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 Summary. The paper examines the effect of marginalizing over a possibly unobserved back-
 ground variable on the conditional relation between a response and an explanatory variable. In
 particular it is shown that some conclusions derived from least squares regression theory apply
 in general to testing independence for arbitrary distributions. It is also shown that the general
 condition of independence of the explanatory variable and the background ensures that mono-
 tonicity of dependence is preserved after marginalization. Relations with effect reversal and with
 collapsibility are sketched.
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 1. Introduction

 In many contexts the following issue arises. We have, in the simplest case, three random vari-
 ables, Y, X and W, and wish to study the dependence of Y on X given W, i.e. we are interested
 in the conditional density fylx,w(ylx, w), in particular as a function of x for arbitrary w. We
 may, however, marginalize over W, i.e. consider fix (ylx), either for simplification or because
 W is not observed. For example, in a randomized trial, X is the treatment and W a background
 variable. In an observational study of the effect of an exposure X on a response Y appropriate
 adjustment for potential confounders W would commonly be made. If in fact W is not observed,
 the possible effect on the form of the conditional density must be considered. In many applica-
 tions there would be other observed variables that are conditioned on throughout but there is
 no need to show these explicitly in our notation.

 2. Linear system

 We denote the least squares linear regression coefficient of Y on X adjusting for W by 3yx.w
 and the total regression coefficient obtained by marginalizing over W by 3yx. Then (Cochran,
 1938)

 /Yx = /Yx.w + yw.x/xw,

 the two terms on the right-hand side corresponding to the paths from X to Y in Fig. 1(a). It

 follows that /3x = /Yx.w, i.e. the linear dependence of Y on X is unaltered in slope, if and only
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 Y X W Y X W Y X W

 (a) (b) (c)

 Fig. 1. Simple graphs of relations between response Y, explanatory variable X, in the presence of possi-
 bly unobserved variable W (other background variables held fixed are not shown): (a) general relation (two
 paths from W to Y); (b) one path absent, YL WIX; (c) a different path absent, X_LL W, as would occur if X
 randomized treatment

 if either 3yw.x = 0 or 3xw = 0. For multivariate Gaussian distributions this implies that

 YILWIX or XLLW. (1)
 These two cases are represented in Figs 1(b) and 1(c).
 In particular, if X represents a randomized treatment the second condition is satisfied by de-

 sign. In observational investigations and situations in which W is not observed, XLLW would be
 an assumption, needing support by subject-matter knowledge and evidence from other studies
 and possibly investigation by sensitivity analysis (Rosenbaum (2002), chapter 4).

 3. General distributions

 We now consider corresponding results for arbitrary densities. The general dependences in
 Fig. 1(a) are represented via the recursive factorization of the joint density of Y, X and W in the
 form

 fy,x,w(y,x, w) = fw(w) fxlw(xlw) fyrx,w (ylx, w).

 Conditional independences, in particular those shown in Figs 1(b) and 1(c), are represented by
 missing edges in the graph, as follows.

 Given the first condition in expression (1), i.e. the absence of a direct edge from W to Y, it

 follows that the conditional density of Y given X and W, namely fyrx,w(ylx, w), does not depend
 on w. That is, fyrx,w(ylx, w) depends only on x and hence is the same as fylx(ylx) obtained by
 multiplying by fw(w) and integrating over w.

 The second condition in expression (1), i.e. XILW, is often the more interesting. In this case,

 however, fyrx, w : frlx, in general, in a slightly condensed notation. Importantly, however, if
 in addition YILXI W then X is independent of both Y and W, so no apparent association in the
 distribution of Y and X is induced, a familiar advantage of randomization.

 In the non-null case, i.e. where there is dependence between Y and X given W, the following
 important qualitative conclusion holds, namely that monotonicity of dependence is maintained.

 The dependence of a random variable V on another random variable U is called stochasti-
 cally increasing if P(V > vlU = u) is increasing in u for all v, i.e. if V is continuous the partial
 derivative of the conditional distribution function of V given U = u, namely G(vlu), satisfies

 aG(vlu)/au < 0 (2)

 for all v and u with strict inequality in a region of positive probability. If U is discrete, partial
 differentiation is replaced by differencing between adjacent levels. Now suppose that Y giv-
 en X and W is stochastically increasing in X for all w, so that aF(ylx, w)/ax < 0 for all y, x
 and w, where F(ylx, w) is the conditional distribution function of Y given X = x and W = w.
 In general the distribution function of Y given X = x marginalized over W is

 F(ylx) = JF(ylx,w)f(wlx)dw,
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 where again we have condensed the notation by omitting the suffix from fwix(wlx). On differ-
 entiating with respect to x, we have that for regular distributions

 aF(yx) aF(ylx, w) fx, w) af(wlx) dw. (3)
 ax ax ax

 Now if XILW the second term in the integral is 0 and the conclusion that aF(ylx)/ax < 0
 follows immediately, so by inequality (2) Y remains stochastically increasing in x after mar-
 ginalization.

