MULTIVARIATE STATISTICS, Lesson 4.

ML-estimation of the multivariate normal parameters and the Wishart-distribution

- Definition: the $p \times p$ random matrix \mathbf{W} is a (centered) Wishart-matrix if it is of the form $\mathbf{W} = \mathbf{X}\mathbf{X}^T$, where the column vectors of the $p \times n$ random matrix \mathbf{X} are i.i.d. $\mathcal{N}_p(\mathbf{0}, \mathbf{C})$ -vectors. In other words, the joint distribution of the entries of \mathbf{W} is Wishart-distribution with parameters p (dimension), n (degrees of freedom), and \mathbf{C} (covariance matrix). Notation: $\mathbf{W} \sim \mathcal{W}_p(n, \mathbf{C})$.(W is symmetric, positive semidefinite.)
- Remarks:
 - 1. Because of its symmetry **W** follows, in fact, a p(p+1)/2-dimensional distribution.
 - 2. Denoting the column vectors of **X** by $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$, $\mathbf{W} = \sum_{k=1}^n \mathbf{X}_k \mathbf{X}_k^T$.
 - 3. If C > 0 and n > p, then W > 0 (positive definite) with probability 1.
 - 4. The $n \times p$ matrix \mathbf{X}^T is called **data matrix**.
 - 5. The $W_p(n, \mathbf{I}_p)$ -distribution is called *standard Wishart-distribution*. In case of p = 1 it is the $\chi^2(n)$ -distribution.
- Standardization: Let $\mathbf{C} > 0$ be symmetric, positive definite. Then $\mathbf{W} \sim \mathcal{W}_p(n, \mathbf{C})$ holds if and only if $\mathbf{C}^{-1/2}\mathbf{W}\mathbf{C}^{-1/2} \sim \mathcal{W}_p(n, \mathbf{I}_p)$.
- Additivity: If $\mathbf{W}_1 \sim \mathcal{W}_p(n, \mathbf{C})$ and $\mathbf{W}_2 \sim \mathcal{W}_p(m, \mathbf{C})$ are independent, then $\mathbf{W}_1 + \mathbf{W}_2 \sim \mathcal{W}_p(n+m, \mathbf{C})$.
- Theorem (Lukács): Let $X_1, X_2, \ldots, X_n \sim \mathcal{N}_p(\mathbf{m}, \mathbf{C})$ i.i.d. sample, further

$$\bar{\mathbf{X}} := \frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_k$$
 and $\mathbf{S} := \sum_{k=1}^{n} (\mathbf{X}_k - \bar{\mathbf{X}}) (\mathbf{X}_k - \bar{\mathbf{X}})^T$. Then

- 1. $\bar{\mathbf{X}} \sim \mathcal{N}_p(\mathbf{m}, \frac{1}{n}\mathbf{C}),$
- 2. $\mathbf{S} \sim \mathcal{W}_p(n-1, \mathbf{C}),$
- 3. \mathbf{X} és \mathbf{S} are (stochastically) independent.
- Definition: S/n is the empirical, while S/(n-1) is the corrected empirical covariance matrix based on the above i.i.d. sample.
- ML-estimation based on the $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n \sim \mathcal{N}_p(\mathbf{m}, \mathbf{C})$ i.i.d. sample: $\hat{\mathbf{m}} = \bar{\mathbf{X}}, \hat{\mathbf{C}} = \mathbf{S}/n$. It follows from the following form of the likelihood function:

$$L_{\mathbf{m},\mathbf{C}}(\mathbf{X}_1,\ldots,\mathbf{X}_n) = \frac{1}{(2\pi)^{np/2}|\mathbf{C}|^{n/2}} e^{-\frac{1}{2}\operatorname{tr}\mathbf{C}^{-1}\mathbf{S}} \cdot e^{-\frac{1}{2}n(\bar{\mathbf{X}}-\mathbf{m})^T\mathbf{C}^{-1}(\bar{\mathbf{X}}-\mathbf{m})}$$

• Theorem: The density of the standard Wishart matrix $\mathbf{W} \sim \mathcal{W}_p(\mathbf{0}, \mathbf{I}_p)$ and that of its eigenvalues is

$$c_{np}|\mathbf{W}|^{\frac{n-p-1}{2}}e^{-\frac{1}{2}\mathrm{tr}\mathbf{W}}$$
 and $\kappa_{np}(\prod_{j=1}^p \lambda_j)^{\frac{n-p-1}{2}}e^{-\frac{1}{2}\sum_{j=1}^p \lambda_j}\prod_{j\neq k}|\lambda_j-\lambda_k|,$

where the normalizing constants c_{np} and κ_{np} only depend on p and n (n > p).

• Theorem: The density of the Wishart-matrix $\mathbf{W} \sim \mathcal{W}_p(\mathbf{0}, \mathbf{C})$ is

$$c_{np}|\mathbf{W}|^{\frac{n-p-1}{2}}|\mathbf{C}|^{-\frac{n}{2}}e^{-\frac{1}{2}\operatorname{tr}\mathbf{C}^{-1}\mathbf{W}}.$$