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 Linear Recursive Equations, Covariance Selection,

 and Path Analysis

 NANNY WERMUTH*

 By defining a reducible zero pattern and by using the concept of
 multiplicative models, we relate linear recursive equations that
 have been introduced by econometrician Herman Wold (1954) and
 path analysis as it was proposed by geneticist Sewall Wright (1923)
 to the statistical theory of covariance selection formulated by
 Arthur Dempster (1972). We show that a reducible zero pattern
 is the condition under which parameters as well as least squares
 estimates in recursive equations are one-to-one transformations
 of parameters and of maximum likelihood estimates, respectively,
 in a decomposable covariance selection model. As a consequence,
 (a) we can give a closed-form expression for the maximum likelihood
 estimate of a decomposable covariance matrix, (b) we can derive
 Wright's rule for computing implied correlations in path analysis,
 and (c) we can describe a search procedure for fitting recursive
 equations.

 KEY WORDS: Reducible zero patterns; Multiplicative or decom-
 posable models; One-to-one transformations of covariance matrices;
 Linear recursive equations; Covariance selection; Path analysis.

 1. I;NTRODUCTION

 A renewed interest in studying systems of linear equa-
 tions has been documented in many subject matter areas,
 in genetics (Li 1975), in sociology and in economics
 (Blalock 1971; Goldberger and Duncan 1973; Heise
 1975, Duncan 1975),'and in psychology (Hodapp 1978).
 The purpose of this article is to present a covariance se-
 lection approach to linear recursive equations and to
 path analysis. Since multivariate normality is an assump-
 tion for covariance selection models, we restrict our dis-
 cussion of linear recursive equations and of path analy-
 sis to that situation.

 The inferential aspects of path analysis can be de-
 scribed as relating to two distinct purposes: One is to
 estimate parameters in certain systems of linear equa-
 tions (see (4.1)), the other is to estimate the parameters
 of the corresponding correlation matrix (see (4.2)).
 Wold's (1954) result for linear recursive equations is
 known to lead to Wright's (1934) rule (4.1) for estimat-
 ing the equation parameters, but it does not imply the
 rule (4.2) for estimating the correlation matrix. We use
 a simple example (2.6) in which the second path analysis
 rule (4.2) does not give the maximum likelihood estimate
 (MLE) of the correlation matrix, even though the first
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 path analysis rule (4.1) leads to the MLE7s of the equa-
 tion parameters. We then find a sufficient condition
 under which both path analysis rules define MLE's.
 This condition is a reducible zero pattern in the equation
 parameters or equivalently in the parameters of a co-
 variance selection model.

 To this end, in Section 2 we derive linear recursive
 equations as a triangular reduction of a covariance
 matrix. We show that a reducible zero pattern for the
 regression coefficients implies a corresponding covari-
 ance selection model in which the inverse covat`?ncc
 matrix has the same reducible zero pattern, ana con-
 versely. In Section 3 we show that for all multiplicative
 models the variables can be reordered so that the inverse
 covariance matrix has a reducible zero pattern. We state
 closed-form expressions for the MLE of such decompos-
 able covariance matrices. From these we obtain in Spc-
 tion 4 Wright's rule for computing implied correlations in
 path analysis. Finally, we suggest in Section 5 how the
 model search among multiplicative models (Wermuth
 1976b) can be modified to become a search for fitting
 recursive equations. We illustrate this with a set of
 sociological data.

 2. LINEAR RECURSIVE EQUATIONS

 By a system of linear recursive equations with inde-
 pendent errors is understood a set of equations (Wold
 1954, 1960; Goldberger 1964) of the following form:

 Z1 +al2Z2+al3Z3+ ... +alkZk+al,k+lZk+l + . . . +apZp= U1

 Z2+a23Z3+... +a2kZk+a2,k+lZk+1+ * . . +a2pZp= U2

 Zk+ak,k+lZk+l+. . . +akpZp= Uk,

 where Zi is a dependent or endogeneous variable for
 i =1, ..., k and is fixed or exogeneous for i = k + 1,

 p. The system is called recrursive, since each of the
 endogeneous variables ZA may depend oIn Zi+1, ..., ZP
 but not on ZA, . . ., Zi-1. The errors Ui are assumed to be
 jointly normally distributed with Ui - N(0, ti) and
 E(UiUj) = 0, for i $ j. The system is called incomplete
 if some of the regression coefficients aij are restricted to
 be zero (and there are no other types of restrictions), and
 it is called complete if there are no restrictions. It follows
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 from a result by Wold (1960; see also Malinvaud 1966)

 that the MLE's of the parameters in complete as well as
 in all incomplete systems can be obtained by the method

 of least squares estimation applied to each equation

 separately, regressing variable Zi on all Zj having non-
 zero regression coefficients in the ith equation.

 In order to relate the estimation of equation param-

 eters to the estimation of a covariance matrix, we do not

 regard Zk+1, ..., Z, as fixed but as random variables.
 We assume that Z = (Z1, Z2, .. ., Zp) T follows an
 origin-centered, nondegenerate normal distribution with

 covariance matrix X such that the elements in positions
 (i, j) of X and of its inverse 1-1 are the covariance

 aij and the concentration (see Dempster 1969) aoi, re-
 spectively, of the variables Zi and Zj. Further, we let
 zi = (zil, . . ., zi.)T denote a sample of size n on variable
 Zi so that ZiTZj, the sample inner product of variables Zi
 and Zj, is the element in position (i, j) of the matrix nS,
 where S is a sample covariance matrix with sij = Z,TZj/n.

 If system (2.1) is appended by (p - k) complete re-

 cursive equations in arbitrarily ordered variables Zk+?,
 ., Z, we can write a new recursive system in matrix
 notation as

 AZ = U with U = (U1,., U')T
 and U - N(0, T), (2.2)

 where A is the triangular matrix of regression coefficients
 with elements zero below the diagonal and elements

 unity along the diagonal, T is the diagonal variance ma-
 trix of the errors U(E(UUT) = T), and E(ZZT) = X.

