)

into sequences regressions for the joint responses gj within u and for separate con-
centration graph models in disconnected gj within v.

In a generating process of fN over a regression graph, one starts with the density
of gJ , and continues with the one of gJ−1 given gJ up to the density of g1 given
g>1 so that (1) is used for one given compatible ordering of the node set N . Every
ik-edge present denotes a non-vanishing conditional dependence of Yi and Yk given
some vector variable Yc, written as i � k|c, so that the graph is said to be edge-
minimal or to capture a dependence structure. The generating process attaches the
following meaning to each ik-edge present in GN

reg:

(i) i � k|g>j for i, k both in a response component gj of u;
(ii) i � k|g>j \ {k} for i in gj of u and k in g>j ; (2)

(iii) i � k|v \ {i, k} for i, k both in a context component gj of v.
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Notice that only for context variables, conditioning is on all other context variables
while for responses, conditioning is exclusively on variables in their past. When the
dependence sign � is replaced by the independence sign ⊥⊥ , equations (2) give with
missing edges for node pairs i, k the pairwise independence statements defining the
independence structure of GN

reg, given the composition and the intersection property,
discussed below, are applied.

An equivalent, more compact description of the set of defining pairwise indepen-
dences and a proof of equivalence of this pairwise Markov property to the global
Markov property has been given for the class of mixed loopless graphs, which con-
tain regression graphs as a subclass; see Sadeghi and Lauritzen (2012); see also Kang
and Tian (2009), Pearl and Paz (1987), Marchetti and Lupparelli (2011) for relevant,
previous results. A global Markov property permits to read off the graph all indepen-
dence statements implied by the graph.

Equation (2)(i) holds for the conditional covariance graphs of joint responses gj

within u having dashed lines as edges, (2)(ii) for the dependences of the single
responses within gj on variables in the past of gj having arrows as edges, and
Eq. (2)(iii) for the concentration graph of the context variables within v having full
lines as edges. For instance, from the definition of the missing edges correspond-
ing to (2), one can derive for Fig. 1, S ⊥⊥ U |bc by (2)(ii), P ⊥⊥ Q|B by (2)(iii), and
both A ⊥⊥ B|PQ and A ⊥⊥ P |BQ by (2)(i) using first principles and the two special
properties of the generated distributions named composition and intersection.

Notice that each missing edge of a regression graph corresponds to an indepen-
dence statement for the uncoupled node pair; see also Lemmas 2 and 3 below. There-
fore, regression graphs represent one special class of the so-called independence
graphs. Whenever a regression graph GN

reg consists of two disconnected graphs, for
Ya and Yb say, since no path leads from a node in a to a node in b, and a ∪ b = N ,
then a ⊥⊥ b or fN = fafb , and the two vector variables may be analysed separately.
Therefore, we treat in Sect. 7 of this paper only connected regression graphs.

All graphs discussed in this paper have no loops, that is, no edge connects a node
to itself and they have at most one edge between two different nodes. Recall that an
ik-path in such a graph can be described by a sequence of its nodes. By convention,
an ik-path without inner nodes is an edge. For every ik-edge, the endpoints differ,
i �= k. An ik-path with i = k has at least three nodes and is called a cycle.

A three-node path of arrows may contain only one of the three types of inner nodes
shown in Fig. 5, called transition, source and sink node, respectively.

A path is directed if all its inner nodes are transition nodes. In a directed cycle,
all edges are arrows pointing in the same direction and one returns to a starting node
following the direction of the arrows. A regression graph contains no directed cycle
and no semi-directed cycles which have at least one undirected edge in an otherwise
directed cycle. If an arrow starts on a directed ik-path at k and points to i, then node k

has been named an ancestor of node i and node i a descendant of node k.

Fig. 5 The three types of three-node paths in directed acyclic graphs with inner nodes named (a) transi-
tion, (b) source, (c) sink node (or in directed acyclic graphs: collision node)
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The subgraph induced by a subset a of the node set N consists of the nodes within
a and of the edges present in the graph within a. A special type of induced subgraph,
needed here, consisting of three nodes and two edges, is named a V-configuration or
just a V. Thus, a three-node path forms a V if the induced subgraph has two edges.

An ik-path is chordless if for each of its three consecutive nodes (h, j, k), coupled
by an hj -edge and jk-edge, there is no additional hk-edge present in the graph. In
a chordless cycle of four or more nodes, the subgraph induced by every consecutive
three nodes forms a V in the graph. An undirected graph is chordal if it contains no
chordless cycle in four or more nodes.

In regression graphs, there may occur the three types of collision Vs of Fig. 6.
Notice that in a directed acyclic graph, the only possible collision V is directed and

coincides with the sink V of Fig. 5(c).
An important common feature of the three Vs of Fig. 6 is that the inner node is ex-

cluded from every independence statements for its endpoints; see (2) and Lemma 2.
In all other five possible types of V-configurations of a regression graph, named trans-
mitting Vs, the inner node is instead included in the independence statement for the
endpoints; see (2) and Lemma 3 below. Notice that for uncoupled endpoints, both
paths (a) and (b) of Fig. 5 are transmitting Vs. Similarly, the definition of transmitting
and collision nodes remains unchanged if the Vs in Fig. 6 are interpreted as ik-paths
for which there may be an additional ik-edge present in the graph.

A collision path has as inner nodes exclusively collision nodes, while a transmit-
ting path has as inner nodes exclusively transmitting nodes. A chordless collision
path in four nodes contains at least one dashed line. In particular, it is impossible to
replace all the edges in such a four-node path by arrows and not generate at least
one transmitting V. Thereby, the meaning of this missing edge would be changed and
hence contradict its unique definition given from the generating process. The skeleton
of a graph results by replacing each edge present by a full line. Now, two of the main
new results of this paper can be stated.

Theorem 1 Two regression graphs are Markov equivalent if and only if they have the
same skeleton and the same sets of collision Vs, irrespective of the type of edge.

Theorem 2 A regression graph with a chordal graph for the context variables can
be oriented to be Markov equivalent to a directed acyclic graph in the same skeleton,
if and only if it does not contain any chordless collision path in four nodes.

Sequences of regressions were introduced and studied, without specifying a con-
centration graph model for the context variables, in Cox and Wermuth (1993) and
Wermuth and Cox (2004), under the name of multivariate regression chains, remind-
ing one of the sequences of unconstrained models that the class contains for Gaussian

Fig. 6 The three types of collision Vs in regression graphs: (a) undirected, (b) directed or sink-oriented,
(c) semi-directed; for uncoupled path endpoints, the inner node is excluded from every independence
statement that the graph implies for these endpoints
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joint responses. An extension to graphs including a concentration graph had already
been proposed for directed acyclic graphs by Kiiveri et al. (1984). By this type of
extension, the global Markov property of the graph remains unchanged.

A criterion for Markov equivalence of summary graphs has been derived by
Sadeghi (2009) who also shows that two different criteria for maximal ancestral
graphs are equivalent, those due to Zhao et al. (2005) and to Ali et al. (2009). These
available Markov equivalence results and the associated proofs increase considerably
in complexity, the larger the model class. On the other hand, the Markov equivalence
criterion of Theorem 1 is simple and includes as special cases all available equiva-
lence results for directed acyclic graphs, for covariance graphs and for concentration
graphs, as set out in detail in Sects. 6 and 7 here.

For context variables taken as given, Gaussian regression graph models coincide
with a large subclass of structural equation models (SEMs), those permitting local
modelling due to the factorization property (1), and are without any endogenous re-
sponses. Such responses have residuals that are correlated with some of its regressors
so that the so-called endogeneity problem is generated, by which, for joint Gaussian
distributions, a zero equation parameter need not correspond to any conditional inde-
pendence statement and a nonzero equation parameter is not a measure of conditional
dependence. The consequence is that ordinary least-squares estimates of such equa-
tion parameters are typically strongly distorted. This was recognized by Haavelmo
(1943) who received a Nobel Prize in Economics for this insight in 1989.

For traditional uses of SEMs see, for instance, Jöreskog (1981), Bollen (1989),
Kline (2006), while Pearl (2009) advocates SEMs as a framework for causal inquiries.
In the econometric literature forty years ago, independences were always regarded as
‘overidentifying’ constraints.

For discrete variables, more attractive features of regression graph models were
derived by Drton (2009), who speaks of chain graph models of type IV for multi-
variate regression chains in the case all variables on equal standing have covariance
graphs. He proves that each member in this class belongs to a curved exponential fam-
ily; for a discussion of this notion see, for instance, Cox (2006), Sect. 6.8. Discrete
type IV models form also a subclass of marginal models; see Rudas et al. (2010),
Bergsma and Rudas (2002). Local independence statements that involve only vari-
ables in the past are equivalent to more complex local independences used by Drton
(2009); see Marchetti and Lupparelli (2011). These local definitions imply the pair-
wise independence formulation for missing edges corresponding to Eq. (2) for any
regression graph, GN

reg.
Two other types of chain graph have been studied as joint response models in

statistics, the so-called AMP chain graphs of Andersson et al. (2001), and the LWF
chain graphs of Lauritzen and Wermuth (1989) and Frydenberg (1990). They use
the same factorization as in Eq. (1), but they are suitable for modelling data from
intervention studies only when they are Markov equivalent to a regression graph. The
reason is that the conditioning set for pairwise independences of responses includes
in general other nodes within the same connected component. For AMP graphs, the
independence form of Eq. (2)(i) is replaced by

(i′) i ⊥⊥ k|g>j−1 \ {i, k} for i, k both within a response component gj ,
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while (2)(ii) and (2)(iii) remain unchanged. For LWF graphs, (i) is also replaced
by (i′) and the independence form of (ii) by

(ii′) i ⊥⊥ k|g>j−1 \ {i, k} for i within a gj and k in g>j .

As a consequence, each undirected subgraph in an AMP chain graph is a concentra-
tion graph, and an LWF chain graph consists of sequences of concentration graphs.
For the corresponding different types of parameterizations of joint Gaussian distribu-
tions, see Wermuth et al. (2006b).

Not yet systematically approached is the search for covering models that capture
most but not all independences in a more complex graph but which may be easier
to fit than the reduced model; see Cox and Wermuth (1990). For regression graphs,
details are explained here for a small example in Sect. 4, and in Sect. 7, first results
are given in Propositions 8 to 10 and discussed using Figs. 16 and 17.

Before we turn to the different types of missing edges in more detail, we derive a
well-fitting regression graph for data given by Kappesser (1997).

3 Deriving and interpreting a regression graph

For 201 chronic pain patients, the role of the site of pain during a three-week stay
in a chronic pain clinic was to be examined. In this study, it was of main interest to
investigate the changes in two main symptoms before and after stationary treatment
and to understand determinants of the overall treatment success as rated by the pa-
tients, three months after they had left the clinic. Figure 7 shows a first ordering of the
variables derived in discussions between psychologists, physicians and statisticians.

The first ordering of the variables gives, for each single or joint response, a list
of its possible explanatory variables, shown in boxes to the right, but in Fig. 7 only

Fig. 7 First ordering of variables in the chronic pain study. There are two joint responses, intensity of pain
and depression. They are the main symptoms of chronic pain, measured here before and after treatment.
The components of each response are to be modelled conditionally given the variables listed in boxes to
their right
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those variables are displayed that remained, after statistical analyses, relevant for the
responses of main interest.

Selecting for each response all its directly explanatory variables from this list and
checking for remaining dependences among components of joint responses, provides
enough insight to derive a well-fitting regression graph model. With this type of local
modelling, the reasons for the model choice are made transparent.

Of the available background variables, age, gender, marital status and others, only
the binary variables, level of formal schooling (1 := less than ten years, 2 := ten or
more years) and the number of previous illnesses in years (min := 0, max := 16) are
displayed in the far right box as the relevant context variables. The response of pri-
mary interest, self-reported success of treatment, is listed in the box to the far left. It
is a score that ranges between 0 and 35, combining a patient’s answers to a specific
questionnaire.

There are a number of intermediate variables. These are both explanatory for
some variables and responses to others. Of these, two are regarded as joint responses
since they represent two symptoms of a patient, intensity of pain and depression.
Both are measured before treatment and directly after the three-week stationary stay.
Questionnaire scores are available of depression (min := 0, max := 46) and of the
self-reported intensity of pain (min := 0, max := 10). Chronicity of pain is a score
(min := 0, max := 8) that incorporates different aspects, such as the frequency and
duration of pain attacks, the spreading of pain and the use of pain relievers. In this
study, the patients have one of two main sites of pain, the pain is either on their upper
body, ‘head, face, or neck’ or on their ‘back’.

A well-fitting regression graph is shown in Fig. 8. The graph summarizes some
important aspects of the results of the statistical analyses for which details are given
in the Appendix. In particular, it tells which of the variables are directly explanatory,
that is, which are important for generating and predicting a response, by showing
arrows that start from each of these directly explanatory variables and point to the
response.

Variables listed to the right of a response but without an arrow ending at this re-
sponse do not substantially improve the prediction of the response when used in ad-
dition to the directly explanatory variables. For instance, for treatment success, only

Fig. 8 Regression graph, well
compatible with the data, that
results from the reported
statistical analyses. Discrete
variables are drawn as dots,
continuous ones as circles
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Fig. 9 Form of dependence of
primary response Y on Za

the pain intensity after the clinic stay is directly explanatory and this pain intensity is
an important mediator (intermediate variable) between treatment success and site of
pain.

Scores of self-reported treatment success are low for almost all patients with high
pain scores after treatment, that is, for scores higher than 6; see Fig. 9. Otherwise,
treatment success is typically judged to be higher the lower the intensity of pain after
treatment. This explains the nonlinear dependence of Y on Za .

As mentioned before, for back pain patients, the chronicity scores are on average
higher than for headache patients and connected with a higher chronicity of the pain
are higher scores of depression. These patients may possibly have tried too late, after
the acute pain had started, to get well focused help. Both before and after treatment,
highly depressed patients tend to report higher intensities of pain than others.

The study provides no information on which variables may explain these depen-
dences between the symptoms that remain after having taken the available explana-
tory variables into account. However, hidden common explanatory variables may ex-
ist in both cases since these remaining dependences between the symptoms do not
depend systematically on any other observed variable.

Some variables are indirectly explanatory. An arrow starts from an indirectly ex-
planatory variable, and points via a sequence of arrows and intermediate variables to
the response variable. For instance, the level of formal schooling and the site of pain
are both indirectly explanatory for each of the symptoms after treatment and for the
overall treatment success.

Once the types and directions of the direct dependence are taken into account, the
regression graph helps to trace the development of chronic pain, starting from the
context information on the level of schooling and the number of previous illnesses of
a patient. Thus, patients with more years of formal schooling are more likely to be
chronic headache patients. Patients with a lower level of formal schooling are more
likely to be backache patients, possibly because more of them have jobs involving
hard physical work. Backache patients reach higher stages of the chronicity of pain
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and report higher intensity of pain still after treatment and are therefore typically less
satisfied with the treatment they had received.

Graphical screening for nonlinear relations and interactive effects (Cox and Wer-
muth 1994) pointed to the nonlinear dependence of treatment success on intensity of
pain after treatment but to no other such relations. The regression graph model is said
to fit the data well because for each single response separately, there is no indication
that adding a further variable would substantially change the generated conditional
dependences. The seemingly unrelated dependences of the symptoms after treatment
on those before treatment agree so well with the observations that they differ also lit-
tle from regressions computed separately, see the appropriate tables in the Appendix.

