MULTIVARIATE STATISTICS, Lesson 4.

ML-estimation of the multivariate normal parameters and the Wishart-distribution

- Definition: the $p \times p$ random matrix \mathbf{W} is a (centered) Wishart-matrix if it is of the form $\mathbf{W}=\mathbf{X X}^{T}$, where the column vectors of the $p \times n$ random matrix \mathbf{X} are i.i.d. $\mathcal{N}_{p}(\mathbf{0}, \mathbf{C})$ vectors. In other words, the joint distribution of the entries of \mathbf{W} is $\mathbf{W i s h a r t}$-distribution with parameters p (dimension), n (degrees of freedom), and \mathbf{C} (covariance matrix). Notation: $\mathbf{W} \sim \mathcal{W}_{p}(n, \mathbf{C}) .(\mathbf{W}$ is symmetric, positive semidefinite.)
- Remarks:

1. Because of its symmetry \mathbf{W} follows, in fact, a $p(p+1) / 2$-dimensional distribution.
2. Denoting the column vectors of \mathbf{X} by $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}, \quad \mathbf{W}=\sum_{k=1}^{n} \mathbf{X}_{k} \mathbf{X}_{k}^{T}$.
3. If $\mathbf{C}>0$ and $n>p$, then $\mathbf{W}>0$ (positive definite) with probability 1 .
4. The $n \times p$ matrix \mathbf{X}^{T} is called data matrix.
5. The $\mathcal{W}_{p}\left(n, \mathbf{I}_{p}\right)$-distribution is called standard Wishart-distribution. In case of $p=1$ it is the $\chi^{2}(n)$-distribution.

- Standardization: Let $\mathbf{C}>0$ be symmetric, positive definite. Then $\mathbf{W} \sim \mathcal{W}_{p}(n, \mathbf{C})$ holds if and only if $\mathbf{C}^{-1 / 2} \mathbf{W} \mathbf{C}^{-1 / 2} \sim \mathcal{W}_{p}\left(n, \mathbf{I}_{p}\right)$.
- Additivity: If $\mathbf{W}_{1} \sim \mathcal{W}_{p}(n, \mathbf{C})$ and $\mathbf{W}_{2} \sim \mathcal{W}_{p}(m, \mathbf{C})$ are independent, then $\mathbf{W}_{1}+\mathbf{W}_{2} \sim$ $\mathcal{W}_{p}(n+m, \mathbf{C})$.
- Theorem (Lukács): Let $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n} \sim \mathcal{N}_{p}(\mathbf{m}, \mathbf{C})$ i.i.d. sample, further

$$
\overline{\mathbf{X}}:=\frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{k} \quad \text { and } \quad \mathbf{S}:=\sum_{k=1}^{n}\left(\mathbf{X}_{k}-\overline{\mathbf{X}}\right)\left(\mathbf{X}_{k}-\overline{\mathbf{X}}\right)^{T} . \quad \text { Then }
$$

1. $\overline{\mathbf{X}} \sim \mathcal{N}_{p}\left(\mathbf{m}, \frac{1}{n} \mathbf{C}\right)$,
2. $\mathbf{S} \sim \mathcal{W}_{p}(n-1, \mathbf{C})$,
3. $\overline{\mathbf{X}}$ és \mathbf{S} are (stochastically) independent.

- Definition: \mathbf{S} / n is the empirical, while $\mathbf{S} /(n-1)$ is the corrected empirical covariance matrix based on the above i.i.d. sample.
- ML-estimation based on the $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n} \sim \mathcal{N}_{p}(\mathbf{m}, \mathbf{C})$ i.i.d. sample: $\hat{\mathbf{m}}=\overline{\mathbf{X}}, \hat{\mathbf{C}}=\mathbf{S} / n$. It follows from the following form of the likelihood function:

$$
L_{\mathbf{m}, \mathbf{C}}\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right)=\frac{1}{(2 \pi)^{n p / 2}|\mathbf{C}|^{n / 2}} e^{-\frac{1}{2} \operatorname{tr} \mathbf{C}^{-1} \mathbf{S}} \cdot e^{-\frac{1}{2} n(\overline{\mathbf{X}}-\mathbf{m})^{T} \mathbf{C}^{-1}(\overline{\mathbf{X}}-\mathbf{m})}
$$

- Theorem: The density of the standard Wishart matrix $\mathbf{W} \sim \mathcal{W}_{p}\left(\mathbf{0}, \mathbf{I}_{p}\right)$ and that of its eigenvalues is

$$
c_{n p}|\mathbf{W}|^{\frac{n-p-1}{2}} e^{-\frac{1}{2} \operatorname{tr} \mathbf{W}} \quad \text { and } \quad \kappa_{n p}\left(\prod_{j=1}^{p} \lambda_{j}\right)^{\frac{n-p-1}{2}} e^{-\frac{1}{2} \sum_{j=1}^{p} \lambda_{j}} \prod_{j \neq k}\left|\lambda_{j}-\lambda_{k}\right|
$$

where the normalizing constants $c_{n p}$ and $\kappa_{n p}$ only depend on p and $n(n>p)$.

- Theorem: The density of the Wishart-matrix $\mathbf{W} \sim \mathcal{W}_{p}(\mathbf{0}, \mathbf{C})$ is

$$
c_{n p}|\mathbf{W}|^{\frac{n-p-1}{2}}|\mathbf{C}|^{-\frac{n}{2}} e^{-\frac{1}{2} \operatorname{tr} \mathbf{C}^{-1} \mathbf{W}}
$$