 System (2.1) then corresponds to the first k equations in
 system (2.2); Proposition 1 shows that in this larger- sys-
 tem, the relationships among variables Zk 1, . . ., Z, can
 still be regarded as left unanalyzed, since a complete

 system of recursive equations is just a triangular reduc-
 tion of an unrestricted covariance matrix. To state Prop-

 osition 1, we first need a definition and results (see
 Dempster 1969) for the triangular reduction of a positive
 definite covariance (PDC) matrix. For each PDC ma-
 trix 1, there exists a triangular decomposition B such

 that BMBT = D, where D is a diagonal matrix and B is
 a triangular matrix with elements zero below the diag-
 onal and elements unity along the diagonal. The triangu-
 lar reduction (B, D) can be constructed by a process of

 successive orthogonalization from 1, and it is a unique,
 one-to-one transformation of X, if the order for orthog-
 onalizing X is fixed. Using the Beaton (1964) sweep
 operator (also discussed in Dempster 1969) for this pro-
 cess, we can express the elements of D and B in terms of
 concentrations and covariances. We assume that s is
 swept in the order p, p - 1, ..., 1 or equivalently that
 1-1 is swept in the order 1, 2, ..., p.

 d,, =011.2,. . .,p = 1/af1 dti ?s.i+ p 1/fi .i-1 (2.3)
 dpp=pp 1/S .P-1 ; for 2?i?p-1

 bij = - p/.jj. .. j- 1,j+ p (2.4)
 bp-,,p = - up-p/app, for 1 < i < j < p-1

 bi. = o1i/o11, for 2 < jp (2.5)

 bij = oaij1.-1/.ii.l.i-l, for 2 < i < j < p

 where oij.i+,,. j_l j+,. ..p is the element in position (i, j)
 obtained from sweeping I on rows and columns i + 1,

 ..., j - 1, j + 1, . . ., p, that is, the residual covariance
 of Zi and Zj after the components due to variables
 Zj+1 ...,I Zj-l, Zj+,, ..., Zp have been removed. Sim-
 ilarly, o-ijl-i-1 is the element in position (i, j) after
 sweeping ;-I on rows and columns 1, . . ., i - 1; it is the

 concentration of Zi and Zj in the marginal joiiit distri-
 bution of the variables Zi, Zj+i, .., Z P.

 Proposition 1: The following two statements are

 equivalent:

 1. A system of linear recursive equations (A, T) is

 complete, and
 2. The covariance matrix X of Z is unrestricted.

 If a system (A, T) is complete, then the regression co-
 efficients and their least-squares estimates in the ith
 equation are identical to the elements in the. ith row of the
 triangular decomposition of I and S, respectively, ob-
 tained by successively orthogonalizing I and S in the
 order p, p-1, . . ., 1.

 The proof in the direction (1) to (2) follows by noting
 that (2.2) implies the covariance matrix I = E(ZZT)
 = A-1T(AT)-1. Conversely, set U = BZ; then U - N
 (0, BMBT) with BMBT = D (see Anderson 1958) so
 that U is distributed as required in the specification

 of the recursive system (2.2). Further, Ui = Zi + E7=i+l
 bijZj, and its variance is dii. Thus we can identify aij with
 bij and ti with dii, and no restrictions on X implies no re-
 strictions on A and T. To complete the proof, replace X
 by S and the covariances in (2.4) by their sample equiv-
 alents; we obtain therein the usual expression for the
 least squares coefficients regressing ZA on Zi+i, Z..,p
 except for the necessary change in the sign.

 In incomplete recursive systems the matrix with equa-
 tion parameters A (and the MLE A) is (up to signs) still
 identical to the triangular decomposition of some re-
 stricted covariance matrix X* (and its MLE ?*). How-
 ever, ? does not, in general, coincide with the observed
 covariance matrix S in all positions (i, j) having nonzero
 equation parameters aij. In the following two examples
 that are used to point at two distinct situations, we
 partition ?* (and similarly S) as

 2 all 12 a13 a14

 L ?~(1)* J

 Example 1: For an incomplete system in two equations,

 four variables, and only one zero restriction on a23, we
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 get the matrix of equation parameters A, its MLE A,
 and the MLE 2* (see Appendix) as

 1 a12 al3 a14

 A= 0 1 0 a24
 L O 1 a34

 10 O 0 1

 -1 -812.34/S22.34 -S13.24/S33.24 -S14.23/844.231

 0 1 0 -S24/S44 .

 O 0 1 -S34/S44

 .0 0 0 1

 S22 S24S34/S44 S24

 At Ml* =S33 S34 (2.6)
 844j

 (a12 *H3 14*) (812 813 S14) (S (1))'2 (1)*

 all* = 81 - (S12 S13 S14) (S(1))-l

 E[I - (1)*(S (1))'1] (S12 813 814)T

 The fact to be noted here is that with one zero restriction
 on the equation parameters, five elements in the MLE
 2* deviate from elements in the observed covariance.
 matrix (unless by mere accident S23 is identical to S24S34/
 S44).

 Example 2: For an incomplete system of two equations,
 four variables, and two zero restrictions on al2 and on
 a23, we get A, its MLE A, and the MLE ^* as

 1 0 a13 a14l

 O 1 0 a24

 0 0 1 a34
 A 0 0 0 1J

 1 0 -S13.4/S33.4 -S143/S44.3

 A o 1 o - S24/S44
 O 8 1 -S34/844

 O O 01

 s[1 -(413623* + 414S24) S13 S141

 2* = S22 S24S34/s44 S24 . (2.7)
 S33 S34

 1.. S44

 In this example the two zero restrictions on the equation
 parameters imply that the MLE 2* deviates from the
 observed covariance matrix in exactly the two positions
 (i, j) that correspond to the two zero equation param-
 eters aij.

 In the remaining part of this section, we show (a) that
 a reducible zero pattern in the equation parameters is a
 necessary and sufficient condition under which the zero
 pattern in equation parameters is identical to the zero
 pattern in the inverse covariance matrix, so that (b) the

 MLE t* coincides with S in all positions (i, j) that
 correspond to nonzero equation parameters.