Had there been no nonlinear relation and no categorical variables as responses,
the overall model fit could also have been tested within the framework of structural
equation models once the regression graph is available. This graph is derived here
with the local modelling steps that use the first ordering of the variables, just in terms
of univariate, multivariate and seemingly unrelated regressions. The regression graph
provides a hypothesis that may be tested locally and/or globally in future studies that
include the same set of nine variables. In this case, no variable selection strategy
would be used or needed.

The available results for changes of the regression graph (Wermuth 2011) that
result after marginalizing and conditioning provide a solid basis for comparing the
results of any sequence of regressions with studies that contain the same set of core
variables but which have some of the variables omitted or which consider subpopu-
lations, defined by levels or level combinations of other variables. For instance, for
comparisons with the current study, the same chronicity score may not be recorded in
another pain clinic or data may be available only for patients with pain in the upper
body.

The main substantive results of this empirical study are that site of pain needs to
be taken into account also in future studies since it is an important mediator between
the intrinsic characteristics of a patient, measured here by the given context vari-
ables, for both the overall treatment success and for the symptoms after treatment.
For backache patients, the chronicity of pain and the depression score is higher than
for the headache patients and the treatment is less successful since the intensity of
pain remains high after the treatment in the clinic.

In the following section, we give three-variable examples of a Gaussian joint re-
sponse regression and of the three subclasses of regression graphs that have only
one type of edge, of the covariance, the concentration and the directed acyclic graph
to discuss the different types of conditional dependences and the possible types of
independence constraints associated with the corresponding regression graphs.

4 Regressions, dependences and recursive relations

For a quantitative response with linear dependences, the simple regression model
dates back at least several centuries. The fitting of a least-squares regression line
had been developed separately by Carl Friedrich Gauss (1777–1855), Adrien-Marie
Legendre (1752–1833) and Robert Adrain (1775–1843). The method extends directly
to models with several explanatory variables.
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The most studied regression models are for joint Gaussian distributions. Regres-
sion graphs mimic important features of these linear models but represent also re-
lations in other distributions of continuous and discrete variables, which permit in
particular nonlinear and interactive dependences. In a regular joint Gaussian distri-
bution, let the mean-centred vector variable Y have dimension three, then we write
the covariance matrix, Σ , and the concentration matrix, Σ−1, with graphs shown in
Fig. 10, as

Σ =
⎛

⎝
σ11 σ12 σ13
· σ22 σ23
· · σ33

⎞

⎠ , Σ−1 =
⎛

⎝
σ 11 σ 12 σ 13

· σ 22 σ 23

· · σ 33

⎞

⎠ ,

where the dot-notation indicates entries in a symmetric matrix.
With the edge of node pair (1,2) removed, both graphs turn into a V but have dif-

ferent interpretations. The resulting independence constraints are for parts (a) and (b)
of Fig. 10, respectively,

1 ⊥⊥ 2 ⇐⇒ (σ12 = 0) and 1 ⊥⊥ 2|3 ⇐⇒ (
σ 12 = 0

)
,

where the latter derives as an important property of concentration matrices; for proofs
see Cox and Wermuth (1996), Sect. 3.4 or Wermuth et al. (2006a), Sect. 2.3. For
other distributions, the independence interpretation of these two types of undirected
graph remains unchanged, but not the parameterization. A similar statement holds for
directed acyclic graphs and, more generally, for regression graphs.

For the linear equations that lead to a complete directed acyclic graph for a trivari-
ate Gaussian distribution with mean zero, one starts with three mutually independent
Gaussian residuals εi and takes the following system of equations, in which for in-
stance β1|3.2 is a regression coefficient for the dependence of response Y1 on Y3 when
Y2 is an additional regressor. Because of the form of the equations, one speaks of
triangular systems also when the distribution of the residuals is not Gaussian, but the
residuals are just uncorrelated, or expressed equivalently, if each residual is uncorre-
lated with the regressors in its equation:

Y1 = β1|2.3Y2 + β1|3.2Y3 + ε1,

Y2 = β2|3Y3 + ε2,

Y3 = ε3.

(3)

When the residuals do not follow Gaussian distributions, the probabilistic indepen-
dence interpretation is lost, but the lack of a linear relation can be inferred with any
vanishing regression coefficient.

Fig. 10 For unconstrained
trivariate Gaussian distributions,
the parameters attached to the
edges are those corresponding to
(a) a covariance graph,
(b) a concentration graph
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In econometrics, Hermann Wold (1908–1992) introduced such systems as linear
recursive equations with uncorrelated residuals. Harald Cramér (1893–1985) used the
term linear least-squares equations for residuals in a population being uncorrelated
with the regressors and the notation for the regression coefficients is an adaption of
the one introduced by Udny Yule (1871–1951) and William Cochran (1909–1980).

In joint Gaussian distributions, independence constraints on triangular systems
mean vanishing equation parameters and missing edges in directed acyclic graphs,
such as

1 ⊥⊥ 2|3 ⇐⇒ (β1|2.3 = 0) and 2 ⊥⊥ 3 ⇐⇒ (β2|3 = 0).

The complete directed acyclic graph defined implicitly with equations (3) is displayed
in Fig. 11(a).

For the smallest joint response model with the complete graph shown in Fig. 11(b),
we take both Gaussian variables Y1 and Y2 to depend on a Gaussian variable Y3, to
get equations (4) with residuals having zero means and being uncorrelated with Y3:

Y1 = β1|3Y3 + u1, Y2 = β2|3Y3 + u2, Y3 = u3. (4)

Here, σ12|3 = E(u1u2). The generating processes and hence the interpretation differs
for the two models in Eqs. (3) and (4). In the corresponding graphs of Fig. 11(a) and
(b), the vanishing of the edges for pairs (1,2) and (2,3) mean the same independence
constraints since

1 ⊥⊥ 2|3 ⇐⇒ (σ12|3 = 0) ⇐⇒ (β1|2.3 = 0) and 2 ⊥⊥ 3 ⇐⇒ (β2|3 = 0),

but the edges for pair (1,3) capture different dependences, 1 � 3 and 1 � 3|2, re-
spectively. Again, taking away any edge generates a V. Taking away any two edges
means to combine two independence statements. This is discussed further in the next
section.

One of the special important features of the linear least-squares regressions is that
the residuals are uncorrelated with the regressors. The effect is that the model part
coincides with a conditional linear expectation as illustrated here with a model for
response Y1 and regressors Y2, Y3, which we take, as mentioned before, as measured
in deviations from their means. For instance, one gets for

Y1 = β1|2.3Y2 + β1|3.2Y3 + ε1,

Elin(Y1|Y2, Y3) = β1|2.3Y2 + β1|3.2Y3.
(5)

There is a recursive relation for least-squares regression coefficients; see Cochran
(1938), Cox and Wermuth (2003), Ma et al. (2006). It shows for instance, with

β1|3 = β1|3.2 + β1|2.3β2|3 (6)

Fig. 11 Parameters of a
Gaussian distribution in:
(a) a complete GN

dag,

(b) a complete GN
reg
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that β1|3.2, the partial coefficient of Y3 given also Y2 as a regressor for Y1, coincides
with the marginal coefficient, β1|3, if and only if β1|2.3 = 0 or β2|3 = 0.

The method of maximizing the likelihood was recommended by Sir Ronald Fisher
(1890–1962) as a general estimation technique that applies also to regressions with
categorical or quantitative responses. One of the most attractive features of the
method concerns properties of the estimates. Given two models with parameters that
are in one-to-one correspondence, the same one-to-one transformation leads from the
maximum-likelihood estimates under one model to those of the other.

Different single response regressions, such as logistic, probit, or linear regressions,
were described as special cases of the generalized linear model by Nelder and Wed-
derburn (1972); see also McCullagh and Nelder (1989). In all of these regressions,
the vanishing of the coefficient(s) of a regressor indicates conditional independence
of the response given all directly explanatory variables for this response.

The general linear model with a vector response, also called multivariate linear
regression, has identical sets of regressors for each component variable of a response
vector variable. Maximum-likelihood estimation of regression coefficients for a joint
Gaussian distribution reduces to linear least-squares fitting for each component sep-
arately; see Anderson (1958), Chap. 8.

With different sets of regressors for the components of a vector response, seem-
ingly unrelated regressions (SUR) result and iterative methods are needed for esti-
mation; see Zellner (1962). For small sample sizes, a given solution of the likelihood
equations of a Gaussian SUR model may not be unique (see Drton and Richardson
2004; Sundberg 2010), while for exclusively discrete variables this will never happen
(see Drton 2009). For mixed variables, no corresponding results are available yet.

In general, there often exists a covering model with nice estimation properties.
For instance, one of the above described Gaussian SUR models that requires iterative
fitting has regression graph

◦ 	 ◦ ◦ ≺ ◦ .

A generating process starts with independent explanatory variables, each of which
relates only to one of the two response components, but these are correlated given
both regressors. There is a simple covering model, in which two missing arrows are
added to the graph to obtain a general linear model. In that case, in the new graph
not every edge corresponds to a dependence, but closed-form maximum-likelihood
estimates are available.

For a vector variable of categorical responses only, the multivariate logistic regres-
sion of Glonek and McCullagh (1995) reduces to separate main effect logistic regres-
sions for each component of the response vector provided that certain higher-order
interactions vanish; see Marchetti and Lupparelli (2011). In the context of structural
equation models (SEMs), dependences of binary categorical variables are modelled
in terms of probit regressions. These do not differ substantially from logistic regres-
sions whenever the smallest and largest events occur at least with probability 0.1; see
Cox (1966).

Multivariate linear regressions as well as SUR models belong to the framework
of SEMs even though this general class had been developed in econometrics to deal
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appropriately with endogenous responses. Estimation methods for SEMs were dis-
cussed in the Berkeley symposia on mathematical statistics and probability from 1945
to 1965, but some identification issues have been settled only recently; see Foygel
et al. (2011) and for relevant previous results Brito and Pearl (2002), Stanghellini and
Wermuth (2005).

In statistical models that treat all variables on equal standing, the variables are
not assigned roles of responses or regressors and undirected measures of dependence
are used instead of coefficients of directed dependence. In the concentration graph
models, the undirected dependences are conditional given all remaining variables on
equal standing.

For instance, for categorical variables, these models are better known as graphi-
cal log-linear models; see Birch (1963), Caussinus (1966), Goodman (1970), Bishop
et al. (1975), Wermuth (1976a), Darroch et al. (1980). For Gaussian random vari-
ables, these had been introduced as covariance selection models (see Dempster 1972;
Wermuth 1976b; Speed and Kiiveri 1986; Drton and Perlman 2004), and for mixed
variables as graphical models for conditional Gaussian (CG) distributions (see Lau-
ritzen and Wermuth 1989; Edwards 2000).

For a mean-centred vector variable Y , the elements of the covariance matrix Σ

are σij = E(YiYj ). If Σ is invertible, the covariances σij are in a one-to-one relation
with the concentrations σ ij , the elements of the concentration matrix Σ−1. There is
a recursive relation for concentrations; see Dempster (1969). For a trivariate distribu-
tion,

σ 23.1 = σ 23 − σ 12σ 13/σ 11, (7)

where σ 23.1 denotes the concentration of Y2, Y3 in their bivariate marginal distribu-
tion. Thus, the overall concentration σ 23 coincides with σ 23.1 if and only if σ 12 = 0
or σ 13 = 0.

Alternatively, in covariance graph models, the undirected measures for variables
on equal standing are pairwise marginal dependences. For Gaussian variables, these
models had been introduced as hypotheses linear in covariances; see Anderson
(1973), Kauermann (1996), Kiiveri (1987), Wermuth et al. (2006a), Chaudhuri et al.
(2007). For categorical variables, covariance graph models have been studied only
more recently; see Drton and Richardson (2008a), Lupparelli et al. (2009). Again, no
similar estimation results are available for general mixed variables yet.

There is also a recursive relation for covariances; see Anderson (1958), Sect. 2.5.
It shows for instance, for just three components of Y having a Gaussian distribution,
with

σ12|3 = σ12 − σ13σ23/σ33, (8)

where σ12|3 denotes the covariance of Y1, Y2 given Y3. Therefore, σ12|3 coincides
with σ12 if and only if σ13 = 0 or σ23 = 0. By Eqs. (6), (7), (8), a unique indepen-
dence statement is associated with the endpoints of any V in a trivariate Gaussian
distribution.

In the context of multivariate exponential families of distributions, concentrations
are special canonical parameters and covariances are special moment parameters with
estimates of canonical and moment parameters being asymptotically independent; see
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Barndorff-Nielsen (1978), p. 122. Regression graphs capture independence structures
for more general types of distribution, where operators for transforming graphs mimic
operators for transforming different parameterizations of joint Gaussian distributions;
see Wermuth et al. (2006b), Wiedenbeck and Wermuth (2010), Wermuth (2011).

In particular, by removing an edge from any V of a regression graph, one intro-
duces an additional independence constraint just as in a regular joint Gaussian dis-
tribution. For this, the generated distributions have to satisfy the composition and
intersection property in addition to the general properties, as discussed in the next
section.

5 Using graphs to combine independence statements

We now state the four standard properties of independences of any multivariate dis-
tribution; see e.g. Dawid (1979), Studený (2005), as well as two special properties
of joint Gaussian distributions. The six, taken together, describe the combination and
decomposition of independences in regression graphs, for instance those resulting by
removing edges. We discuss when these six properties apply also to regression graph
models.

Let X,Y,Z be random (vector) variables, continuous, discrete or mixed. By using
the same compact notation, fXYZ for a given joint density, a probability distribution
or a mixture and by denoting the union of say X and Y by XY , one has

X ⊥⊥ Y |Z ⇐⇒ (fXYZ = fXZfYZ/fZ), (9)

where for instance fZ denotes the marginal density or probability distribution of Z.
Since the order of listing variables for a given density is irrelevant, symmetry of con-
ditional independence is one of the standard properties, that is,

(i) X ⊥⊥ Y |Z ⇐⇒ Y ⊥⊥ X|Z.

Equation (9) restated for instance for the conditional distribution of X given Y and Z,
fX|YZ = fXYZ/fYZ , is

X ⊥⊥ Y |Z ⇐⇒ (fX|YZ = fX|Z). (10)

When two edges are removed from a graph in Figs. 10 and 11, just one coupled
pair remains, suggesting that the single node is independent of the pair.

For instance, in Fig. 11(a) with nodes 1,2,3 corresponding in this order to X,Y,Z,
removing the arrows for (1,2) and (2,3), leaves (1,3) disconnected from node 2. For
any joint density, implicitly generated as fXYZ = fX|YZfY |ZfZ , one has equivalently,

(X ⊥⊥ Y |Z and Y ⊥⊥ Z) ⇐⇒ XZ ⊥⊥ Y.

In general, the contraction property is for a, b, c, d disjoint subsets of N :

(ii) (a ⊥⊥ b|cd and b ⊥⊥ c|d) ⇐⇒ ac ⊥⊥ b|d.
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It has become common to say that a distribution is generated over a given GN
dag

if the distribution factorizes as specified by the graph for any compatible ordering.

For instance, for a trivariate distribution generated over the collision V of Fig. 11(b)
obtained by removing the edge for (2,3), both orders (1,2,3) and (1,3,2) are com-
patible with the graph and fXYZ = fX|YZfY fZ .

