
MULTIVARIATE STATISTICS, Lesson 7.
Multivariate statistical methods: reduction of dimensionality

• Principal component analysis. Model: X = UY + m,
where X ∼ Np(m,C), Y ∼ Np(0,D), where U is an appropriately chosen p× p orthogonal,
while D is diagonal matrix.

1. Proposition: U contains the eigenvectors u1, . . . ,up of C columnwise corresponding to
the eigenvalues λ1 ≥ · · · ≥ λp.

2. Definition: Yi = uT
i (X − m) is the ith principal component with variance λi (i =

1, . . . , p).

3. Remark: The variance of Yi is λi, and the total variance of the principal components is
equal to the total variance of the original Xi’s.

4. Theorem: The variance of Y1 is the largest possible among the variances of linear com-
binations vT (X −m) subject to ‖v‖ = 1. In general: the variance of Yk is the largest
possible among the variances of linear combinations vT (X −m) that are uncorrelated
with Y1, . . . , Yk−1 (subject to ‖v‖ = 1), k = 2, . . . , p.

5. Stronger Theorem: The k-dimensional vector with components (Y1, . . . , Yk, 0, . . . , 0) gives
the best k-dimensional approximation of X ∼ Np(0,C) in the following sense: the
minimum of E‖X−AX‖ with a p× p matrix A of rank k is attained by the projecton
onto the k-dimensional subspace spanned by u1, . . . ,uk for any k = 1, . . . , p.

6. Sequential testing of hypotheses for the number of relevant principal components. Based
on the eigenvalues of the sample covariance matrix, for testing

Hk : λk+1 = · · · = λp−1 = λp, k = 0, 1 . . . , p− 1

the transformed test statistic (obtained by likelihood ratio test)
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λ̂k+1 + · · ·+ λ̂p
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, g = (λ̂k+1 . . . λ̂p)
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is used (λ̂i’s are the eigenvalues of the empirical covariance matrix) that for large n
approximately follows χ2(1

2
(p− k + 2)(p− k − 1))-distribution.

• Factor analysis. Model: X = Af + e + m,
where X ∼ Np(m,C), A is p × k matrix, f ∼ Nk(0, Ik) is the common factor and the
components of e ∼ Np(0,D) are the individual factors of the variables with variances
along the main diagonal of the diagonal matrix D. Further, f and e are independent. If
multivariate normality is not postulated, the conditions

Ef = 0, EffT = Ik, Ee = 0, EeeT = D, EfeT = 0 matrix

are used. For the cordinates and variances of Xi’s:

Xi =
k∑

j=1

aijfj + ei + µi, cii =
k∑

j=1

a2
ij + dii (= 1, . . . , p).

1. Definition:
∑k

j=1 a2
ij is called communality of Xi (i = 1, . . . , p), and the entries of A are

called factor loadings.



2. Identification: we have to solve the matrix equation C = AAT + D. The solution may
exist for k ≥ (2p + 1 −

√
8p + 1)/2, and it is unique up to orthogonal rotation (if A is

solution, AQ is also solution with any k × k ortogonal matrix Q).

3. ML factor analysis (if multivariate normality is postulated): Maximize the multivariate
normal likelihood function

−1

2
n ln |C| − 1

2
ntrC−1Ĉ + c

with respect to A,D subject to C = AAT + D; or equivalently, find the minimum of

F (A,D) = ln |AAT + D|+ tr (AAT + D)−1Ĉ

that, after differentiating, gives the model equations:

∂F

∂A
= C−1(C− Ĉ)C−1A = 0,

∂F

∂D
= diag [C−1(C− Ĉ)C−1] = 0.

For the solution, algorithms based on numeric iteration are at our disposal.

4. Principal component factor analysis: Retain the first k transformed principal compo-
nents, where there is a remarkable spectral gap between the kth and (k+1)th eigenvalues
of the sample covariance (or correlation) matrix. We use the transformation:

UY = (UΛ1/2)(Λ−1/2Y),

where f will consist of the first k components of Λ−1/2Y.

5. Rotation of factor loadings (VARIMAX).

6. See BMDP outputs after processing real world data.