 Let I = { (i, j) I1 < i < j < p}, and let (l,...,k) and
 B (1, .., k) be the submatrices of a pdc matrix I and its tri-
 angular decomposition B, which remain after deleting
 rows and columns 1, 2, ..., k.

 Definition 1: We call I C I reducible if for each
 (i, j) E I and h = 1, ..., i- 1, we have (h, i) C I or
 (h, j) C I or both.

 Definition 2: For I C 7 we define a matrix M to have
 zero structure with respect to I if all elements of M are
 zero exactly in positions (i, j) C I. For convenience, we
 term a reducible zero pattern any case in which a matrix M
 has zero structure with respect to a reducible I.

 Now, we can state

 Proposition 2: For every reducible I C 7 and every
 k C {O, 1, ..., p - 2}, the following statements are
 equivalent:

 1. B(1 ... k) has zero structure with respect to I(1 ...,
 and

 2. (X ... kj' has zero structure with respect to
 I(1,...,k), where I(o) = I and I(k,...,k) is ob-
 tained from I by deleting all pairs (i, j) with
 iC {1, ...,k}.

 We prove first that (1) implies (2). Since 1-
 = BT(BBT)-1B = BTD-1B, we can write the elements
 of '-1 explicitly in terms of the elements of B and D as

 l1=l/dii ; 01j= b1j/d11
 j-1

 ajj= lldjj+ E bhj2/dhh, for 2<j<p; (2.8)
 h=1

 i-i

 yj= bij/dii+ E bhibhj/dhh, for 2<i<j<p
 h=1

 For each PDC X it is known that all variances oii and
 all residual variances dii are nonzero. Thus if B has a re-
 ducible zero pattern, then for each (i, j) with bij = 0,
 either bhi = 0 or bhj = 0 (or both) for all h < i, so that
 each term in the sum of products defining ai' in (2.8) is
 zero, which completes the proof in the one direction for
 k = 0. For k > 0 note that the element in position (i -k,
 j -k) of (X( ... k))' is a . ii k, the concentration of
 Zi and Zj in the joint marginal distribution of Zk+l,
 Zp, which may from (2.8) be written as

 i-1

 0ij.,...k=bij/dii + E? bhibhjl/dhh
 h=k+l

 for 2 < i < j < p (2.9)

 Since I(1,...,k) obtained from a reducible I is reducible,
 the same arguments as those presented for B and I apply
 to B(l ... k) and 1(l,..k), and the proof in the direction
 (1) to (2) is complete.

 Conversely, let N-' have a reducible zero pattern and
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 note from (2.3) and (2.5) that bij = di.oii.l-i-l so that
 we may for 2 < i < j < p rewrite (2.8):

 i-I

 eri.l . i_ = rij_ bhibhjld hh X (2.10)
 h=1

 where bhibhj/dhh = 0.hi-1,...h-10.hji.1,..h-ldhh is the amount
 subtracted from element in position (i, j) at step h of

 sweeping .-' in the order 1, ..., i - 1. From (2.8) we

 know for each (1, j) E I that oli = 0 implies bij = 0.
 Further, a reducible zero pattern in .-' implies for

 (i, j) E I(1) that a"alidil = blib1j/dll = 0, since (1, i)
 and/or (1, j) is contained in I so that also aii l = 0;

 it implies for (i, j) E I(1,2) that o2i.o2i 1d22 = b2ib2j/d22
 = 0, since (2, i) and/or (2, j) is contained in I ( I(1) so
 that aij12 = 0. Continuing in this way, we know for

 (iy j) E I(L .-.i-2) that bi_,,ibi_l, j/di_1,i_1 = 0, since
 (i - 1, i) and/or (i - 1, j) is contained in I ( 1(1)

 n ... n I(1,.. i-2) so that o.iij.-i-I = 0. Thus
 if .-' has a reducible zero pattern, then for each (i, j)

 E I, we get ai- = LiTjl = ii 12 =. = a-ij-1--i-1 = b
 = 0. This shows first that (2) implies (1) for k = 0 and

 second that (2 ;.k))1 has zero structure with respect

 to I(1,...,k). The proof for k > 0 then follows from rewrit-
 ing (2.9) in the same manner as (2.10) from (2.8) and by
 noting that all terms in the obtained sum have just

 proved to be zero for (i, j) & k).

 In proposition 3 we relate incomplete recursive equa-

 tions (A, T), where A has a reducible zero pattern, to
 covariance selection. Note again that the result applies to
 all systems (2.1) with k' or more equations, where k' is
 such that for all i > k' there is no zero pattern in the

 marginal distribution of Zi+?, . .., Zp, that is, I(1,.... )
 = 0. In that case we can supplement (2.1) by a triangular
 decomposition of the unrestricted covariance matrix of

 the variables Zk'+l, . .., Z, to obtain the last rows of A
 (see Proposition 1). A reducible zero pattern in the re-
 gression coefficients (in (2.1) and in (2.2)) means that

 for each aij = 0 it follows that ahiahi = O for h = 1,
 ...,i- 1.

 Covariance selection (Dempster 1972) provides the
 theory for getting the MLE 2* for the covariance struc-
 ture V* of a multivariate normal distribution whenever
 (s*)-1 has zero structure with respect to some I C 7.
 Dempster has shown that 2* (?*) can be derived
 uniquely from the unrestricted matrix I(S) such that
 ofj = oij ( A = sij) for all (i, j) dj I and for i =j.

 Proposition 3: For every reducible I C I and every
 pair ((A, T), .*), the following two statements are
 equivalent:

 1. A has zero structure with respect to I, and
 2. (s*ftl has zero structure with respect to I.

 If A and .*-' have zero structure with respect to a re-
 ducible I, then the regression coefficients and their least
 squares estimates in the ith equation are identical to the

 elements in the ith row of the triangular decomposition

 of V and S*, respectively, obtained by successively
 orthogonalizing V and S* in the order p, p - 1, ..., 1.