Conversely, suppose that XZ ⊥⊥ Y holds, then this implies X ⊥⊥ Y and Z ⊥⊥ Y so
that for instance the same two edges as in Fig. 11(b) are missing in the corresponding
covariance graph of Fig. 10(a). In general, the decomposition property is for a, b, c, d

disjoint subsets of N :

(iii) a ⊥⊥ bc|d =⇒ (a ⊥⊥ b|d and a ⊥⊥ c|d).

In addition, XZ ⊥⊥ Y implies X ⊥⊥ Y |Z and Z ⊥⊥ Y |X so that for instance the same
two edges as in Fig. 11(a) are missing in the corresponding concentration graph of
Fig. 10(b). In general, the weak union property is for a, b, c, d disjoint subsets of N :

(iv) a ⊥⊥ bc|d =⇒ (a ⊥⊥ b|cd and a ⊥⊥ c|bd).

Under some regularity conditions, all joint distributions share the four properties (i)
to (iv).

Joint distributions, for which the reverse implication of the decomposition prop-
erty (iii) and of the weak union property (iv) hold such as a regular joint Gaussian
distribution, are said to have, respectively, the composition property (v) and the inter-
section property (vi), that is, for a, b, c, d disjoint subsets of N :

(v) (a ⊥⊥ b|d and a ⊥⊥ c|d) =⇒ a ⊥⊥ bc|d,

(vi) (a ⊥⊥ b|cd and a ⊥⊥ c|bd) =⇒ a ⊥⊥ bc|d.

The standard graph theoretical separation criterion has different consequences
for the two types of undirected graph corresponding for Gaussian distributions to
concentration and to covariance matrices. We say a path intersects subset set c of
node set N if it has an inner node in c and let {a, b, c,m} partition N to formu-
late known Markov properties. The notation is to remind one that with any indepen-
dence statement a ⊥⊥ b|c, one implicitly has marginalized over the remaining nodes
in m = V \ {a ∪ b ∪ c}, i.e. one considers the marginal joint distribution of Ya,Yb,Yc.

Proposition 1 (Lauritzen 1996) A concentration graph, GN
con, implies a ⊥⊥ b|c if and

only if every path from a to b intersects c.

Proposition 2 (Kauermann 1996) A covariance graph, GN
cov, implies a ⊥⊥ b|c if and

only if every path from a to b intersects m.

Notice that Proposition 1 requires the intersection property, otherwise one could
not conclude for three distinct nodes h, i, k e.g. that (h ⊥⊥ i|k and h ⊥⊥ k|i) implies
h ⊥⊥ ik, while Proposition 2 requires the composition property, otherwise one could
conclude e.g. that (h ⊥⊥ i and h ⊥⊥ k) implies h ⊥⊥ ik.
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Corollary 1 A covariance graph, GN
cov, or a concentration graph, GN

con, implies
a ⊥⊥ b if and only if in the subgraph induced by a ∪ b, there is no edge between a

and b.

Corollary 2 A regression graph, GN
reg, captures an independence structure for a dis-

tribution with density fN factorizing as (1) if the composition and intersection prop-
erty hold for fN , in addition to the standard properties of each density.

Proof Given the intersection property (vi), any node i with missing edges to
nodes k, l in a concentration graph of node set N implies i ⊥⊥ {k, l}|N \ {i, k, l}, and
given the composition property (v), any node i with missing edges to nodes k, l in a
covariance graph given Yc implies i ⊥⊥ {k, l}|c. �

For purely discrete and for Gaussian distributions, necessary and sufficient con-
ditions for the intersection property (vi) to hold are known; see San Martin et al.
(2005). Too strong sufficient conditions are for joint Gaussian distributions that they
are regular and for discrete variables, that the probabilities are strictly positive.

The composition property (v) is satisfied in Gaussian distributions and for trian-
gular binary distributions with at most main effects in symmetric (−1,1) variables;
see Wermuth et al. (2009). Both properties (v) and (vi) hold, whenever a distribution
may have been generated over a possibly larger parent graph; see Wermuth (2011),
Marchetti and Wermuth (2009), Wermuth et al. (2006b). Parent graphs are directed
acyclic graphs that do not only capture an independence structure but are also edge-
minimal with a unique independence statement assigned to each V of the graph. A dis-
tribution generated over a parent graph mimics these properties of the parent graph.
It is known that every regression graph can be generated by a larger directed acyclic
graph but not necessarily every statistical regression graph model can be generated
in this way; see Richardson and Spirtes (2002), Sects. 6 and 8.6. One needs similar
properties for distributions generated over a regression graph.

A graph is edge-minimal for the generated distribution if the distribution has
a pairwise independence for each edge missing and a non-vanishing dependence for
each edge present in the graph. For the generated distribution to have a unique inde-
pendence statement assigned to each missing edge, it has to be singleton transitive,
that is, for h, i, k, l distinct nodes of N ,

(i ⊥⊥ k|l and i ⊥⊥ k|lh) =⇒ (i ⊥⊥ h|l or k ⊥⊥ h|l).
This says, that in order to have both a conditional independence of Yi, Yk given Yl

and given Yl, Yh, there has to be at least one additional independence involving the
variable Yh, the additional variable in the conditioning set. Graphs that are edge-
minimal form a dependence base if they also satisfy singleton transitivity, expressed
as

(i � h|l and k � h|l and i ⊥⊥ k|l) =⇒ i � k|{l, h}
and

(
i � h|l and k � h|l and i ⊥⊥ k|{l, h}) =⇒ i � k|l,
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which says that in the distribution there is a unique independence statement that cor-
responds to each V in the graph. For a 2 × 2 × 3 contingency table, an example
violating singleton-transitivity has been given with Eq. (5.4) by Birch (1963).

There exist these peculiar types of incomplete families of distributions (see
Lehmann and Scheffé 1955; Brown 1986; Mandelbaum and Rüschendorf 1987), in
which independence statements connected with a V may have the inner node both
within and outside the conditioning set (see Wermuth and Cox 2004, Sect. 7; Darroch
1962). Such independences have also been characterized as being not representable
in joint Gaussian distributions; see Lněnička and Matúš (2007). These distributions
and those that are faithful to graphs are of limited interest in application in which one
wants to interpret sequences of regressions.

Distribution is said to be faithful to a graph if every of its independence constraints
is captured by a given independence graph; see Spirtes et al. (1993). As is proven in
a forthcoming paper, this requires for regression graphs that (1) the graph represents
both an independence and a dependence structure, and that (2) the distribution satis-
fies the composition and the intersection property and is set transitive, a property that
is the following extension of singleton transitivity for node h replaced by a subset d

of N \ {i, k, l} that may contain several nodes:

(
i ⊥⊥ k|l and i ⊥⊥ k|{l, d}) =⇒ (i ⊥⊥ d|l or k ⊥⊥ d|l).

This faithfulness property imposes strange constraints on parameters whenever
more than two nodes induce a complete subgraph in the graph; see for instance Fig. 1
in Wermuth et al. (2009) for three binary variables. An early example of a regular
Gaussian distribution that does not satisfy weak transitivity is due to Cox and Wer-
muth (1993), Eq. (8).

Notice that in general, the extension of singleton transitivity to weak transitivity
excludes parametric cancellations that result from several paths connecting the same
node pair. This is the only type of a possible parametric cancellation in regular Gaus-
sian distributions; see Wermuth and Cox (1998).

However, the constraints are mild for distributions corresponding to regression
graphs that are edge-minimal and that are forests. Forests are the union of disjoint
trees and a tree is a connected undirected graph with one unique path joining every
node pair.

Lemma 1 A positive distribution is faithful to a forest representing both an indepen-
dence and a dependence structure if it is singleton transitive.

Proof Positive distributions satisfy the intersection property and for concentration
graphs, the composition property is irrelevant. Given the above characterizations of
faithfulness and of set transitivity, there are in a forest no cancellations due to several
paths connecting the same node pair. Hence, set transitivity will be violated only if
the singleton transitivity fails. �

Corollary 3 A regular Gaussian distribution is faithful to a forest representing both
an independence and a dependence structure.
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Notice that forests include trees and Markov chains as special cases. If they are
edge-minimal, they are Markov equivalent to very special types of parent graphs
which are are rarely of interest in statistics when studying sequences of regressions.

6 Some early results on graphs and Markov equivalence

In the past, results concerning graphs and Markov equivalence have been obtained
quite independently in the mathematical literature on characterizing different types
of graph, in the statistical literature on specifying types of multivariate statistical
models, and in the computer science literature on deciding on special properties of a
given graph or on designing fast algorithms for transforming graphs.

For instance, following the simple enumeration result for labelled trees in d nodes,
dd−2, by Karl-Wilhelm Borchardt (1817–1880), it could be shown that these trees
are in one-to-one correspondence to distinct strings of size d − 2; see Cayley (1889).
Much later, labelled trees were recognized to form the subclass of directed acyclic
graphs with exclusively source Vs and therefore to be also Markov equivalent to
chordal concentration graphs that are without chordless paths in four nodes; see
Castelo and Siebes (2003).

In the literature on graphical Markov models, a number of different names have
been in use for a sink V, for instance ‘two arrows meeting head-on’ by Pearl (1988),
‘unshielded collider’ by Richardson and Spirtes (2002), and ‘Wermuth-configuration’
by Whittaker (1990), after it had been recognized that, for Gaussian distributions,
the parameters of a directed acyclic graph model without sink Vs are in one-to-one
correspondence to the parameters in its skeleton concentration graph model.

Proposition 3 (Wermuth 1980; Wermuth and Lauritzen 1983; Frydenberg 1990)
A directed acyclic graph is Markov equivalent to a concentration graph of the same
skeleton if and only if it has no collision V.

Efficient algorithms to decide whether an undirected graph can be oriented into
a directed acyclic graph, became available in the computer science literature under
the name of perfect elimination schemes; see Tarjan and Yannakakis (1984). When al-
gorithms were designed later to decide which arrows may be flipped in a given GN

dag,
keeping the same skeleton and the same set of sink Vs, to get to a list of all Markov
equivalent GN

dag’s, these early results by Tarjan and Yannakakis are not referred to
directly; see Chickering (1995).

The number of equivalent characterizations of concentration graphs that have per-
fect elimination schemes has increased steadily, since they were introduced as rigid
circuit graphs by Dirac (1961). These graphs are not only named ‘chordal graphs’, but
also ‘triangulated graphs’, ‘graphs with the running intersection property’ or ‘graphs
with only complete prime graph separators’; see Cox and Wermuth (1999).

By contrast, for a covariance graph that can be oriented to be Markov equivalent
to a GN

dag of the same skeleton, chordless paths are relevant.

Proposition 4 (Pearl and Wermuth 1994) A covariance graph with a chordless path
in four nodes is not Markov equivalent to a directed acyclic graph in the same node
set.
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For distributions generated over directed acyclic graphs, sink Vs are needed again.

Proposition 5 (Frydenberg 1990; Verma and Pearl 1990) Directed acyclic graphs of
the same skeleton are Markov equivalent if and only if they have the same sink Vs.

Markov equivalence of a concentration graph and a covariance graph model is
for regular joint Gaussian distributions equivalent to parameter equivalence, which
means that there is a one-to-one relation between the two sets parameters. Therefore,
an early result on parameter equivalence for joint Gaussian distributions implies the
following Markov equivalence result for distributions satisfying both the composition
and the intersection property.

Proposition 6 (Jensen 1988; Drton and Richardson 2008b) A covariance graph is
Markov equivalent to a concentration graph if and only if both consist of the same
complete, disconnected subgraphs.

Fast ways of inserting an edge for every transition V, of deciding on connectivity
and on blocking flows have been available in the corresponding Russian literature
since 1970 (see Dinitz 2006), but these results appear to have not been exploited
for the so-called lattice conditional independence models, recognized as distributions
generated over GN

dag’s without any transition Vs by Andersson et al. (1997).
Markov equivalence of other than multivariate regression chain graphs has been

given by Roverato (2005), Andersson and Perlman (2006) and Roverato and Studený
(2006).

With the so-called global Markov property of a graph in node set N and any dis-
joint subsets a, b, c of N , one can decide whether the graph implies a ⊥⊥ b|c. To give
this property for a regression graph, we use special types of path that have been called
active; see Wermuth (2011). For this, let again {a, b, c,m} partition the node set N

of GN
reg.

Definition 1 A path from a to b in GN
reg is active given c if its inner collision nodes

are in c or have a descendant in c and its inner transmitting nodes are in m = N \ (a ∪
b ∪ c). Otherwise, the path is said to break given c or, equivalently, to break with m.

Thus, a path breaks when c includes an inner transmitting node or when m in-
cludes an inner collision node and all its descendants; see also Fig. 4 of Marchetti
and Wermuth (2009).

For directed acyclic graphs, an active path of Definition 1 reduces to the d-
connecting path of Geiger et al. (1990). Similarly, the following proposition coin-
cides in that special case with a statement concerning their d-separation. Let node set
N of GN

reg be partitioned as above by {a, b, c,m}.

Proposition 7 (Cox and Wermuth 1996; Sadeghi 2009) A regression graph, GN
reg,

implies a ⊥⊥ b|c if and only if every path between a and b breaks given c.

Thus, whenever GN
reg implies a ⊥⊥ b|c, this independence statement holds in the

corresponding sequence of regressions for which the density fN factorizes as (1),
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Fig. 12 Three regression graphs, which imply 3 ⊥⊥ 4 but not 3 ⊥⊥ 4|1

provided that fN satisfies the same properties of independences, (i) to (vi) of Sect. 5,
just like a regular Gaussian joint density. For example, in the graphs of Fig. 12, node 2
is an ancestor of node 1 so that GN

reg does not imply 3 ⊥⊥ 4|2.
Since covariance and concentration graphs consist only of one type of edge, the

restricted versions in Propositions 1 and 2 of the defined path can be used for their
global Markov property.

7 The main new results and proofs

We now treat connected regression graphs in node set N and corresponding distribu-
tions defined by sequences of regressions with joint discrete or continuous responses,
ordered in connected components g1, . . . , gr of the graph, and with context variables
in connected components, gr+1, . . . , gJ , which factorize as in (1), satisfy the pairwise
independences of (2) as well as properties of independence statements, given as (i) to
(vi) in Sect. 5.

For the main result of Markov equivalence for regression graphs, we consider
distinct nodes i and k, node subsets c of N \ {i, k} and the notion of shortest active
paths.

Definition 2 An ik-path in GN
reg is a shortest active path π with respect to c if every

ik-path of GN
reg with fewer inner nodes breaks given c.

Every chordless π is such a shortest path. If the consecutive nodes (kn−1, kn, kn+1)

on π = (i = k0, k1, . . . , km = k) induce a complete subgraph in GN
reg, we say that

there is a triangle on the path. In Fig. 13(a) nodes 2,3,4 form a triangle on the path
(1,2,4,3,5).

If this path is an active path connecting the uncoupled node pair (1,5), then
nodes 2 and 4 are inner transmitting nodes outside c and the inner collision node 3 is
in c. This path is then also the shortest active path connecting (1,5). The shorter path
(1,2,3,5) has nodes 2 and 3 as inner transmitting nodes, but is inactive since node 3
is in c.

Fig. 13 Graphs of active five-node paths (a) with path (1,2,4,3,5) the shortest active path, where 3 is
in c, (b) active path (4,2,1,3,5), where 1 is in c, and a shorter active path (4,2,3,5)
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By contrast in Fig. 13(b), when path (4,2,1,3,5) is an active path connecting the
uncoupled node pair (4,5), then path (4,2,3,5) is a shorter active path. To see this,
notice that on an active (4,2,1,3,5) path, the inner collision node 1 is in c and the
inner transmitting nodes 2 and 3 are outside c. In this case, the inner collision node 2
on the path (4,2,3,5) has node 1 as a descendant in c, so that this shorter path is also
active.