 If X is discrete then, as noted above, the same argument applies using differencing instead of
 differentiation. If the levels of X are qualitative and if it is possible to order the levels of X so
 that Y is stochastically increasing in this ordering in its conditional distribution given X and W,
 then we have shown that the same property is retained after marginalization over W. There are
 minor changes if W is discrete. A referee has pointed out that a particularly simple direct proof
 of monotonicity is available if Y is binary.

 Because f(wlx) is a density in w and thus has total integral 1, we have, provided that W is not
 independent of X, that

 f af(wlx)dw = 0, ax

 so that in different parts of its range af(wlx)/ax takes different signs. This implies that in some
 circumstances the second part of the integral in equation (3) may be substantial and different
 in sign from the first part, implying an effect reversal. This reversal is known for contingency
 tables as the Yule-Simpson paradox (Yule, 1903) and can arise in analysis of variance from
 unbalanced design (Snedecor and Cochran (1967), pages 472-477). In multiple regression re-
 versal of effect is particularly prone to occur when there is near collinearity in the explanatory
 variables.

 4. Generalization

 We have so far treated the random variables as univariate. Multivariate responses would often
 be treated one component at a time. Multivariate X are most simply studied one contrast at a
 time, in principle holding other contrasts fixed, although there can in observational studies be
 difficulties with this which we do not address here. Thus X may consist of several components
 on an equal footing interrelated in such a way that intervention on any one component has
 implications for the other components. Blood constituents provide an example.

 Very frequently the variable W would be multivariate, especially, for example, if it represents
 unobserved confounders. In one sense the argument extends immediately, the conditions (1) ap-
 plying directly to multivariate W. This raises no particular issues for randomized experiments
 but for observational studies the conditions YLWIX or XILW would become strong.

 They can, however, be weakened. For this we introduce also the multivariate background
 variables B that have implicitly been conditioned throughout the previous argument and we
 assume that Y, X, B and W form a directed acyclic graph (Lauritzen, 1996; Cox and Wermuth,
 1996) with Y depending on X, W and B and with X depending on W and B. Any acyclic direction
 of dependence for nodes in W, B is possible. See Fig. 2(a) for a general set of dependences. Then

 for the results of the previous section to apply it is enough that YILWIX, B or XJWIB.
 Figs 2(b) and 2(c) show one appropriate combination of the two types of conditions in expres-
 sion (1) which assure also that in a linear system

 /YX.W1W2B = IYX.B.
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 Fig. 2. Relations between response Y, explanatory variable X, in the presence of observed background
 variables B, and possibly unobserved variables W1 and W2: (a) graph without missing edges; jointly sufficient
 conditions for the preservation of monotonicity of dependence of Y on X after marginalizing over W1 and
 W2 are both of (b) and (c) with (b) independence of Y and W1 given B, X and W2 and (c) independence of
 X and W2 given B alone

 More generally, if both of the two independences

 YA WIIX, B, W2 and XIL W21B

 are satisfied then monotonicity of dependence of Y on X is preserved after marginalizing over
 W1 and W2.

 5. Discussion

 The results of this paper have links with other themes in statistics. Indeed the connection with
 the Yule-Simpson paradox has already been noted. The effects studied here are essentially con-
 cerned with the influence of a variable W on the relation between two subsequent other variables
 Y and X. When such an influence occurs, W may be called a moderating variable. Such a mod-
 erating effect can occur even within totally linear systems, such as the multivariate Gaussian
 distribution, by failure of conditions (1). It is conceptually different from an interactive effect
 of W on the relation between Y and X, which could not arise in a multivariate Gaussian system.

 The absence of a moderating effect implies the possibility of collapsing the data, i.e. essen-
 tially ignoring the moderating variable by marginalizing over it without the danger of coming
 to qualitatively different conclusions about the direction of dependence of Y on X.

 Condition (1) coincides for contingency tables with a sufficient condition for simple collap-
 sibility over W of relative risks for Y with respect to X (see Geng (1992), theorem 2, and
 Wermuth (1987), propositions 1 and 4).

 A further general implication is that results about the dependence of Y on X which are qualita-
 tively replicated under a variety of conditions can be viewed formally as examples of monotone
 dependence. Trust in the generality of such results is enhanced if there is evidence that X is at
 most weakly related to other important predictors of Y. Estimation of the magnitude of effects
 and of the relevant precision in general needs inclusion of strata parameters even in balanced
 data (Gail, 1988). This is relevant to many of the syntheses that are common especially in the
 clinical trial and epidemiological literature.
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