 To see that (1) implies (2), note from (2.2) that we can
 define *-1 = ATT-1A, which is of the same form as
 (2.8). Thus if A has a reducible zero pattern, then we get

 for each (i, j) with a,j = 0 that a*ij = 0.
 Conversely, we know from Proposition 2 that the tri-

 angular decomposition B* of V* has the same zero pat-
 tern as (;*)-1 if I is reducible. Thus for a proof in the
 direction (2) to (1), we only need to show that the nega-

 tive values of bij* are identical to the regression coeffici-
 ents in the regression of Z, on Zj for (i, j) ( I. The inner
 product of row t of (1 .... )*_1 with row j of (1. j)* is
 known to be zero for all j $ L. By using (2.5) we can
 write these inner products as

 p

 i=* - _ bikk = - E bik*akEt
 k^=i+ I (i , k) 4I

 for t=i+1,...,p . (2.11)

 The second equality follows from Proposition 2, since

 bik*O= for all (i, k) E I, if I is reducible. Further, since
 aij*= oij for (i, j) (E I and since by the reducibility of I
 we know that (i, f) (E I and (i, k) $ I implies
 (kl, ) E I, for i < k < f, we get

 ail = - E bik*oke for (i, f) E I * (2.12)
 (i,k) EI

 But (2.12) is just the parameter equivalent of the normal
 equations satisfied by the negative values of least squares

 coefficients in regressing Zi on Zj for (i, j) (E I; we have
 established the claimed identity if I is reducible. The
 same argument applies if V is replaced by its sample

 equivalent ?*, hence the proof is complete.

 3. COVARIANCE SELECTION

 We know from the previous section that a covariance
 selection model with reducible zero pattern in the con-
 centration matrix can equivalently be described by a
 linear recursive system (A, T) that has the same zero
 pattern for the regression coefficients, and vice versa.
 A concentration is known to relate to the partial correla-
 tion coefficient of a variable pair given all the remaining
 variables as

 Pij.1 ..i-,i--+1 .... j-1+1.p =- ij/(iioji)k (3.1)

 Therefore, a zero concentration for a pdc Y is equivalent
 to conditional independence of this pair given the p - 2
 other variables, which has been termed zero partial as-
 sociation (ZPA), elsewhere (Birch 1964; Wermuth
 1976a, b).

 We do not know yet which subclass of covariance se-
 lection models can be characterized by a reducible zero
 pattern in the concentrations. Therefore, we want to
 show the following in this section:

 1. Every incomplete system (A, T) with reducible

 zero pattern can equivalently be described by a de-
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 composable or multiplicative covariance selection
 model, in which decomposability means that the
 joint probability density function factors into the
 product of certain marginal probability density
 functions.

 2. Every decomposable covariance selection model
 can, after a proper reordering of the variables, be
 described by an incomplete system (A, T) with
 reducible zero pattern (Propositions 4 and 5).

 3. The decomposition rule can easily be derived from
 a given reducible zero pattern (Proposition 6).

 4. A reducible zero pattern facilitates computation
 of the MLE's of the parameters in a covariance se-
 lection model in the sense that they become closed
 form and can be derived from least squares esti-
 mates in the corresponding incomplete system
 (Proposition 7).

 3.1 Multiplicative Models

 Multiplicative or decomposable models have been
 studied extensively for contingency tables (Goodman
 1970; Bishop 1971; Haberman 1974; Sundberg 1975;
 Darroch, Lauritzen and Speed, 1980) and to some extent
 for covariance selection models (Wermuth 1976a, b,
 Speed 1976, 1978). We restate Sundberg's criterion for
 decomposability as the definition of a multiplicative
 model.

 Let No = t1, ..., p} and let {N1, ..., NT} be a class
 of subsets of No such that no member Nt of the class is a
 subset of any other member of the class. {N,} denotes
 indices of those subgroups of Z = (Z1, ..., Z,) that
 jointly generate the distribution of Z.

 Definition 3: A model is decomposable if and only if the
 variables can be ordered in such a way that each Nt con-
 tained in the class I Nt } is composed of one set of elements
 Vt, which are missing in all Ns for s > t and one set of
 elements Wt = Nt (U8,>t N8) that is contained in
 some N, for r > t (Sundberg 1975).

 For instance, {Nt3 = { {1, 4}, { 1, 3, 5, 6}, {2, 3, 5}} is
 the generating class of a multiplicative model, since we
 can find V1 = {4}, W1 = {1}, V2 = {1, 6}, W2 = {3, 5},

 V3 = {2, 3, 5}, but {NtI = { {1, 3}, {1, 4}, {2, 3}, {2, 4} }
 does not satisfy Sundberg's criterion.

 We make use of the fact that there are dual character-
 izations of each multiplicative model, one in terms of its
 generating class {N t}, the other in terms of a list I C I
 with (i, j) C I if and only if {ij} Nt for all Nt, where
 I denotes those pairs in the given model that have ZPA.
 A simple rule has been given previously (Wermuth
 1976b) to derive INt I from any I C I or to decide that I
 does not characterize a multiplicative model.

 Proposition 4: If I C I is the list of ZPAs of a covari-
 ance selection model, then the following statements are
 equivalent:

 1. The covariance selection model is a multiplicative
 model;

 2. There is no subset of n > 4 indices such that exactly
 n pairs are not contained in I, and these pairs can

 be written as (1, 2), (2, 3), ... (i-1, i),
 (n -1, n), (1, n) ;

 3. There is no subset of n > 4 indices such that ex-

 actly n(n - 3)/2 pairs are contained in I and such
 that each ordering of the indices leads to (1, k),