We also use the following results for proving Theorem 1. The first two are di-
rect consequences of Proposition 7 and imply the pairwise independences of Eq. (2).
Lemma 4 results with the independence form of (2). Let h, i, k be distinct nodes of N .

Lemma 2 For (h, i, k) a collision V in GN
reg, the inner node i is excluded from c in

every independence statement for h, k implied by GN
reg.

Lemma 3 For (h, i, k) a transmitting V in GN
reg, the inner node i is included in c in

every independence statement for h, k implied by GN
reg.

Lemma 4 A missing ik-edge in GN
reg implies at least one independence statement

i ⊥⊥ k|c for c a subset of N \ {i, k}.

We can now derive the first of the main new results in this paper.

Theorem 1 Two regression graphs are Markov equivalent if and only if they have the
same skeleton and the same sets of collision Vs, irrespective of the type of edge.

Proof Regression graphs GN
reg1 and GN

reg2 are Markov equivalent if and only if for
every disjoint subset a, b, and c of the node set of N , where only c can be empty,

(
GN

reg1 =⇒ a ⊥⊥ b|c) ⇐⇒ (
GN

reg2 =⇒ a ⊥⊥ b|c). (11)

Suppose first that (11) holds. By Lemma 4, GN
reg1 and GN

reg2 have the same skele-

ton, and by Lemmas 2 and 3, GN
reg1 and GN

reg2 have the same collision Vs.

Suppose next that GN
reg1 and GN

reg2 have the same skeleton and the same colli-
sion Vs and consider two arbitrary distinct nodes i and k and any node subset c of
N \ {i, k}. By Proposition 7, (11) is equivalent to stating that for every uncoupled
node pair i, k, there is an active path with respect to c in GN

reg1 if and only if there is

an active ik-path with respect to c in GN
reg2.

Suppose further that path π is in GN
reg1 a shortest active ik-path with respect to c.

Since GN
reg1 and GN

reg2 have the same skeleton, the path π exists in GN
reg2. We need

to show that it is active. If all consecutive two-edge subpaths of π are Vs then π is
active in GN

reg2. Therefore, suppose that nodes (kn−1, kn, kn+1) on π form a triangle

instead of a V. It may be checked first, that in all other possible triangles in regression
graphs that can appear on π other than the two of Fig. 14, there is as in Fig. 13(b) a
shorter active path. To complete the proof, we show that for the two types of triangles
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Fig. 14 The two types of triangles in regression graphs without a shorter active path whenever the path
with inner nodes (kn+1, kn, kn−1) is active

shown in parts (a) and (b) of Fig. 14, path π is also in GN
reg2 an active ik-path with

respect to c.
In GN

reg1 containing the triangle of Fig. 14(a) on a shortest active path π , node kn

is a transmitting node, which is by Lemma 3 outside c. By Lemma 2, node kn−1 is
a collision node inside c. If instead kn−1 were a transmitting node on π in GN

reg1,
it would also be a transmitting node on (kn−2, kn−1, kn+1) and give a shorter active
path via the kn−1kn+1-edge, contradicting the assumption of π being a shortest path.
Similarly, if collision node kn−1 on π were only an ancestor of c, then there were a
shorter active path via the kn−1kn+1-edge.

In addition, node pair kn, kn−2 is uncoupled in GN
reg1 since by inserting any

such edge that is permissible in a regression graph, another shortest path via the
kn−2kn-edge would result. Therefore, since GN

reg1 and GN
reg2 have the same colli-

sion Vs, the subpath (kn−2, kn−1, kn) forms also a collision V in GN
reg2. Similarly,

(kn−2, kn−1, kn+1) is a transmitting V and (kn+2, kn+1, kn) is a V of either type. Hence
kn−1 is a parent of kn+1 in GN

reg2 and the only permissible edge between kn and kn+1

is an arrow pointing to kn+1. Therefore, π forms an active path also in GN
reg2.

The proof for Fig. 14(b) is the same as for Fig. 14(a) since the type of nodes
along π , i.e. as collision or transmitting nodes, is unchanged. �

In the example of Fig. 15, all three regression graphs have the same skeleton. In
GN

reg1 there are three collision Vs: (3,4,5), (1,2,5), and (2,1,3). In GN
reg2 there are

the same collision Vs. Therefore, these two graphs are Markov equivalent. However,
there are only two collision Vs in GN

reg3, and these are (3,4,5) and (2,1,3). Hence

this graph is not Markov equivalent to GN
reg1 and GN

reg2. The Markov equivalence of
the graphs in Fig. 2 to the subgraph induced by {b, c} in Fig. 1 is a further application
of Theorem 1. Notice that Propositions 3 to 8 of Sect. 6 result as special cases of
Theorem 1.

The following algorithm generates a directed acyclic graph from a given GN
reg that

fulfils its known necessary conditions for Markov equivalence to a directed acyclic

Fig. 15 (a) Regression graph GN
reg1, (b) a Markov equivalent regression graph GN

reg2 to GN
reg1, (c) a re-

gression graph GN
reg3 that is directed acyclic and not Markov equivalent to GN

reg1
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graph; see Proposition 2 of Wermuth (2011). We refer to these connected components
as the blocks of GN

reg.

Algorithm 1 (Obtaining a Markov equivalent directed acyclic graph from a regres-
sion graph) Start from any given GN

reg that has a chordal concentration graph and no
chordless collision path in four nodes.

1. Apply the maximum cardinality search algorithm on the block consisting of full
lines to order the nodes of the block.

2. Orient the edges of the block from a higher number to a lower one.
3. Replace collision Vs by sink Vs, i.e. replace i ◦ k and i ◦ ≺ k by

i 	 ◦ ≺ k when i and k are uncoupled. When a dashed line in a block is
replaced by an arrow, label the endpoints such that the arrow is from a higher
number to a lower one if the labels do not already exist.

4. Replace dashed lines i ◦ k of triangles by a sink path i 	◦ ≺ k. When
a dashed line in a block is replaced by an arrow, label the endpoints such that the
arrow is from a higher number to a lower one if the labels do not already exist.

5. Replace dashed lines by arrows from a higher number to a lower one.

Continually apply each step until it is not possible to continue applying it further.
Then move to the next step.

Lemma 5 For a regression graph with a chordal concentration graph and without
chordless collision paths in four nodes, Algorithm 1 generates a directed acyclic
graph that is Markov equivalent to GN

reg.

Proof The generated graph is directed since, by Algorithm 1, all edges are turned into
arrows. Since the block containing full lines is chordal, the graph generated by the
perfect elimination order of the maximal cardinality search does not have a directed
cycle; see Blair and Peyton (1993), Sect. 2.4 and Tarjan and Yannakakis (1984).

In addition, the arrows present in the graph do not change by the algorithm. Thus,
to generate a cycle containing an arrow of the original graph, there should have been
a cycle in the directed graph generated by replacing blocks by nodes. But, this is
impossible in a regression graph. Therefore in the generated graph, there is no cycle
containing arrows that have been between the blocks of the original graph.

Within a block, all arrows point from nodes with higher numbers to nodes with
lower ones. Otherwise, there would have been at step 3 of the algorithm a chordless
collision path with four nodes in the graph. Hence no directed cycle can be generated.

Theorem 1 gives Markov equivalence to GN
reg since Algorithm 1 preserves the

skeleton of GN
reg and no additional collision V is generated because sink oriented Vs

remain, only dashed lines are turned into arrows and no arrows are changed to dashed
lines. �

Notice that this algorithm does not generate a unique directed acyclic graph, but
every generated directed acyclic graph is Markov equivalent to the given regression
graph. To obtain the overall complexity of Algorithm 1, we denote by n the number
of nodes in the graph and by e the number of edges in the graph.
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Corollary 4 The overall complexity of Algorithm 1 is O(e3).

Proof Suppose that the input of Algorithm 1 is a sequence of triples, each of which
consists of the two endpoints of an edge and of the type of edge. The length of this se-
quence is equal to e and the highest number appearing in the sequence is n. For exam-
ple, the sequence to the graph of Fig. 15(a) is ((1,2, d), (3,1, a), (5,2, a), (4,3, d),

(4,5, d)), where ‘d’ corresponds to a dashed line and ‘a’ corresponds to an arrow
pointing from the first entry to the second one. Notice that this labelling is in general
not the same as the ordering of nodes given by Algorithm 1.

The first two steps of Algorithm 1 can be performed in O(e + n) time; see Blair
and Peyton (1993). Step 3 of Algorithm 1 may be performed in e(e + 1)(e − 2)/2
steps since for each edge, one can go through the edge set to find the edges that
give a three-node path with an inner collision node. This needs e(e + 1)/2 steps. For
each collision node, one goes again through the edge set, excluding the two edges
involved in the collision path, to check if the collision is a V. Other actions can be
done in constant time.

Step 4 may require ne(e + 1)/2 steps since paths considered ◦ ◦ ◦ which
do not form a V. Therefore, there is no reason to go through the edge set for the third
time, but one might need to go through the node ordering to decide on the direction of
the generated arrow. The last step may be performed with ne steps by going through
the edge set changing ‘d’s to ‘a’s appropriately by looking at the node ordering.
Therefore, the overall complexity of Algorithm 1 is O(e3). �

Corollary 2 and Propositions 4 to 8 can now be derived as special cases of The-
orem 1 and Lemma 4. In addition by using Lemmas 1, 2 and pairwise indepen-
dences, subclasses of regression graphs can be identified, which intersect with di-
rected acyclic graphs, with other types of chain graphs, with concentration graphs or
with covariance graphs.

Theorem 2 A regression graph with a chordal graph for the context variables can
be oriented to be Markov equivalent to a directed acyclic graph in the same skeleton,
if and only if it does not contain any chordless collision path in four nodes.

Proof Every chordal concentration graph can be oriented to be equivalent to a di-
rected acyclic graph; see Tarjan and Yannakakis (1984). A missing edge for node
pair i < k in a directed acyclic graph means i ⊥⊥ k| > i \ k, which would contradict
(2)(iii) if the graph contained a semi-directed chordless collision path in four nodes.
No undirected chordless collision path in four nodes can be fully oriented without
changing a collision V into a transmitting V, but GN

reg can be oriented using Algo-
rithm 1 if it contains no such path. �

Notice that for joint Gaussian distributions, Theorem 2 excludes Zellner’s seem-
ingly unrelated regressions and it excludes covariance graphs that cannot be made
Markov equivalent to fully directed acyclic graphs; see Proposition 4.
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Proposition 8 A multivariate regression graph with connected components g1, . . . , gJ

is an AMP chain graph in the same connected components if and only if the covari-
ance graph of every connected component of responses is complete.

Proof The conditional relations of the joint response nodes in an AMP chain graph
coincide with those of the regression graph with the same connected components.
Furthermore, the subgraph induced by each connected component gj of an AMP
chain graph is a concentration graph given g>j while in GN

reg it is a covariance graph
given g>j . By Proposition 6, these have to be complete for Markov equivalence. �

Proposition 9 A multivariate regression graph with connected components g1, . . . , gJ

is an LWF chain graph in the same connected components if and only if it contains
no semi-directed chordless collision path in four nodes and the covariance graph of
every connected component of responses is complete.

Proof The proof for the connected components of an LWF chain graph is the same as
for an AMP chain graph since they both have concentration graphs for gj given g>j .
The dependences of joint responses gj on g>j coincide in an LWF chain graph with
the bipartite part of the concentration graph in gj ∪ g>j so that Markov equiva-
lent independence statements can only hold with these bipartite graphs being com-
plete. �

Figure 16 illustrates Theorem 2 and Proposition 8, 9 with modified graphs of
Fig. 4. The graphs in Fig. 16 are Markov equivalent to (a) a directed acyclic graph
with the same skeleton obtainable by Algorithm 1, (b) an AMP chain graph in the
same connected components, and (c) an LWF chain graph in the same connected
components.

In general, by inserting some edges, a regression graph model can be turned into
a model in one of the intersecting classes used in Propositions 2 to 9, just as a non-
chordal graph may be turned into a chordal one by adding edges. When the inde-
pendence structure of interest is captured by an edge-minimal regression graph, then
the resulting graph after adding edges will no longer be an edge-minimal graph and
hence will not give the most compact graphical description possible.

However, the graph with some added edges may define a covering model that is
easier to fit than the reduced model corresponding to the edge-minimal graph, just
as an unconstrained Gaussian bivariate response regression on two regressors may
be fitted in closed form, while the maximum-likelihood fitting in the reduced model
of Zellner’s seemingly unrelated regression requires iterative fitting algorithms. Any
well-fitting covering model in the three intersecting classes will show week depen-
dences for the edges that are to be removed to obtain an edge-minimal graph.

Notice that sequences of regressions in the intersecting class with LWF chain
graphs correspond for Gaussian distributions to sequences of the general linear mod-
els of Anderson (1958), Chap. 8, that is, to models in which each joint response has
the same set of regressor variables. This shows in GN

reg by identical sets of nodes from
which arrows point to each node within a connected component.
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Fig. 16 The graph of Fig. 4
modified by adding edges to
obtain a graph that is Markov
equivalent to (a) a directed
acyclic graph, (b) an AMP chain
graph in the same connected
components, and (c) an LWF
chain graph in the same
connected components

In contrast, the models in the intersecting classes with the two types of undirected
graph may be quite complex in the sense of including many merely generated chord-
less cycles of size four or larger.

Proposition 10 A multivariate regression graph has the skeleton concentration
graph if and only if it contains no collision V and it has the skeleton covariance
graph if and only if it contains no transmitting V.

Proof Every V is a collision V in a covariance graph and a transmitting V in a con-
centration graph; see Lemmas 1 and 2. The first includes, the second excludes the
inner node from the defining independence statement. Thus, in the presence of a V,
one would contradict the uniqueness of the defining pairwise independences. �

Lastly, Fig. 17 shows the overall concentration graph induced by GN
reg of Fig. 4.

It may be obtained from the given GN
reg by finding first the smallest covering LWF

chain graph in the same connected components, then closing every sink V by an edge,
i.e. adding an edge between its endpoints, and finally changing all edges to full lines.
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Fig. 17 The overall
concentration graph induced by
the regression graph in Fig. 4

In such a graph, several chordless cycles in four or more nodes may be induced and
the connected components of GN

reg may no longer show. In such a case, much of the
important structure of the generating regression graph is lost. In addition, merely in-
duced chordless cycles require iterative algorithms for maximum-likelihood estima-
tion, even for Gaussian distributions. Thus, in the case of connected joint responses, it
may be unwise to use a model search within the class of concentration graph models.

This contrasts with LWF chain graphs that coincide with regression graphs, such
as in Fig. 16(c). These preserve the available prior knowledge about the connected
components and give Markov equivalence to directed acyclic graphs so that model
fitting is possible in terms of single response regressions, that is, by using just univari-
ate conditional densities. In addition, the simplified criteria for Markov equivalence
of directed acyclic graphs apply.