 (k -1 y ), for k = 3, ... , n -1 and t = k + 1,y
 ..., n; and

 4. There is an ordering of the variables such that I is
 reducible.

 Before we prove this proposition, we give an example.
 With the purpose of simplification, we use the index

 groups in {Nt1 separated by dashes as the notation of a
 multiplicative model. Then, model 15/24/345 has as

 generating class Nt = II1, 5}, t2, 4} 83, 4, 5}}. The
 variables are ordered to satisfy Sundberg's criterion. The
 index pairs that do not appear jointly in any of the index
 groups of the model notation give the list of ZPAs:
 I = { (1, 2), (1, 3), (1, 4), (2, 3), (2, 5) }. I is reducible.
 For covariance selection, 15/24/345 specifies a model in
 which the density f(Z1, Z2, Z3, Z4, Z5) of Z is generated
 from the marginal joint densities of (Z1, Z5), (Z2, Z4),
 and (Z3, Z4, Z5) as

 f(ZI, Z2, Z3, Z4, Z5)

 fl,5(Z1, Z5) f2,4(Z2, Z4)

 f5(Z5) f4(Z4) (3.2)
 = f1(Z IZ5) f2(Z2 IZ4) f3,45 (Z3, Z4, ZO5

 From the factorization rule for densities (e.g., Wilks

 1962),

 p-1

 f (Zl, ... ., Zp) = (1 fi (Zi I Zi+ly ... ., Zp)) f p(Z p); (3.3)
 i=I

 it is known that the right-hand side of (3.2) in fact gene-

 rates a five-dimensional distribution, if fm (Z1 I ZO)
 = fl(ZlIZ2, Z3, Z4, Z5) and f2(Z21Z4) = f2(Z2IZ3,
 Z4, Z5). From the proof of Proposition 3, we know this
 holds for model 15/24/345, since its concentration matrix
 has zero structure with respect to the reducible I, speci-
 fied previously as list of pairs with ZPA. The system of
 linear recursive equations corresponding to the given
 ordering of the variables is

 Z1 + a16Z5 = U1

 Z2 + a24Z4 = U2

 Z3 + a34Z4 + a35Z6 = U3. (3.5)

 For the proof of Proposition 4, note that the pairs
 listed in statement (2) have been called a closed loop by
 Bishop, Fienberg, and Holland (1975) and an n-cycle by
 Lauritzen, Speed, and Vijayan (1976); a proof of the
 equivalence of (1) and (2) can be found in the latter.
 Statement (3) describes the pairs in the complementary

 set to the subset of (2) pairs that satisfy (2) so that (2)
 and (3) are equivalent. Whenever there is a subset as
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 described in (3) contained in I, then each ordering of the

 indices gives three pairs: (2, n) C I, but (1, 2) E I and
 (1, n) Ef I and hence I cannot be reducible, which proves
 that (4) implies (3). To show that (1) implies (4), we
 again use Sundberg's criterion (Definition 3). A different
 first proof for this last assertion is due to Speed (1978).

 Let Nt1 be ordered to satisfy Sundberg's criterion,
 then we can rewrite the list I of ZPAs as

 I= {(i,j)IiC V, jCCt},
 with Ct = (No - (UJ8<t V8)) - Wt. (3.6)

 For h C Vt and k C V, r > t, we need to prove that
 (k, j) C I implies (h, k) C I and/or (h, j) C I. Note
 that by definition Vtn V, = 0, and either Wtn Nr = 0
 or (Wt n N,) C Nr. If this intersection is empty, then
 it must be true that k C Ct, and hence (k, j) E I
 =X (h, k) E I. If the intersection Wt C\ Nr is a subset of
 Nr, then it follows that Cr C Ct, and hence (k, j) C I
 =X (h, j) C I. Thus if the indices for the variables have

 been reordered so that Sundberg's criterion is satisfied,
 then the concentration matrix has a reducible zero pat-
 tern. This completes the proof, and we are prepared to
 relate linear recursive systems (A, T) as defined in (2.2)
 to multiplicative models.

 Proposition 5: A covariance selection model is multi-

 plicative (decomposable) if and only if the variables can
 be reordered to imply an incomplete system of recursive
 equations in which the regression coefficients have the
 same reducible zero pattern as the concentration matrix.

 The proof follows by using the equivalence of (1) and
 (4) in Proposition 5 and by applying Proposition 3.

 Further, from any reducible set I C 7, we can derive
 the corresponding incomplete recursive equations as
 well as the generating class of the corresponding multi-
 plicative model by using Proposition 6. Let k' be such
 that I(1,.;.,k') = 0 for all i > k'.

 Proposition 6: For every reducible I C I such that A
 (respectivelv (Z*)1) has zero structure with respect to I

 1. The index set of the variables in the ith equation of
 the system (A, T) is

 Mi={i}JUJjfj>i and (i, j)dEI}, for i<k' (3.7)
 = {i, i+1, .I. ., p}, for i>k'

 2. The generating class {Nt1 of the multiplicative
 model with covariance matrix ZV is obtained by de-
 leting all members from the class { M1, ..., M*',
 that are subsets of another member of this class.

 For a proof, note that Mi just lists indices of variable
 pairs from (Zi, . .., Zp) that are not affected by the zero
 restrictions, and the class derived in (2) implies the cor-
 rect list I of ZPAs and satisfies Sundberg's criterion for
 decomposability.

 3.2 Closed-Form MLE for Decomposable Covariance
 Matrices

 In multiplicative models for contingency tables, the
 MLE's have been given in closed form (Goodman 1970).
 It has been asserted (Sundberg 1975) that the same can
 be done for all members of the exponential family. In the
 case of covariance selection, MLE's have been stated
 explicitly for all multiplicative models for four variables
 (Wermuth 1976a). Now, we can give the following result
 for an arbitrary number of variables.

 Definition 4: A covariance matrix is decomposable if it
 gives the covariance structure of a multiplicative model in
 covariance selection.

 Proposition 7: If the variables of a decomposable co-
 variance matrix Z have been reordered so that '-1 has
 zero structure with respect to a reducible I, then

 1. The MLE ? can be built up in the order p, p - 1,
 ...,1 from

 ffij Zi zj/n for (i, j)E1.-I and i= (3.8)
 =- - %skaik , for (i, j) E I

 (i,k) XI

 2. If in addition no member of {M1, ..., Mkw} is a
 subset of another member in this class and

 (UiOJ (Mi (-\ Mj)) C Mk', we get

 nij =ziTZj for (i, j) E I and i= j

 - - E2 dikZiTZj
 (i,k) XI

 for (i, j) E I and j 2 k'; (3.9)

 = E &dikdjZk Tz
 (i, k) XI, (j,) 4r

 for (i, j) E I and j < k'

 where Mi and k' have been defined for the corresponding
 incomplete system (A, T) for proposition 6 and dik are
 the least squares estimates in the ith equation of this
 system.