On the other hand, sequences of regressions that coincide with LWF chains, permit
us to model simultaneous intervention on a set of variables since the corresponding
independence graphs are directed and acyclic in nodes representing vector variables.
This represents a conceptually much needed extension of distributions generated over
directed acyclic graphs in nodes representing single variables, but excludes the more
specialized seemingly unrelated regressions and incomplete covariance graphs.
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Appendix: Details of regressions for the chronic pain data

Tables 1–8 show the results of linear least-squares regressions or logistic regressions,
one at a time, for each of the response variables and for each component of a joint
response separately. At first, each response is regressed on all its potentially explana-
tory variables given by their first ordering. The tables give the estimated constant term
and for each variable in the regression, its estimated coefficient (coeff), the estimated
standard deviation of the coefficient (scoeff), as well as the ratio zobs = coeff/scoeff.
These ratios are compared with 2.58, the 0.995 quantile of a random variable Z hav-
ing a standard Gaussian distribution, for which Pr(|Z| > 2.58) = 0.01. In backward
selection steps, the variable with the smallest observed value |zobs| is deleted from a
regression equation, one at a time, until the threshold is reached.
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Table 1 Response: Y , success of treatment; linear regression including a quadratic term

Explanatory variables Starting model Selected Excluded

coeff scoeff zobs coeff scoeff zobs z′
obs

Constant 23.40 – – 20.50 – – –

Za , pain intensity after −1.73 0.15 –11.19 −1.89 0.15 −12.77 –

Xa , depression after −0.16 0.05 −3.04 – – – −1.86

Zb , pain intensity before 0.04 0.16 0.26 – – – 0.65

Xb , depression before 0.10 0.05 1.82 – – – 0.33

U , pain chronicity −0.15 0.30 −0.51 – – – −0.99

A, site of pain −2.27 0.91 −2.48 – – – −2.33

V , previous illnesses 0.19 0.11 1.76 – – – 1.24

B, level of schooling −0.50 0.78 −0.64 – – – −0.22

(Za − mean(Za))2 0.18 0.23 3.41 0.23 0.05 4.28 –

R2
full = 0.54; Selected model Y : Za + Z2

a ; R2
sel = 0.49

Table 2 Response: Za , intensity of pain after treatment; linear regression

Explanatory variables Starting model Selected Excluded

coeff scoeff zobs coeff scoeff zobs z′
obs

Constant 2.74 – – 2.98 – – –

Zb , pain intensity before 0.12 0.08 1.60 0.16 0.07 2.16∗ –

Xb , depression before 0.03 0.02 1.28 – – – 1.76

U , pain chronicity 0.11 0.14 0.75 – – – 1.43

A, site of pain 1.07 0.42 2.51 1.27 0.39 3.26 –

V , previous illnesses 0.00 0.05 0.03 – – – 0.83

B, level of schooling −0.19 0.37 −0.52 – – – −0.70

R2
full = 0.09; Selected model Za : Zb + A; R2

sel = 0.07
∗: Depression before treatment needed because of the repeated measurement design; the low correlation
for Za,Zb is due to a change in measuring, before and after treatment

The procedure defines a selected model, unless one of the excluded variables has
a contribution of |z′

obs| > 2.58 when added alone to the selected directly explanatory
variables; then such a variable needs also to be included as an important directly
explanatory variable. This did not happen in the given data set.

The tables show for linear models also R2, the coefficient of determination, both
for the full and for the selected model. Multiplied by 100, it gives the percentage of
the variation in the response explained by the model.

In the linear regression of Za on Xa and on the directly explanatory variables of
both Za and Xa , that is, on Zb,Xb,A, the contribution of Xa leads to zobs = 3.51,
which coincides—by definition—with zobs computed for the contribution of Za in
the linear regression of Xa on Za and on Zb,Xb,A. Hence the two responses are
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Table 3 Response: Xa , depression after treatment; linear regression

Explanatory variables Starting model Selected Excluded

coeff scoeff zobs coeff scoeff zobs z′
obs

Constant 2.54 – – 4.55 – – –

Zb , pain intensity before −0.05 0.22 −0.23 – – – −0.21

Xb , depression before 0.62 0.06 10.43 0.68 0.05 12.68 –

U , pain chronicity 0.96 0.42 2.28 – – – 2.31

A, site of pain −1.19 1.25 −0.95 – – – −0.10

V , previous illnesses 0.05 0.15 0.35 – – – 1.08

B, level of schooling 0.15 1.09 0.14 – – – −0.01

R2
full = 0.46; Selected model Xa : Xb ; R2

sel = 0.45

Table 4 Response: Zb , intensity of pain before; linear regression

Explanatory variables Starting model Selected Excluded

coeff scoeff zobs coeff scoeff zobs z′
obs

Constant 7.60 – – 7.38 – – –

U , pain chronicity 0.10 0.13 0.77 – – – 0.59

A, site of pain −0.58 0.40 −1.44 – – – −1.20

V , previous illnesses 0.02 0.05 0.46 – – – 0.72

B, level of schooling −0.94 0.35 −2.70 −0.89 0.33 −2.65 –

R2
full = 0.05; Selected model Za : B ; R2

sel = 0.03

Table 5 Response: Xb , depression before; linear regression

Explanatory variables Starting model Selected Excluded

coeff scoeff zobs coeff scoeff zobs z′
obs

Constant 10.96 – – 7.31 – – –

U , pain chronicity 1.97 0.49 4.02 1.78 0.46 3.87 –

A, site of pain −2.33 1.50 −1.55 – – – −1.42

V , previous illnesses 0.54 0.18 2.99 0.55 0.18 3.06 –

B, level of schooling −1.10 1.31 −0.84 – – – −0.57

R2
full = 0.18; Selected model Xb : U + V ; R2

sel = 0.17

correlated even after considering the directly explanatory variables and a dashed line
joining Za and Zb is added to the well-fitting regression graph in Fig. 8.

In the linear regression of Zb on Xb and on the directly explanatory variables of
both Zb and Xb , that is, on U,A,V,B , the contribution of Xb leads to zobs = 2.64.
Hence the two responses are associated after considering their directly explanatory
variables and there is a dashed line joining Zb and Xb in the regression graph of
Fig. 8.
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Table 6 Response: U , chronicity of pain; linear regression

Explanatory variables Starting model Selected Excluded

coeff scoeff zobs coeff scoeff zobs z′
obs

Constant 2.93 – – 2.47 – – –

A, site of pain 0.95 0.21 4.58 1.02 0.20 5.02 –

V , previous illnesses 0.14 0.02 5.83 0.14 0.02 5.92 –

B, level of schooling −0.27 0.19 −1.43 – – – −1.43

R2
full = 0.26; Selected model Xb : A + V ; R2

sel = 0.25

Table 7 Response: A, site of pain; logistic regression

Explanatory variables Starting model Selected Excluded

coeff scoeff zobs coeff scoeff zobs z′
obs

Constant 0.26 – – 0.60 – – –

V , previous illnesses 0.05 0.04 1.22 – – – 1.22

B, level of schooling −1.25 0.40 −3.11 −1.28 0.40 −3.18 –

Selected model A : B; response recoded to (0,1) instead of (1,2)

Table 8 Response: V , previous illnesses; linear regression

Explanatory variables Starting model Selected Excluded

coeff scoeff zobs coeff scoeff zobs z′
obs

Constant 6.41 – – 5.53 – – –

B, level of schooling −0.65 0.54 −1.20 – – – –

Selected model V : –

The relatively strict criterion, for excluding variables, assures that all edges in the
derived regression graph correspond to dependences that are considered to be sub-
stantive in the given context. Had instead a 0.975 quantile been chosen as threshold,
then one arrow from A to Y and another from U to Xa would have been added to the
regression graph. Although this would correspond to a better goodness-of-fit, such
weak dependences are less likely to become confirmed as being important in follow-
up studies.

The subgraph induced by Za,Zb,Xa,Xb of the regression graph in Fig. 8 corre-
sponds to two seemingly unrelated regressions. Even though separate least-squares
estimates can in principle be severely distorted, for the present data, the structure is
so well-fitting in the unconstrained multivariate regression of Za and Xa on Zb , Xb,
U,V,A,B , that is, in a simple covering model, that none of these potential problems
are relevant.

With C = {U,V,A,B}, this is evident from the observed covariance matrix of
Za,Xa given Zb,Xb,C, denoted here by Σ̃aa|bC and the observed regression coeffi-
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cient matrix Π̃a|b.C being almost identical to the corresponding maximum likelihood
estimators Σ̂aa|bC and Π̂a|b.C .

The former can be obtained by sweeping or partially inverting the observed covari-
ance matrix of the eight variables with respect to Zb,Xb,C and the latter by using
an adaption of the EM-algorithm, due to Kiiveri (1987), on the observed covariance
matrix of the four symptoms, corrected for linear regression on C. In this way, one
gets

Σ̃aa|bC =
(

5.61 3.91
3.91 48.37

)
, Σ̂aa|bC =

(
5.66 3.94
3.94 48.41

)
,

Π̃a|b.C =
(

0.12 0.03
−0.05 0.62

)
, Π̂a|bC =

(
0.14 0.00
0.00 0.60

)
.

The assumed definition of the joint distribution in terms of univariate and multi-
variate regressions assures that the overall fit of the model can be judged locally in
two steps. First, one compares each unconstrained, full regression of a single response
with regressions constrained by some independences, that is, by selecting a subset of
directly explanatory variables from the list of the potentially explanatory variables.
Next, one decides for each component pair of a joint response whether this pair is con-
ditionally independent given their directly explanatory variables considered jointly.
This can again be achieved by single univariate regressions, as illustrated above for
the joint responses Za and Xa .
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I would like first to congratulate Nanny Wermuth and Kayvan Sadeghi for their com-
prehensive and insightful review of regression graphs, which also takes the reader
through some of the milestones in the theory of graphical Markov models. Among
the many aspects involved in the thorough description of the concepts and properties
of regression graphs provided by the authors, I would like to draw the attention of
this commentary to their relationship with respect to other types of graphical Markov
models.

Markov properties, such as the global Markov property on purely undirected
graphs, provide the connection between graphs and probability distributions, which
allows one to derive intuitive interpretations from complex statistical models. The
extent of these interpretations depends on the type of graph employed to define the
graphical Markov model, and therefore, its topological properties tell us something
about the class of statistical models represented by the graph. A canonical example
are concentration graphs Markov equivalent to acyclic digraphs (DAGs), which cor-
respond to chordal graphs (Wermuth 1980; Kiiveri et al. 1984). As pointed out in
the paper, chordal graphs permit one to employ efficient fitting procedures to esti-
mate structure and parameters from data, while chordless cycles on more than three
vertices occurring in concentration graphs impose the requirement of iterative fitting
algorithms for that purpose. Analogous findings on computational advantages con-
ferred by chordal graphs have been also exploited in the field of databases (Beeri et
al. 1983) in computer science.

Communicated by Domingo Morales.
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This picture may suggest that different types of graph lead to a mosaic of distinct
isolated classes of graphical Markov models. However, Wermuth and Sadeghi in this
paper rightly show that by inserting edges in a regression graph it can be converted
into another graphical Markov model of one of the intersecting classes, suggesting in
fact that all the distinct classes of graphical Markov models are interlaced. This ob-
servation was already made by Andersson et al. (1995, p. 38) in the context of lattice
conditional independence (LCI) models, which coincide with the class of transitive
DAG models (DAGs without transition Vs), where they show that every LCI model
includes and it is included in at least one DAG model. Those authors also concluded
that every conditional independence restriction is equivalent to a simple LCI model
and thus any graphical Markov model could be described by the intersection of all
LCI models that contain it. This result was later expanded with the characterization of
the class of DAGs with exclusively source Vs, also known as tree conditional indepen-
dence (TCI) models (Castelo and Siebes 2003), whose Markov equivalence classes
are represented by P4-free chordal graphs, as recalled also in this paper by Wermuth
and Sadeghi. In this latter restricted subclass of chordal graphs the intersection of
all cliques is always non-empty in each connected component (Castelo and Wormald
2003) and one such connected graph constitutes the simplest and most constraint
graphical representation of one single conditional independence restriction.

The interlaced structure of graphical Markov models can provide a solution to the
problem of selecting a regression graph from data within the vast search space of such
models by searching first within a model class with fast data fitting procedures and
then refine that model to select the final regression graph. While the authors claim
that LWF chain graphs may constitute one such class of models because model fit-
ting is possible in terms of single response regressions and Markov equivalence can
be handled in the same way as in DAGs, the concept of vertex separator is much more
complex. This contrasts with undirected graphs where this concept is much simpler
and thus more amenable for working with marginal distributions of size (q + 2) < n

whenever the number of random variables p is larger than the number of observa-
tions n (Castelo and Roverato 2006).
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1 Introduction

A graphical model is a statistical model that is associated with a graph whose nodes
correspond to random variables. The model is defined by requiring distributions to
obey a factorization property determined by the graph’s edges or, alternatively, to ex-
hibit a collection of conditional independencies associated with the pattern of edges
absent from the graph. This latter point of view is the one stressed in the paper by Wer-
muth and Sadeghi who treat models associated with graphs that they term ‘regression
graphs’. We would like to take the opportunity to briefly comment on the motivation
of regression graphs, their relationship with other mixed graphs, and on constraints
that are not of conditional independence type. While there has been recent progress
on models for categorical data (see, for instance, Evans and Richardson 2011, and
references therein), our discussion will focus on multivariate normal distributions.

When variables are related through acyclic cause and effect relationships, the de-
pendence structure they exhibit can be represented by directed acyclic graphs; see
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Fig. 1 (a) Seemingly unrelated
regressions graph with hidden
variable H . (b) Representation
of the hidden variable model via
a regression graph

e.g. Pearl (2009) and Spirtes et al. (2000). However, when selection effects or depen-
dencies due to hidden variables are to be represented it is useful to consider graphs
with more than one type of edge. Wermuth and Sadeghi allude to this point in their
introduction, where they point the reader to work by Richardson and Spirtes (2002)
and Wermuth (2011). Regression graphs form a special class of graphs that are of
interest in this context. Their full lines can be thought of as arising through selection,
and their dashed lines allow one to represent correlations due to hidden variables. In
our opinion, this provides the strongest motivation for the use of regression graph
models. As we will not treat selection effects in this commentary, our examples will
involve graphs without full lines. Our pictures of graphs will have dashed lines drawn
as bidirected edges with two arrowheads as is customary in the literature on structural
equation models.

2 Regression graphs and hidden variables

For a concrete example of how regression graphs can be used to model the effects of
hidden variables, consider the directed graph in Fig. 1(a), and assume that node H

represents a hidden variable. In the statistical model associated with this graph, every
marginal distribution for (X1,X2,X3,X4) exhibits the independencies

X1 ⊥⊥ (X2,X4) and X2 ⊥⊥ (X1,X3), (1)

and every other conditional independence holding in all the marginal distributions
for (X1,X2,X3,X4) is a consequence of standard conditional independence impli-
cations. The independencies in (1) are represented faithfully by the regression graph
in Fig. 1(b); compare also the discussion of seemingly unrelated regressions in Wer-
muth and Sadeghi’s Sect. 4. However, more is true. For instance, every four-variate
normal distribution that satisfies the independencies in (1) does in fact arise as a
marginal distribution of (X1,X2,X3,X4) under some (normal) joint distribution as-
sociated with the directed graph that includes the hidden variable H .