 For the proof, note from Dempster's results that

 &ij = 0 for (i, j) E I and aij = z,Tzj/n for (i, j) (E I
 and i = j define the unique MLE 2 of L. But we know
 from the proof of Proposition 3, especially from (2.11),
 that di as defined in (3.8) implies &i' = 0 for (i, j) E I,
 hence the proof of (1) is complete. Further, if the condi-

 tions in (2) are satisfied we know for (i, k) E I and
 i 2 k' that (k, j) E I so that the elements in position
 (k, j) of nw have to coincide with the observed inner

 products ZkTZj. Similarly, for j < k' we know that
 (i, k) E I and (j, 4) E I define for a reducible I the
 pairs (k, t) with the property {k, 4} C (Min Mj)
 C Mk,, and hence by the definition of Mk', (k, t) is not
 contained in I. This completes the proof.

 In order to illustrate our results, we list in Table 1 all
 26 multiplicative models for five variables that differ-in
 the constellation of their ZPAs. Thereby, we used the
 following reordering rule to achieve reducibility of I:
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 1. Multiplicative Models for Five Variables

 Model
 Number Number of ZPA'sa Model Notation

 1 1 1345/2345
 2 2 145/2345
 3 3 15/2345
 4 3 145/245/345
 5 3 145/235/345
 6 4 1/2345
 7 4 15/245/345
 8 4 15/234/345
 9 5 1/245/345
 10 5 15/25/345
 1 1 5 15/24/345
 12 6 1/25/345
 13 6 15/25/35/45
 14 6 15/25/34/45
 15 7 1/2/345
 16 7 1/25/35/45
 17 7 1/25/34/45
 18 8 1/2/35/45
 19 9 1/2/3/45
 20 10 1/2/3/4/5
 21 3 125/345
 22 4 12/25/345
 23 5 13/24/35/45
 24 5 12/345
 25 6 12/35/45
 26 7 1/23/45

 a Zero partial association.

 Reordering rule: For any list L = I C I of ZPAs of a
 decomposable covariance matrix, repeat the following
 two steps in the order 1 = 1, 2, . . ., p:

 1. Label with "1" the variable that is contained most
 frequently in L. If there are ties, make an arbitrary
 choice.

 2. Define a new set L by deleting from the old set L
 all pairs (i, j) with i = 1 or j = 1.

 All models in Table 1 have a reducible list of ZPAs.
 The first 20 models all satisfy the conditions of statement
 (2) in Proposition 7. Thus each term in the model nota-
 tion N, can also be viewed as a list Mi of variables in the
 ith equation of the corresponding incomplete system,
 and in addition all pairwise intersection of the terms in
 the model notation are contained in the last term of the
 model notation. These conditions will be satisfied if for
 any two pairs (i, j) ($ I and (k, 1) XJ I for 1 < i < j
 < k < I < p, it never happens that the following four
 pairs are all contained in I: (i, k), (i, 1), (j, k), and (j, 1).
 Since this does not hold in any one of the last six models
 in Table 1, the MLE for their decomposable covariance
 matrix can only be computed by using the recursive de
 finition (3.8).

 So far, iterative methods have been proposed (Demp-
 ster 1973, Wermuth and Scheidt 1977) for computing
 the MLE of the covariance structure in a covariance se-
 lection model. Now, we have given a recursive closed
 form (3.8) for the large subclass of decomposable covari-
 ance matrices and a nonrecursive closed form (3.9) for
 decomposable covariance matrices that satisfy some
 additional restrictions. In the next section we show how

 these are related to the path analysis rules for computing
 so-called implied correlations.

 4. PATH ANALYSIS

 The geneticist Sewell Wright (1923, 1934) proposed
 path analysis as a "method for working out the logical
 consequences of a hypothesis as to the causal relations in
 a system of correlated variables" (Wright 1923, p. 254).
 Some of these systems can be presented as a diagram with
 p points, each of which denotes an observable variable.

 Definition 5: A path diagram for a recursive system
 with uncorrelated errors consists of p points such that
 each pair of points is either unconnected or connected by
 a two-headed arrow or by a one-headed arrow.

 The linear dependency of variable Zi from variable
 Zj is called a direct path and is drawn as a one-headed
 arrow coming from j and pointing at i. An unanalyzed
 correlation between Zi and Zj is shown as a two-headed
 arrow between i and j, and a missing path between two
 points is to characterize an indirect dependency.

 For a given system of k linear recursive equations
 (2.1), a path diagram can easily be drawn: For each pair
 (i, j) E I, exactly one of the following three possibilities
 holds: (a) i > k, implying a two-headed arrow between
 i and j; (b) aij X 0, implying a one-headed arrow from
 j pointing at i; (c) aij = 0, implying no direct connecting
 line between i and j.

 Proposition 8: A path diagram for Z - N (0, 1) im-
 plies a complete system of k < p linear recursive equa-
 tions (2.1) if the following two statements are satisfied:

 1. There is a set { k + 1, ..., p} ofp - k points such
 that each pair (i, j) from this set with i $ j is con-
 nected by a two-headed arrow;

 2. There are k points at which one-headed arrows are
 directed, and these points can be ordered such that
 for each i C {1, . . ., k} the p -i arrows pointing
 atibegin at jfor j = i + 1, ..., p.

 Proposition 8 follows from Definitions 5 and (2.1) and
 from the fact (cf. proof of Proposition 1) that the defined
 system has uncorrelated errors. As a consequence, our
 results in Sections 2 and 3 apply to this type of path anal-
 ysis models. In particular, they imply the definition of a
 reducible zero pattern for path analysis.

 Definition 6: A path diagram has a reducible zero pat-
 tern if (1) replacing all missing paths by one-headed
 arrows leads to a complete recursive system (2.1) and
 (2) the pairs with missing paths (labeled in reference to
 a complete recursive system) define a reducible set I
 (Definition 1).

 Wright presented rules for computing so-called path
 coefficients &ij and implied correlations rij*, from ob-
 servred correlation coefficients ri,. Furthermore, he had
 suggested concluding that the model assumptions are
 plausible if the deviations between observed and im-

This content downloaded from 152.66.83.10 on Tue, 22 Aug 2017 09:18:41 UTC
All use subject to http://about.jstor.org/terms



 970 Journal of the American Statistical Association, December 1980

 plied correlations are small. We state the rules in our
 notation:

 rij = (4.1)
 k

 with dik as given from (4.1), rij* = ai ikrkj* (4.2)
 k

 where k denotes all points in the corresponding path
 diagram from which one-headed arrows are leading to
 point i. Equation (4.1) is known (Tukey 1954) to give

 the normal equations satisfied by least squares estimates

 of standardized regression coefficients aij. A standardized
 regression coefficient is defined as a usual regression

 coefficient for standardized variables Zi* = Zi/aiilJ
 and the covariance of Zi* and Zj* is just the correlation
 coefficient pij. Equation (4.2) has been called "an
 informal device with intuitive appeal" (Land 1973,
 p. 46). We have given an example (2.6) in which (4.2)
 in fact does not define the MLE of the correlation matrix,
 since for instance for the element in position (1, 4) we

 obtained from (4.2) and (4.1): rl4* = 4I=2 d1krk4
 = r14, but the MLE P14 = al4 /Gll 844) $ r14. But,
 we also know from (3.8) a condition under which (4.2)
 always gives the MLE of a correlation matrix and has a
 theoretical justification from the theory of covariance
 selection.

 Proposition 9: A sufficient condition that Wright's rule
 for computing implied correlations defines the MLE of
 a correlation matrix is that the path diagram has a re-
 ducible zero pattern and that the order for applying the
 rule is i = p -1, p -2, . . ., 1. (The MLE then devi-
 ates from the observed correlation matrix only in posi-
 tions corresponding to missing paths.)

 For the proof, note first that correlations and standard-
 ized regression coefficients can be obtained by the fol-
 lowing one-to-one transformations from the covariance
 matrix X, the concentration matrix '-1, and the matrix A
 of unstandardized coefficients:

 Pij = oij(aiiajj)-2 pij = aii(aiiuuj) 2

 aij = aij,jj 1i y for 1< i < j < p; (4.3)

 and similarly for observed correlations, since r2j
 - (zi .TZ) ((z1Tzi) (z1zj))2-. Then the proof follows from
 Definition 6, (3.8), and the invariance property of MLE

 under one-to-one transformations (Anderson 1958).

 Furthermore, if the path diagram has a reducible zero
 pattern, then the following likelihood-ratio (LR) test
 statistic for the hypothesis of r zero concentrations
 (Dempster 1972) is a measure for the deviations between
 implied and observed correlations. Let R denote the ob-
 served correlation matrix and P the MLE under the as-
 sumption that P-' has zero structure with respect to the
 reducible set I'V I containing T elements, then

 LR -x = n(log detP -log detR) (4.4)

 can-for large sample sizes n-be regarded as roughly
 X2 distributed on r degrees of freedom, and P and R are
 identical except for the elements in positions (i, j) e I;
 those may be computed from (4.2).

 5. A SEARCH METHOD FOR FITTING
 RECURSIVE EQUATIONS

 Suppose that a complete system of k < p variables
 (2.1) is given. Then one can ask which of the regression
 coefficients can simultaneously be set to zero such that
 the obtained incomplete system of recursive equations is
 still compatible with the observations? After a small
 modification, model search among multiplicative models
 (Wermuth 1976b) can provide an answer to this ques-
 tion: The variables in the set { Zk, ..., Z,p have to be
 specified as those variable whose correlations are not to
 be accounted for by other relations. The effect of such a
 specification is that only variable pairs (Zi, Zj) for
 i Ef, ... ., k'} with k'=k-1 and for j C {i + 1,
 ..., p can have ZPA (cf. Section 3), whereas the esti-
 mated correlations for all variable pairs from { Zk, . . *, Z, I
 have to coincide with the observed correlation coefficients
 (cf. Propositions 7 and 9). Then we know from Proposi-
 tion 6 how to obtain the incomplete recursive equations
 that correspond to any well-fitting multiplicative model
 with reducible list of ZPAs.

 Model search among multiplicative models is used to
 find a set of variable pairs that can be assumed to have
 ZPA. In covariance selection an appropriate measure for
 ZPA is the partial correlation coefficient given all p - 2
 remaining variables (3.1). Many pairs with ZPA are
 considered to be desirable because they reduce the num-
 ber of interdependent variables and therefore tend to
 simplify the interpretation of a multivariate correlation
 structure. The search procedure has been programmed
 (Wermuth, Wehner, and Gonner 1976) and applied to
 subject matter problems in medicine (Wermuth 1978)
 and in psychology (Wermuth, Hodapp, and Weyer 1976),
 Likelihood-ratio statistics as defined in (4.4) are used to
 judge the fit of the model assumptions. A theoretical
 justification for the search procedure is contained in
 Sundberg's (1975) results about the partitioning of
 tests.

 We illustrate the modified search with a set of socio-
 logical data (Goldberg 1971). Goldberg's "analysis is
 concerned with making inferences about the pattern of
 causal relationships among six variables: father's socio-
 logical characteristics (FSC); father's party identifica-
 tion (FPI); respondent's sociological characteristics
 (RSC); respondent's party identification (RPI); re-
 spondent's partisan attitudes (RPA); and respondent's
 vote for President in 1956 (RV)" (Goldberg 1971, pp.
 35-36). We have numbered the variables in reverse
 order and display in Table 2 the observed simple correla-
 tions _ x I, as well as the observed measures for ZPA:
 riJ.kl78 = -rii/(riirii)2. We are only interested in equa-
 tions for the first four variables, therefore we specify
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 2. Observed Correlations Among Variables

 on Voting Behavior

 Variables 1 2 3 4 5 6

 1. RV .742 .722 .271 .466 .282
 2. RPA .469 .710 .289 .453 .318
 3. RPI .365 .328 .411 .603 .400
 4. RSC -.021 -.053 .144 .420 .808
 5. FPI .054 .003 .388 .024 .454
 6. FSC -.019 .081 -.026 .755 .173

 NOTE: Upper half: r,; lower half: rik1,; n = 645.