3 Non-independence constraints

While regression graphs are appropriate for conditional independence constraints,
they cannot represent all conditional independence patterns that may arise from di-
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Fig. 2 (a) Verma graph with
hidden variable H . (b) Mixed
graph representation of the
hidden variable model

rected graphs whose nodes include hidden variables. Moreover, conditional indepen-
dence is not the only type of constraint of interest. As a concrete example, consider
the directed graph in Fig. 2(a), sometimes referred to as the ‘Verma graph’. Treating
node H as a hidden variable, it is natural to ask whether the directed graphical model
leads to constraints on the marginal distribution of (X1,X2,X3,X4). The answer is
‘yes’, but the constraints are not of conditional independence type. When restricting
to normal distributions the marginal for (X1,X2,X3,X4) has a covariance matrix
Σ = (σij ) that satisfies

σ12σ13σ14σ23 − σ11σ14σ
2
23 − σ12σ

2
13σ24 + σ11σ13σ23σ24

− σ 2
12σ14σ33 + σ11σ14σ22σ33 + σ 2

12σ13σ34 − σ11σ13σ22σ34 = 0, (2)

and every other relation among the entries of the covariance matrix is a polynomial
multiple of the given relation. The problem of finding relations in covariance matri-
ces, or in tables of probabilities when discrete random variables are considered, can
be solved using methods from computational algebra; compare Drton et al. (2009b)
where the Verma graph is discussed in Sect. 3.3. It is also clear that the constraint
given in (2) is not a conditional independence. The polynomial in (2) has degree four,
but conditional independence constraints in a 4 × 4 covariance matrix are of degree
no more than 3; compare Sect. 3.1 in Drton et al. (2009b).

While computer algebra instantly produces the polynomial in (2), it is not imme-
diately clear how this polynomial arises. One possible explanation uses a result of
Tian (2005). Write Σ for the parametrized 4 × 4 covariance matrix obtained from
the Verma graph in Fig. 2(a); readers unfamiliar with the parametrization we have in
mind may simply refer to the parametrization of the graph in Fig. 2(b) discussed be-
low. Create another parametrized 4 × 4 matrix Σ ′ from the same parameters with the
exception that the two coefficients associated with the edges X1 → X3 and X2 → X3
are set to zero and the variance parameter for X3 is set such that X3 has variance 1.
This matrix Σ ′ is thus associated with the subgraph with X1 → X3 and X2 → X3
removed. Applying d-separation to this subgraph reveals that in the submodel X1
and X4 are marginally independent. We may deduce from the work of Tian (2005)
that there is a rational map g, defined on the entire positive definite cone, that takes
the covariance matrix Σ and returns the covariance matrix Σ ′ = g(Σ). Hence, we
know that an unconstrained symmetric matrix Σ = (σij ) can only be a covariance
matrix associated with the Verma graph in Fig. 2(a) if g(Σ)14 = 0. Algebraically, to
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compute g(Σ), we calculate the Cholesky decomposition Σ−1 = LLT with L lower-
triangular, replace the third row of L by (0,0,1,0) to obtain the lower-triangular
matrix L̃, and form g(Σ) = (L̃L̃T )−1. We see that g(Σ)14 is the ratio that has the
Verma polynomial from (2) in the numerator and the product of σ11 and the determi-
nant det(Σ123×123) in the denominator.

We remark that the calculation we just outlined is closely related to a nonparamet-
ric version in Sect. 7.3.1 in Richardson and Spirtes (2002). There it is shown that the
observed margin in the model given by the Verma graph is still constrained even with-
out parametric assumptions; see also Verma and Pearl (1991). Nonparametrically, we
may think of the modification of the Cholesky factor just described as factoring the
joint density of (X1,X2,X3,X4) into conditionals as

f (x1, x2, x3, x4) = f4(x4 |x1, x2, x3)f3(x3 |x1, x2)f2(x2 |x1)f1(x1)

and replacing the conditional density f3(x3 |x1, x2) by the density of a standard nor-
mal distribution with argument x3. Then, Σ is the covariance matrix associated with
the density f , and g(Σ) = Σ ′ is the covariance matrix after replacing f3.

4 Mixed graphs and structural equation models

As the Verma example makes clear, it can be interesting to go beyond graphs that en-
code solely conditional independencies and instead adopt a more general framework.
Mixed graphs that may feature both arrows (directed edges) and dashed lines without
any further constraints on their structure can provide such a framework; see Wermuth
(2011) for a general treatment of how mixed graphs can be associated with directed
graphs that have hidden variables among their nodes. The Verma graph leads to the
mixed graph in Fig. 2(b), which is not a regression graph.

The classical approach of structural equations allows one to give statistical mean-
ing to any mixed graph. Sticking with the Verma example and considering the linear
case with zero means, the graph in Fig. 2(b) is translated into the equation system

X1 = ε1, X3 = λ13X1 + λ23X2 + ε3,

X2 = λ12X1 + ε2, X4 = λ34X3 + ε4,

where (ε1, ε2, ε3, ε4) are jointly normal with ε1, ε3 and (ε2, ε4) mutually independent
but possible correlation between ε2 and ε4. Writing Ω = (ωij ) for the covariance
matrix of (ε1, ε2, ε3, ε4) it is clear that the equations determine the covariance matrix
for (X1,X2,X3,X4) to be of the form

(I − Λ)−T Ω(I − Λ)−1, (3)

where I denotes the identity matrix,

Λ =

⎛

⎜⎜⎝

0 λ12 λ13 0
0 0 λ23 0
0 0 0 λ34
0 0 0 0

⎞

⎟⎟⎠ and Ω =

⎛

⎜⎜⎝

ω11 0 0 0
0 ω22 0 ω24
0 0 ω33 0
0 ω24 0 ω44

⎞

⎟⎟⎠ .
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The display of the two matrices makes explicit that the support of Λ is given by
the arrows in the mixed graph whereas the dashed lines determine the support of Ω .
Despite the fact that there are no conditional independencies involved, the set of co-
variance matrices associated with the mixed graph in Fig. 2(b) is equal to the set of
marginal covariance matrices arising in the hidden variable model given by Fig. 2(a).
Hence, the two graphs encode the same set of four-variate normal distributions. We
would like to remark that the Verma model and related linear models can be fitted
by maximum likelihood using the algorithm presented in Drton et al. (2009a), which
is based on iterative least squares computations that converge reliably. By the main
theorems of Drton et al. (2011), the Verma graph gives a globally (or everywhere)
identifiable model in which maximum likelihood estimators are asymptotically nor-
mal given large samples.

5 Model equivalence

At this point, the reader may wonder which mixed graphs determine linear structural
equation models that are ‘cut out’ by conditional independencies. In other words,
which mixed graphs yield a set of covariance matrices that is equal to all positive defi-
nite matrices obeying some set of conditional independence constraints? One class of
mixed graphs for which this is true are the regression graphs considered by Wermuth
and Sadeghi. A regression graph is a mixed graph without semi-directed cycles, that
is, the graph does not contain cycles with at least one arrow and all arrows pointing in
the same direction. Graphs without semi-directed cycles have also been called chain
graphs in the literature. To our knowledge, the most general class of graphs known
to define linear models cut out by conditional independencies are the maximal an-
cestral graphs of Richardson and Spirtes (2002). A mixed graph is ancestral if all its
semi-directed cycles involve at least two dashed lines. Clearly, the Verma graph is not
ancestral because of the cycle X2 → X3 → X4 ↔ X2.

Two mixed graphs can be equivalent in the sense of having the same set of associ-
ated covariance matrices. For answering questions about such model equivalence, it
is useful to have implicit representations of models in terms of conditional indepen-
dence, or possibly other types of constraint. When only conditional independencies
are of concern, model equivalence is typically referred to as Markov equivalence. To
our knowledge, the most general results about model/Markov equivalence were given
by Ali et al. (2009) who develop a polynomial-time criterion for ancestral graphs.
However, as clarified by Wermuth and Sadeghi, easier and faster to check conditions
can be given for regression graphs. A recent result that holds promise to help resolve
further model equivalence questions is the trek-separation criterion due to Sullivant
et al. (2010), which allows one to characterize the set of all determinants that vanish
for covariance matrices in linear mixed graph models. This new criterion extends an
earlier result on 2×2 determinants that is known as the tetrad representation theorem;
see Spirtes et al. (2000).
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Fig. 3 (a) Four-cycle as covariance graph. (b) The ‘canonical’ hidden variable model inducing the four–
cycle

6 Inequality constraints

We would like to conclude this commentary by pointing out that mixed graph mod-
els need not always be precisely equal to hidden variable models. The four-cycle in
Fig. 3(a) has the independence interpretation

X1 ⊥⊥ X3 and X2 ⊥⊥ X4.

Hence, the multivariate normal distributions associated with the graph simply corre-
spond to all positive definite matrices Σ = (σij ) of the form

⎛

⎜⎜⎝

σ11 σ12 0 σ14
σ12 σ22 σ23 0
0 σ23 σ33 σ34

σ14 0 σ34 σ44

⎞

⎟⎟⎠ . (4)

The ‘canonical’ hidden variable model leading to the four-cycle is depicted in
Fig. 3(b). Let us consider joint multivariate normal distributions for the eight nodes
in this directed graph. The results in Drton and Yu (2010) then imply that a positive
definite matrix with zeros as in (4) is the covariance matrix of some marginal distri-
bution of (X1,X2,X3,X4) in the directed hidden variable model if and only if we
have

σ11σ22σ33σ44 − σ11σ22σ
2
34 − σ11σ

2
23σ44 − σ 2

12σ33σ44

+ σ 2
12σ

2
34 + 2σ12σ23σ34σ14 − σ22σ33σ

2
14 + σ 2

23σ
2
14 ≥ 0.

The left hand side of this inequality is the determinant of the matrix obtained by
negating σ12, or any other non-zero off-diagonal entry of the matrix Σ in (4). We
conjecture that there does not exist a normal directed graphical model with hidden
variables that gives as observed covariance matrices precisely the positive definite
matrices with σ13 = σ24 = 0. We would be interested in hearing the thoughts of
Wermuth and Sadeghi on this point as well as the potential statistical use of non-
independence constraints in graphical modelling.



Comments on: Sequences of regressions and their independencies

References

Ali RA, Richardson TS, Spirtes P (2009) Markov equivalence for ancestral graphs. Ann Stat 37(5B):2808–
2837

Drton M, Yu J (2010) On a parametrization of positive semidefinite matrices with zeros. SIAM J Matrix
Anal Appl 31(5):2665–2680

Drton M, Eichler M, Richardson TS (2009a) Computing maximum likelihood estimates in recursive linear
models with correlated errors. J Mach Learn Res 10:2329–2348

Drton M, Sturmfels B, Sullivant S (2009b) Lectures on algebraic statistics. Oberwolfach seminars, vol 39.
Birkhäuser, Basel

Drton M, Foygel R, Sullivant S (2011) Global identifiability of linear structural equation models. Ann Stat
39(2):865–886

Evans RJ, Richardson TS (2011) Marginal log-linear parameters for graphical Markov models.
arXiv:1105.6075

Pearl J (2009) Causality, 2nd edn. Cambridge University Press, Cambridge
Richardson T, Spirtes P (2002) Ancestral graph Markov models. Ann Stat 30(4):962–1030
Spirtes P, Glymour C, Scheines R (2000) Causation, prediction, and search, 2nd edn. Adaptive computation

and machine learning. MIT Press, Cambridge
Sullivant S, Talaska K, Draisma J (2010) Trek separation for Gaussian graphical models. Ann Stat

38(3):1665–1685
Tian J (2005) Identifying direct causal effects in linear models. In: Veloso MM, Kambhampati S (eds)

Proceedings of the twentieth national conference on artificial intelligence (AAAI). AAAI Press/MIT
Press, Menlo Park/Cambridge, pp 346–353

Verma T, Pearl J (1991). Equivalence and synthesis of causal models. Technical report R-150, UCLA
Wermuth N (2011) Probability distributions with summary graph structure. Bernoulli 17(3):845–879

http://arxiv.org/abs/arXiv:1105.6075


Test
DOI 10.1007/s11749-012-0286-2

D I S C U S S I O N

Comments on: Sequences of regressions
and their independences

Monia Lupparelli · Alberto Roverato

© Sociedad de Estadística e Investigación Operativa 2012

Applied researchers can now rely on several families of graphical models for data
analysis. The availability of a wide range of tools is clearly an advantage but, on
the other hand, the initial assumption that the data generating process belongs to a
specific class of graphical models is a crucial step with non-negligible consequences
for the results of the analysis.

Background knowledge on the problem at hand sometimes suggests that the vari-
ables involved in the analysis, YV with V = {1, . . . , p}, can be partitioned into groups
YB1 , . . . , YBK

called blocks such that: (i) variables within each block are considered
on equal standing; (ii) blocks can be partially ordered on the basis of time or subject-
matter considerations in such a way that the first block YB1 contains primary re-
sponses, all background or context variables are collected in the last block YBK

and
blocks YB2 , . . . , YBK−1 contain intermediate responses. In this case, it seems natural
to restrict attention to chain graph (CG) models where blocks of variables are joined
by arrows pointing from blocks with higher position to blocks with lower position.
The statement that variables within blocks are on equal standing is traditionally im-
plemented by imposing that blocks induce undirected graphs corresponding to either
concentration or covariance graph models.

The paper by Wermuth and Sadeghi is devoted to the class of CG models known
as regression graph (RG) models, but sometimes also referred to as CG models of
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type IV (see Drton 2009; Sadeghi and Lauritzen 2011). It is an illuminating paper
that addresses a number of different issues. It contains a comprehensive review of
the historical genesis of these models clarifying the connections with methodologi-
cal tools developed in other and affine research fields. It also includes a worthwhile
discussion concerning the interpretation of both dependencies and independencies
represented by these models, thereby making it clear which are the most appropriate
contexts of application. To this aim, the paper describes some applications illustrating
the use of these models and suggesting effective model selection procedures. Finally,
novel methodological contributions concerning Markov equivalence are given. We
wish to congratulate the authors for their excellent work.

An interesting feature of RGs is that they belong to the family of loopless mixed
graphs (Sadeghi and Lauritzen 2011) and are also a special case of both summary
graphs (Wermuth 2011) and ancestral graphs (Richardson and Spirtes 2002), as made
clear by Sadeghi and Lauritzen (2011) who provided a hierarchical classification of
several classes of graphical models. We notice that the definition of RG models given
by Wermuth and Sadeghi differs from the definition of CG models of type IV given
in Drton (2009) and subsequently used in the classification of Sadeghi and Lauritzen
(2011). The former assumes a concentration graph model for the variables in the
last block YBK

and covariance graph models in the remaining blocks, whereas in
the latter there is no distinction between blocks which all induce covariance graph
models. This is a minor difference that only involves the marginal distribution of the
context variables, but we take it as a starting point for a critical discussion of the role
played by blocks.

Every block of either primary or intermediate responses is preceded by at least
one block of explanatory variables and the assumption of a covariance graph for
these blocks is motivated by the fact that these graphs encode the correlation struc-
ture of residuals in joint regressions. From this perspective, a concentration graph
model seems a natural choice for the variables in the last block, which are purely
explanatory.

The partition of variables into blocks is the first step of the analysis, and the model
selection procedure will return a RG model where variables are partitioned into chain
components. Every block contains one or more chain components which are the con-
nected components of the block. The chain components have a compatible ordering
that is used to obtain a recursive factorization of the joint density of YV . Consider the
case where, in the selected model, some response variables form a chain component
with no incoming arrows so that the corresponding term in the generating process is a
marginal density rather than a conditional density. Since these variables are labelled
as responses, their marginal distribution is assumed to belong to a covariance graph
model, but one may wonder if a concentration graph model would be more appropri-
ate in this case. More generally, we consider the partition of variables into blocks to
be used to study a subclass of RG models that is sometimes unduly restrictive.