 Z4 (= RSC) Z5 (= FPI), and Z6 = (FSC) as variables
 whose correlations are to stay fixed. It should be noted

 that the assumption of multivariate normality is at best
 crudely approximated by these data.

 The search procedure applied to the (2)-(3) pairs

 leads to the results displayed in Table 3. At step r of the
 search, a statistic with 1 df is computed for each pair
 available for selection at this step. These are test statis-

 tics for the hypotheses that pair (Zr, Zj) has ZPA given
 that r - 1 pairs-selected at previous steps-already
 have ZPA. The pair with the smallest statistic is selected,

 then the likelihood-ratio statistic (4.4) for the test of r
 ZPAs is simply the sum of the r-selected statistics on 1

 df. In analogy to tests of hypotheses, the fit of a model is
 judged to be poor if the fractile value of a statistic falls

 below .05 or .01. Thus, for the given set of data, the fit
 starts to be poor at step 8, whereas the model with

 I = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 6)} is
 judged to be compatible with the observations. This set
 I C I is reducible so that we can use Proposition 6 to get
 model 123/345/456 as a well-fitting multiplicative model
 and to obtain as well-fitting incomplete recursive system:

 Zl+al2Z2+al3Z3 = U1

 Z2+ a23Z3 = U2

 Z3+a34Z4+a35Z5 = U3

 Z4+a45Z5+a46Z6= U4

 The interpretation of the multiplicative model is the fol-
 lowing: Variables 1 and 2 jointly are conditionally inde-

 3. Model Search Results

 Selected Test Test
 Step Pair Statistic Fractile Statistic Fractile
 r (i,j) with 1 dfa value with r df value

 1 (2,5) .005 .94 .005 .94
 2 (2,4) 1.802 .18 1.807 .41
 3 (1,4) 1.775 .18 3.582 .31
 4 (1,5) 2.427 .12 6.009 .20
 5 (1,6) 1.049 .30 7.058 .22
 6 (2,6) 1.792 .18 8.850 .18
 7 (3,6) .206 .65 9.056 .25
 8 (3,4) 31.370 .00 40.426 .00
 9 (2,3) 98.156 .00 138.582 .00
 10 (3,5) 291.503 .00 430.085 .00
 11 (1,3) 475.138 .00 905.223 .00
 12 (1 ,2) 515.846 .00 1421.069 .00

 aDegrees of freedom.

 pendent of variables 4, 5, and 6 jointly, given variable 3;

 and variable 3 is conditionally independent of variable
 6, given variables 4 and 5. This is to mean the following:

 1. For voter groups that are homogeneous with respect

 to party identification (variable 3), knowledge of the
 sociological characteristics RSC, FPI, and PSC (vari-
 ables 4, 5, 6) does not help to predict the vote or the
 partisan attitude prior to the election (variables 1 and 2).

 2. For voter groups that are homogeneous with respect

 to the respondent's sociological characteristics and the
 father's party identification (variables 4 and 5), the soci-

 ological characteristics of the father (variable 6) do not
 help to predict the respondent's party identification

 (variable 3).

 This correlation structure can equivalently be de-

 scribed by the system of incomplete recursive equa-
 tions given in (5.1).

 Although we discussed the step from interdependencies
 of associations to dependencies and vice versa, we have
 not touched the problems connected with the step from

 dependencies to causation. Instead, we refer the reader
 to Cochran's (1965) discussion of difficulties connected

 with observational studies on human populations.

 APPENDIX-PROOFS FOR (2.6) AND (2.7)

 Since

 f1,2,3,4(Z1, Z2, Z3, Z4)

 = f1(ZlIZ2, Z3, Z4)f2,3,4(Z2, Z3, Z4),

 the maximization of the likelihood function for the left-

 hand side can be split into two independent maximiza-
 tions, as long as restrictions do not affect both functions
 on the right-hand side simultaneously. Applying the nota-
 tion of (2.2) to (2.9), we can write the resulting ?-1 as

 &11 412&11 413&11 414&11

 &22.14+.422&11 &23.14+d124t3&11 &24.14+.12414&11
 >;-1= * (A.1)

 &88.1 +.di32&11 &84.1 +413414&11

 L ~~~~~~~~~~&44.1 +d142&11j

 From (A.1) we obtain with the help of the sweep opera-
 tor (SWP):

 swp (01-1 -l/0~1 412 413 414 1 A2 SWP(i)2-1 = [ (2w) 42 1 (A.)

 and-? = SWP(1, 2, 3, 4) 2-1 as

 r-1/&11-(dl2 4l3 l4):t(l)(dl2 l3 l4)T (d12 413 14)t(1)1
 _t=

 (A.3)

 and from these we can immediately write down the MLE
 for the case with no restrictions (a), one restriction

 a23 = 0 (b), and two restrictions a12 = a2 - 0 (c).
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 Case a: If there are no restrictions at all, it is known
 that

 (cI12 413 414) =-(812 813 814) (S(1)) ',

 -(s12 813 814) (S(1))'(8 12 813 814)T and (1) = (1)

 so that (A.3) gives 2 = S as it should.

 Case b: If the only restriction is a23 = U23.4 = O, then

 (612 613 614) and 1/all are unrestricted as under Case a, but

 822 824834/844 8241

 ?(1) = 833 834

 i S~~~~44,

 l/822.4 0 -814/844822.4

 (2(1))1 = 1/833.4 -834/844833.4

 1/844.3- 82428442/822.4

 as is known from covariance selection (cf. Wermuth
 1976a). Hence the MLE given in (2.6) follows from sub-

 stitution in (A.3).
 Case c: If there are two restrictions and these are

 a23 = 023.4 = 0 and a12 = a12.34 = 0, then w(1) is as
 given in Case b, but &l2 = 0 and

 (413 414) =- (813 814) (S(l,2))1'

 1/6" = Sii- (813 814) (S(1,2))-'(813 814)T

 Substituting these in (A.3) gives the MLE in (2.7).

 [Received January 1978. Revised January 1980.]
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