Let MV denote the family of RG models for YV . The assumed block structure
YB1 , . . . , YBK

implies that only a subset of the models, which we denote by MB
V , is

considered. The process that identifies MB
V as a subset of MV can be split into two

steps. The first step implements the background information on the block ordering by
restricting the attention to the subclass of RG models for YV such that edges between
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blocks are arrows whose direction is compatible with the block ordering, and we
denote by M←

V ⊆ MV such subclass of models. RGs in M←
V allow variables within

blocks to be coupled by either arrows or undirected edges. The fact that variables
within blocks are on equal standing motivates the second step, which identifies MB

V

as the subclass of M←
V made up of all models inducing a concentration graph for

YBK
and covariance graphs for the remaining blocks.

The researcher may be uncertain about the appropriate block structure, but the
class MB

V is very sensitive to the block specification. Uncertainty may concern, for
instance, whether a subset of variables should form two adjacent blocks Bj and Bj+1
or a single block Bj ∪ Bj+1. This decision may heavily affect the results of the anal-
ysis because constraining variables to belong to a common block implies, for in-
stance, that an asymmetric relationship between them is precluded. This drawback
is, to some extent, mitigated by the results on Markov equivalence. Indeed, an RG
that is Markov equivalent to the selected graph in MB

V may include arrows inside the
blocks, as highlighted in the example given in Figs. 1 as 2 of the paper by Wermuth
and Sadeghi.

The main point is that an unambiguous meaning should be associated with the
statement “variables are on equal standing”. When it is used to mean that nothing
is known about the independence structure of those variables, then assuming either
a concentration or a covariance graph model may not be appropriate because these
models specify a very special kind of equal standing between variables. In this case,
it might be more appropriate to perform a model search within the class M←

V that
confers more flexibility to the analysis. Note that, following this approach, merging
blocks leads one to consider wider classes of models and they can therefore be moti-
vated by uncertainty about the exact block structure.

Hence, considering the wider class M←
V makes the analysis more robust with re-

spect to misspecification of the block structure, at the cost of an increased complexity
in the exploration of the search space.
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1 Introduction

The class of regression graph models studied by Wermuth and Sadeghi (2012) are
adept at modelling data from intervention studies, and thus they are a useful addition
to the different classes of graphical models that have been introduced in the literature.
A part of their appeal comes from their simplicity and the natural way in which differ-
ent types of graphical models (covariance, concentration, and directed acyclic graph
or DAG) are combined to yield a graphical model with connected components that
“represent conditional independent responses given their common past” (Wermuth
and Sadeghi 2012). As Wermuth and Sadeghi (2012) already note, regression graph
models can be regarded as one of three types of chain graphs that have been studied
as joint response models. The other two are the AMP chain graph models of Ander-
sson and Wojnar (2004) and LWF chain graphs of Lauritzen and Wermuth (1989)
and Frydenberg (1990). Wermuth and Sadeghi (2012) also mention that AMP and
LWF chain graph models are useful for intervention studies only if they correspond
to regression graph models in the sense of Markov equivalence. This is an important
point as the conditioning set of variables for AMP and LWF chain graph models can
contain nodes from the same connected component.

The probabilistic properties of regression graph models have also been established
by Wermuth and Sadeghi (2012). These include generating processes over a regres-
sion graph, Markov properties, Markov equivalence, and a discussion of faithfulness.
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These probabilistic properties, though illuminating in their own right, are also use-
ful for deriving (both maximum likelihood and Bayesian) statistical inference pro-
cedures. In particular, conditions for Markov equivalence between regression graph
models and DAG models can be exploited in order to specify inferential procedures
for classes of regression models.

To this end, Wermuth and Sadeghi (2012) also note that covering models, those
that manage to retain most of the independences in a complex graph but not all, can
be highly useful in this regard. In particular, they comment that a systematic approach
to search for covering models is not available in the literature.

The authors of Wermuth and Sadeghi (2012) are to be commended for a thought
provoking paper that highlights the use of regression graph models. In this short dis-
cussion note of Wermuth and Sadeghi (2012), we highlight some of the aspects of
estimation and model selection that can be potentially useful while working with re-
gression graph models. In particular, we explore properties pertaining to estimation
and model selection when the variables are jointly Gaussian distributed. We shall
consider the distribution of the maximum likelihood estimator and proceed to spec-
ify Bayes procedures for inference in regression graph models. These endeavours
naturally lead to generalization and amalgamation of the various classes of Wishart
distributions that have been recently introduced in the mathematical statistics liter-
ature. Extensions to continuous distributions other than Gaussian and discrete vari-
ables which permit nonlinear and interactive dependences are also briefly discussed.

This short discussion note is organized as follows. Section 2 introduces some pre-
liminaries on various classes of Wishart distributions that have been introduced in
the literature within the context of maximum likelihood and Bayesian inference for
graphical models. Section 3 gives methodology and results that illustrate the task of
estimation and model selection in regression graph models. For the sake of brevity,
details are provided elsewhere. Section 4 concludes by summarizing and outlining
future research directions.

2 Wisharts for DAG, concentration, and covariance graphical models

We now briefly study four different graphical Wishart distributions that have appeared
in the mathematical statistics literature and special cases of these. The reader is re-
ferred to Letac and Massam (2007) and Ben-David and Rajaratnam (2011) for the
relevant notation (including definitions of the spaces PG , QG , RG , SG , etc.).

Concentration Wishart distributions The WPG
and WQG

“concentration Wisharts”
of Letac and Massam (2007) can be used for Bayesian Analysis for graphical Gaus-
sian models, as in Rajaratnam et al. (2008), or to describe the distribution of the
maximum likelihood estimator in a decomposable graphical Gaussian model. The
WPG

density and the corresponding inverse Wishart are specified below. The density
of WQG

is also given below.

WPG
(α,β, θ;dy) = e−〈θ,y〉 HG(α,β;φ(y)

ΓII(α,β)HG(α,β; θ)
νG(dy), (1)
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ΓII(α,β) = π
((c1−s2)s2+∑k

j=2(cj −sj )sj )/2

× Γs2

[
−α1 − c1 − c2

2
− γ2

]
Γc1−s2(−α1)

k∏

j=2

Γcj −sj (−αj ),

(2)

IWPG
(α,β, θ;dx) = e−〈θ,x̂−1〉HG(α,β;x)

ΓII(α,β)HG(α,β; θ)
μG(dx), (3)

WQG
(α,β,σ ;dx) = e−〈θ,x̂−1〉 ΓI (α,β)HG(α,β;x)

HGα,β;σ . (4)

Letac and Massam (2007) demonstrate that the highly useful hyper-inverse
Wishart and hyper Wishart of Dawid and Lauritzen (1993) belong to the class of
enriched LM concentration graph Wishart distributions. These Wishart distributions
appear naturally in both Bayesian and frequentist inferences for graphical Gaussian
models. In particular, Rajaratnam et al. (2008) use the LM priors for flexible co-
variance estimation in high-dimensional settings. Roverato (2002) also studies the
problem of inference in the nondecomposable concentration graph setting.

Covariance Wishart distributions A recent addition to the class of Wishart distri-
butions is the “covariance Wishart” distribution of Khare and Rajaratnam (2011)
specified below. These have been introduced in the context of Bayesian inference
for Gaussian covariance graph models.

π̃
PG

U,α(Σ) ∝ e−(tr(x̂U)+∑m
i=1(2ni+αi) logDii((x̂)−1))/2,

∏
S∈S |xS |(|S|+1)ν(S)

∏
C∈C |xC ||C|+1

, x ∈ QG.

(5)

We note that Gibbs sampling can be used in order to sample from the KR co-
variance Wishart distributions (see Khare and Rajaratnam 2011). The reader is also
referred to the work by Silva and Ghahramani (2009) and Andersson and Wojnar
(2004) for related work.

DAG Wishart distributions Yet an even more recent addition to extensions of the
Wishart distribution on the cone is the DAG Wishart distributions of Ben-David and
Rajaratnam (2011).

π
RG
U,α(Υ ) = zG (U,α)−1 exp

{
−1

2
tr(Υ̂ U)

} m∏

i=1

D
− 1

2 αi+pai+2
ii .

Standard conjugate priors in the Cholesky parameterization of the DAG model
have been known in the literature for some time (see, for example, Geiger and Heck-
erman 1994 and other texts/papers on the topic). In the above work, Ben-David and
Rajaratnam (2011) derive (for any arbitrary DAG) the DAG Wishart distributions on
covariance and concentration spaces that correspond to enriched standard conjugate
priors in the Cholesky parameterization of the DAG model.
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3 Generalized Wishart distributions for regression graphs

In this section we briefly examine how the Wishart distributions specified above for
simple graphical models (those which are purely concentration graph, covariance
graph, or DAG models) can be combined for Bayesian inference for regression graph
models. We examine three possible approaches.

First, following the spirit of Wermuth and Sadeghi (2012), we first state a result
that exploits the Markov equivalence result in Theorem 2.

Proposition 1 Consider a regression graph model with a chordal graph for the con-
text variables which does not contain any chordless collision path in four nodes. Then
the class of enriched DAG Wishart distributions specified in Ben-David and Rajarat-
nam (2011) yields a class of hyper Markov conjugate priors for this regression graph
model.

Moreover, note that the priors are also strong directed hyper Markov. The proof of
the above proposition follows simply by noting that in Theorem 2 of Wermuth and
Sadeghi (2012) it is proved that the regression graph can be “oriented to be Markov
equivalent to a directed acyclic graph in the same skeleton.” This result can be ex-
ploited to construct a DAG, which is then sufficient to make the use of the enriched
conjugate priors studied in Ben-David and Rajaratnam (2011). An advantage of this
line of thinking is that the approach followed in Ben-David and Rajaratnam (2011)
allows one to evaluate closed-form posterior covariance and concentration quantities
which can be beneficial in higher-dimensional settings. We also note that if the quan-
tities of interest are the Cholesky parameters, then the DAG Wisharts are not directly
required.

An equally relevant question pertains to specifying procedures when the regres-
sion graph is not Markov equivalent to a model with only one type of edges. Wermuth
and Sadeghi (2012) suggest a useful approach to dealing with this in the context of
maximum likelihood estimation. In particular, they suggest using a covering model
with additional edges that is easier to fit than the original (regression graph) model.
The relationships to LWF model are specifically mentioned in this regard. The au-
thors justifiably also caution that this approach may mean that important structure of
the original generating regression graph is lost in the process (see p. 38 of Wermuth
and Sadeghi 2012). The “covering” approach can also be useful when undertaking
Bayesian inference for regression graph models. A covering model that corresponds
to a model for which any of the above graphical Wishart distributions apply is ideal
since Bayes procedures and their theoretical properties have already been studied at
length. Details on what would be the “best” covering model and links to Markov
equivalences and Bayesian inference require further analysis and will be discussed
elsewhere.

Identifying a simple Markov equivalent model, or using a covering model, as dis-
cussed above, may not always be applicable in general due to the limitations outlined
above. A third more general approach is now discussed below.
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Consider the factorization given by Eq. (1) in Wermuth and Sadeghi (2012),

fN =
J∏

j=1

fgj |g>j
, (6)

and recall Eq. (2) from Wermuth and Sadeghi (2012), which gives the following
meaning to each ik edge (i �= k) present in the regression graph GN

reg:

(i) i � k|g>j for i, k both in a response component gj of u,

(ii) i � k|g>j\{k} for i in gj of u and k in g>j ,

(iii) i � k|v\{i, k} for i, k both in a context component gj of v.

(7)

Also note that proposition (7) of Wermuth and Sadeghi (2012) states that for dis-
joint states a, b, c, a given regression graph implies a ⊥⊥ b | c if and only if every
path between the sets a and b breaks given c.

A natural “system of priors” that combines the graphical Wishart priors that have
already been introduced/studied in the literature can be constructed by recursively
applying the standard conjugate prior for each block conditional on previous blocks.
Recall that the different graphical Wishart priors (i.e., the covariance, concentration,
and DAG Wishart priors) can serve as natural candidates in this process of building
the overall prior. This process can be symbolically represented (with some abuse of
notation) as follows:

π(θ) ∝
J∏

j=1

fgj |g>j
(xj |θj )πgj |g>j

(θj ), (8)

where πgj |g>j
(θj ) denotes the prior for the j th block given the parameters for previ-

ous blocks, and where θ represents the full parameter of the regression graph model.
We shall refer to the overall prior π(θ) as the generalized regression graph Wishart
distribution.

Broadly speaking, the above approach allows us to sequentially specify condi-
tional priors which are already available from the literature. Moreover posterior sam-
ples for a given block can be obtained directly by sampling conditionally on previous
blocks. In this case, MCMC is used only within blocks and not between blocks (see,
for instance, Khare and Rajaratnam 2011 for the covariance graph case). This topic is
more involved, and the precise statement of the above assertion is omitted from this
discussion note.

Note that in the Gaussian setup conjugacy is retained overall due to the properties
of the graphical Wishart priors outlined in Sect. 2. The above approach specifies con-
ditional graphical Wishart priors within each block given previous blocks. Bayesian
modelling of parameters between blocks can be specified in a manner similar to that
of a typical DAG model. The above scheme also allows us to define a new concept, the
“block hyper Markov” property, to describe the deep structure in the prior. We shall
not discuss this here and mention that details will be given elsewhere. Moreover, we
remark that the same approach used above to specify priors above can also be used
to build a system of regression graph model priors outside the Gaussian setting.
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4 Closing remarks

We conclude this short note by once again commending the authors for an interesting
and useful paper. We have broadly outlined procedures for Bayesian inference for re-
gression graph models including prior specification and sampling from the posterior.
The Bayesian approach has the distinct advantage of also directly giving variability
estimates of Bayes procedures. We note that under certain conditions the graphi-
cal Wishart distributions studied above are useful in specifying the distributions of
graphical maximum likelihood estimates. We also remark that the above discussion
does not specifically address Bayesian model selection or choice of hyper parameters.
These details will be elaborated on elsewhere.
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First of all I wish to congratulate the authors for this interesting paper, which ad-
dresses different aspects of graphical models and provides a vast list of references
that connect this research area with contributions in the field of structural equation
and econometric models, analysis of binary data and contingency tables, etc. I be-
lieve that the novelty of the paper can be best summarized by noting that a symbol to
represent conditional associations is introduced. It means that the focus has now been
shifted from conditional independences to conditional associations. To do so, the no-
tion of faithfulness has been replaced by a group of properties that a distribution has
to satisfy for the corresponding graph to be faithful. This capacity to break down the
faithfulness assumption into the intersection of weaker assumptions allows one to
modulate it. As a consequence, the authors show that many properties can be derived
under a milder assumption, which they call traceable regressions. These derivations
lead to a simple and elegant formulation of Markov equivalence between regression
graphs, which I also believe is a major interesting advance.

My reflexion originates from the notion of covering model with nice estimation
properties. This happens to be particularly useful in studies for which the outcome of
interest is measured only on a selected population. Let X be an explanatory variable
of the outcome Y and Z be a variable that drives the selection mechanism. Two
situations can occur, one in which Y is defined for all units in the population but
observed only for Z taking on some particular values, and the other in which Y is
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Fig. 1 Two hypothetical data generating processes with the selection variable Z, (a) an intermediate and
(b) an outcome variable

defined only for those units with Z taking on particular values. I shall discuss the first
one and build an example to summarize what I mean, and to clarify my comment.
For a group of Italian freshman students we want to know how predictive is X, the
mark they get at the end of their high school studies, of Y , the mark they get when
the finish their undergraduate three year degree at a given university. Suppose now
that in order to access this university they have to pass a test. Let Z be the score a
student gets at the test. Only students with a score higher than a fixed threshold c,
equal for all students, are allowed to enroll at the university. To keep the argument
simple, assume no further selection is taking place, so that all students with Z > c

enroll at the university and get their final mark Y . Suppose further that the relationship
between all variables can be captured by linear regressions.

In Fig. 1(a) and (b) are the two hypothesized regression graphs to describe the
underlying data generating process. We can think of it as conditional to some context
variables. In Fig. 1(a) the variable Z is a directly explanatory variable of Y , while
in Fig. 1(b) they are correlated. In this second case, we can think of Z and Y as
response variables of some hidden node U representing the level of motivation of the
student. As discussed in Sect. 4 of the paper, both models are saturated but they are
not Markov equivalent. In particular, we would like to stress the different meaning of
the arrows from X to Y in Fig. 1(a) and (b), the former representing the coefficient
of X in the linear regression of Y against X and Z (which we denote by βY |X.Z), the
latter representing the coefficient of X in the linear regression of Y against X only
(which we denote by βY |X).

The interest is in the linear regression coefficient βY |X in the overall population.
The linear regression of Y on X on the selected population is clearly distorted. We
can, however, distinguish between a situation, which we denote Case A, where Z

is observed from the situation, which we denote Case B, where only the indicator
I = I (Z > c) is observed. In Case A, when the postulated model is as in Fig. 1(a),
the marginal regression coefficient of interest can be determined by making use of
Cochran’s formula:

βY |X = βY |X.Z + βZ|XβY |Z.X.

Since Z and X are observed for all units, βZ|X can be consistently estimated from a
random sample drawn from the model. Furthermore, since selection acts as truncation
on an explanatory node for Y , βY |Z.X and βY |X.Z can also be consistently estimated
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from a random sample drawn from the truncated distribution (perhaps with a loss of
efficiency). Similarly, when the postulated model is as in Fig. 1(b), the regression
coefficient of interest can also be estimated by making use of the above relationship,
after noting, however, that the estimations are not made under the model, but under
an auxiliary model with nice estimation properties. Notice that, despite the symmetry
of Fig. 1(b), alternative estimations based on auxiliary models that make use of a
regression with Z as a response variable are clearly distorted as truncation acts on a
response variable.

The situation complicates under Case B, in which only I = I (Z > c) is ob-
served (and again Y is observed for units with I = 1 only). In this second case,
the above formula is of no use. It may be useful to notice that the distortion may
be bounded in modulo. For simplicity let x be a continuous random variable and let
β̃Y |X(x) = dE(Y |x,I=1)

dx
be the derivatives w.r.t. x of the nonlinear regression func-

tion expressing E[Y | x, I = 1]. Let dist(x) = βY |X − β̃Y |X(x) be the distortion of
the regression coefficient of interest induced by selection. Notice that the distortion
varies with x. It is possible to show that under both models |dist(x)| ≤ βZ|XβY |Z.X

(see Marchetti and Stanghellini 2008, and Hutton and Stanghellini 2011). Although
the second term βY |Z.X cannot be estimated from the observable data, this formula
allows one to derive bounds for the coefficient of interest. Notice that distortion is
null when, in both graphs of Fig. 1, at least one edge but the arrow from X to Y is
missing, a situation described in the literature as a missing (conditionally) at random
mechanism (see e.g. Little and Rubin 2002, Chap. 1).

To summarize, the notion of a covering model may vary from one context to the
other. Regression graph models are useful tools to exemplify the differences between
models and to point to one choice or the other.
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We thank the discussants for their careful reading of the manuscript and their thought-
ful comments. It is nice to see that almost each discussant stresses a different contri-
bution of the paper, that the paper initiated already extensions of distributional results
and that many other special aspects are emphasized in the discussions. We respond
in detail to the comments, with the discussants ordered alphabetically.

Response to Dr. Robert Castelo We agree with Robert that the global Markov prop-
erty of concentration graphs, also known as their separation criterion, is simple and
computationally more attractive than those for directed acyclic graphs and regression
graphs. However, concentration graphs have also only one type of edge so that they
do not, for instance, permit to integrate a priori available knowledge about a time
ordering among the variables into model building processes.

Furthermore, if such an ordering holds and leads to simplifying factorizations of
the joint density, these important properties may no longer show in the concentration
graph for this density, as illustrated in the paper with a generating graph in Fig. 4 and
the corresponding induced concentration graph in Fig. 17. What we try to emphasize
is that in the model class intersecting regression and LWF chain graphs, the simpler
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global Markov property of the former is available for the latter and that a known or-
dering of the variables remains unchanged if one moves from a regression graph to
its covering LWF graph. Any search in this intersecting class may indeed be compu-
tationally more expensive. In such a case, preserving solid prior knowledge is to be
weighted against computational gains.

For more variables (p) than observations (n), the prior knowledge about the re-
lations among the variables under study may also be weak. In such situations, the
question always arises whether the results of any analysis can be generalized to apply
to an underlying real population even if it captures the dependences in a given set of
data well. To us, the p � n situation is like observing many detailed features of a
handful of individuals in one region and trying to judge from this the well-being of
the whole population in the given country.

We thank Robert especially for pointing to us further results for nice, intersecting
subclasses of graphical Markov models. They are clearly conceptually important,
possibly more so for applications in computer science and in artificial intelligence
than in statistics.

Response to Dr. Mathias Drton and his colleagues We agree with Mathias, Chris
and Andreas that the extension of directed acyclic graphs involves mainly the inclu-
sion of dashed lines, or equivalently of bi-directed arrows, whereas adding a concen-
tration graph for the background variables just leads to a natural parameterization of
the variables taken as given, having dependences that are not further explained.

But in contrast to mixed graphs in which a dashed edge is added anywhere to
represent a possible underlying hidden variable, they are added in regression graphs
as at most one single edge for a node pair, within a set of responses on equal standing
that we name joint responses. Such variables are permitted to change directly when
there is an intervention on the variables of their past.

Thereby, the attractive recursive factorization property of directed acyclic graphs
is preserved for joint responses, and the dashed lines represent undirected depen-
dences that remain still unexplained when all variables of their past have been used
to generate their joint conditional distribution. Thus for us, the strongest motivation
for using regression graphs is the extension from a set of only single responses to
joint responses such that arrows in the regression graphs capture simple research hy-
potheses based on what is known up to the time when a new joint response becomes
available.

Most of the more complex types of mixed graphs, which may have dashed lines
added anywhere, correspond to models that are unlikely to be of direct interest when
one is formulating research hypotheses in a given substantive context. They are how-
ever important as consequences of transforming regression graphs. As already noted
in the discussion, such edges result, for instance, after marginalizing over all nodes
along two paths to a common ancestor. Then, a dashed line represents a direct con-
founder, distorting an existing dependence. The discussants illustrate nicely how
complex such constraints can become in general.

If, on the other hand, a set of variables is mutually independent given a com-
mon parent node, then marginalizing over the parent induces a complete covariance
graph as well as simple parametric constraints. This is known, for instance, from
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linear factor analysis with a single unobserved factor. We think that searching for
non-independence constraints in general is likely to be unfruitful, that is, when there
is no prior knowledge, no well-understood stepwise data-generating process or no
design to generate simple scores.

The quoted results by Ali et al. on Markov equivalence of maximal ancestral
graphs have been simplified for regression graphs; see Sadeghi (2012). The condi-
tions for Markov equivalence of maximal ancestral graphs as well as the simpler
conditions for Markov equivalence of regression graphs have been implemented in
the ggm-package in R; see Sadeghi and Marchetti (2011, 2012).

Mathias and his colleagues present also a chordless 4-cycle for a Gaussian 4 × 4
covariance matrix and say that it cannot be generated by an underlying hidden vari-
able model when there is precisely one off-diagonal negative element. We have not
checked this, but want to point out that there is a data-generating process in the given
sets of two variables, each with zero means and equal variances.

For two marginally independent regressors, say b = {2,4}, two conditionally inde-
pendent responses a = {1,3} given b, and an orthogonal regression coefficient matrix
Πa|b , it follows that the responses are also marginally independent and the regressors
are also conditionally independent given a. Thus, in such a regular Gaussian family
of distributions with E(Ya|Yb = yb) = Πa|byb and E(Yb) = 0, there is one negative
element in Πa|b and the covariance matrix as well as the concentration matrix has
zeros in positions (1,3) and (2,4) but nowhere else. Here, the non-independence
constraint is the orthogonality of Πa|b .

Response to Dr. Bala Rajaratnam The discussion by Bala is focused on Gaussian
regression graph models after pointing out that this class of models is now established
as a useful framework in general. He builds mainly on the recursive factorization
of regression graph models and on our notion of covering graph models. The latter
may lead to simpler estimation procedures than a corresponding, more parsimonious,
reduced model that contains more independence statements.

His contribution shows in particular, how much more additional work is needed
if precise distributional results are to be derived for estimators based on specific
distributional assumptions, especially in the case of multivariate Bayes estimation
with flexible conjugate prior distributions. Bala is to be congratulated for describing
a promising approach by which the available results for the three main subclasses
of regression graphs (directed acyclic, concentration and covariance graphs) can be
combined to obtain distributional results of Bayes estimators for sequences of regres-
sions.

The model selection and fitting approach described in the paper for one given re-
search question and one set of given data emphasizes instead how far one can get by
using repeatedly standard single response regressions, linear and logistic regressions
that include possibly nonlinear and interactive effects. One can use such a local mod-
eling approach to obtain one or several hypotheses on which specific sequences of
regressions may have generated the data.

In general, one has to pay a price for this. One does not obtain an estimator under
a precisely specified distribution nor under the precise global independence structure
specified by a graph. The gain is that an excellent or poor fit of each independence
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statement defining the graph becomes evident in terms of single-response regressions
even in these joint response models. The reasons are (1) that each independence state-
ment defining a regression graph also shows in zero parameters of appropriately de-
fined single response regressions, and (2) that for quantitative response regressions
and for binary response regressions, the parameters are interpretable measures of con-
ditional dependence, for which point and interval estimates can be obtained that are
robust under a variety of sampling schemes.

Response to Dr. Monia Lupparelli and Dr. Alberto Roverato We agree with Monia
and Alberto that the first ordering of the variables into a sequence of joint and single
responses is a crucial step in the analysis of data. In fact, we see it as major advantages
of regression graphs that corresponding solid knowledge can be incorporated into the
model selection process, that it is possible not to condition on other components of
the same joint response and that one still can rely on standard statistical tools.

The ordering has indeed non-negligible consequences for the results. Thus, in case
the prior knowledge about an ordering is weak, the ordering is not agreed upon by all
involved in the substantive research on the variables under study, or alternative order-
ings appear equally plausible, it is important to understand what a given generating
process implies when the ordering, and with it the conditioning sets of responses, is
changed. For this, the results on Markov equivalence and on independence-preserving
graphs that result after marginalizing and conditioning in regression graphs are im-
portant, but the more direct task is to obtain graphs induced by just changing which
variables are considered as possibly explanatory to which responses and to under-
stand under which conditions on a given generating process, an induced edge in such
a graph will also correspond to an induced dependence. This has been treated, in an
admittedly not too reader-friendly way, for generating graphs that are directed and
acyclic (see Wermuth and Cox 2004), and more recently for those that are regression
graphs (see Wermuth 2012).

We also agree that responses should not be regarded as being on equal standing
just because ‘nothing is known about the independence structure of those variables.’
We have been in the lucky situation of having had intensive discussions with psychol-
ogists and physicians in the case of the data for which analyses are reported in the
paper, and with researcher in other substantive fields on different occasions, where a
good agreement on the most likely ordering of joint and single responses was reached.
Furthermore, the individual regression results, used to build a regression graph from
data analyses, were in good agreement with what was known from previous studies
or from theoretical considerations.

However, if one has to rely only on results of model search procedures, we agree
that a wide class of models could be preferable to one that narrows down the op-
tions. In this connection, we have experienced that searches in model classes that do
not permit to specify at least some nonlinear or interactive dependences may choose
wrong sets of explanatory variables.

Response to Dr. Elena Stanghellini We thank Elena for appreciating our results on
distributions that are faithful to regression graphs. It has indeed taken a long time to
come up with its essential components. Only recently it was brought to our attention
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though that the term ‘weak transitivity’ has been in use with different meanings in the
literature. In the computer science papers that we quote it means marginalizing over
a set of variables, whereas for instance Milan Studený uses it to mean marginalizing
over a single variable which coincides with what we name singleton-transitivity. Thus
one has to watch out for such confusing differences in definitions.

Requiring a distribution to be faithful to a graph imposes typically severe con-
straints on the parameter space (see, for instance, the discussion of Fig. 1 for just
three variables in Wermuth et al. 2009), and it excludes even subclasses of regular
Gaussian distributions such as the family described in this rejoinder when answering
Mathias Drton and his colleagues.

It is now known that one can trace dependences in sequences of regressions, in
a similar way as Sewall Wright did almost a century ago for his exclusively linear,
directed acyclic graph models, provided the distribution has the properties of what
has been named a compositional graphoid by Sadeghi and Lauritzen (2012), and it
satisfies singleton-transitivity as well; see Wermuth (2012). Such models, are similar
to faithful distributions but do not require weak transitivity with respect to sets of
variables. Thereby, for instance the whole family of regular Gaussian distributions is
again covered; see the proof by Studený (2005), Corollary 2.5 in Sect. 2.3.6.

So far, we have never considered the extension of a regression graph as described
by Elena, that is, to include nodes in the graph that are not observable random vari-
ables but represent a decision or a fact on how individuals are selected into a study.
It is enlightening to see how this can lead, in the case of a simple directed cyclic
graph and a simple regression graph, to different results when there is an outcome-
dependent selection. Also, we have now learned by her contribution that the missing-
at-random assumption in such graphs can be represented by a missing edge that has
the selection node as one of its endpoints.

Outcome-dependent sampling is carried to its extreme in case-control studies,
where samples from two populations arise. Cases are those diagnosed to have a dis-
ease and controls are those not diagnosed with the disease under study. For rare dis-
eases, the observed controls form essentially a sample from the general population.
This special sampling design leads to cost-effective data and to logistic regression
as the standard tool to identify those features that are risks and other important ex-
planatory variables for the binary response having the two disease classifications as
its levels.

It has now been shown how the sampling design of case-control data leads to
concentration graphs capturing structure for cases and controls even though the goal
is typically to understand which sequences of regressions are relevant. In such studies,
the separate dependence structures of cases and controls, together with convincing
data summaries to supplement model based estimates, are the key for gaining more
insights than with logistic regressions alone; see Wermuth et al. (2012).

End of rejoinder To end, we want to summarize what we see as the most promising
aspects of the discussion paper: (1) how simple the criteria for the global Markov
property and for the Markov equivalence of regression graphs are, even though the
class includes directed acyclic graphs and two types of undirected graphs, (2) how one
can use standard single response regressions to get closer to an understanding of how
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sequences of joint response regressions might have been generated and to using the
full potential of a graph both regarding its dependence and independence structure,
and (3) how one can get easily in terms of covering models to classes intersecting
with other types of graphical Markov models. For instance, for the class of regression
graphs intersecting with LWF chain graphs, the given ordering of the joint responses
in the regression graphs is preserved and by ignoring relevant local independences
of regression graphs, one just excludes seemingly unrelated regressions and models
with incomplete covariance graphs of any connected response component.
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