MULTIVARIATE STATISTICS, Lesson 7.
Multivariate statistical methods: reduction of dimensionality

e Principal component analysis. Model: X = UY + m,
where X ~ A,(m, C), Y ~ N,(0,D), where U is an appropriately chosen p x p orthogonal,
while D is diagonal matrix.

1.

Proposition: U contains the eigenvectors uy,...,u, of C columnwise corresponding to
the eigenvalues Ay > --- > A,

Definition: Y; = ul (X — m) is the ith principal component with variance \; (i =
1,...,p).

Remark: The variance of Y; is \;, and the total variance of the principal components is
equal to the total variance of the original X;’s.

Theorem: The variance of Y; is the largest possible among the variances of linear com-
binations v (X — m) subject to ||v|]| = 1. In general: the variance of Y}, is the largest
possible among the variances of linear combinations v (X — m) that are uncorrelated
with Y3,..., Y,y (subject to ||v]|=1), k=2,...,p.

Stronger Theorem: The k-dimensional vector with components (Y7, ..., Y%, 0,...,0) gives
the best k-dimensional approximation of X ~ A,(0,C) in the following sense: the
minimum of E||X — AX]| with a p x p matrix A of rank k is attained by the projecton
onto the k-dimensional subspace spanned by uy,...,u; for any k=1,...,p.

Sequential testing of hypotheses for the number of relevant principal components. Based

on the eigenvalues of the sample covariance matrix, for testing
Hk:)\k-l—l:"':/\p—l:/\py k’:O,l...,p—l

the transformed test statistic (obtained by likelihood ratio test)
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is used (S\i’s are the eigenvalues of the empirical covariance matrix) that for large n
approximately follows x?(3(p — k + 2)(p — k — 1))-distribution.

e Factor analysis. Model: X = Af + e+ m,
where X ~ A,(m,C), A is p x k matrix, f ~ N(0,I;) is the common factor and the
components of e ~ N,(0,D) are the individual factors of the variables with variances
along the main diagonal of the diagonal matrix D. Further, f and e are independent. If
multivariate normality is not postulated, the conditions

Ef =0, EffT =1,, FEe=0, Eee’ =D, Efe’ =0 matrix

are used. For the cordinates and variances of X;’s:
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1. Definition: Zk a?; is called communality of X; (i =1,...,p), and the entries of A are

Jj=1"1j
called factor loadings.



2. Identification: we have to solve the matrix equation C = AAT 4+ D. The solution may
exist for k > (2p+ 1 — /8p+1)/2, and it is unique up to orthogonal rotation (if A is
solution, AQ is also solution with any k x k ortogonal matrix Q).

3. ML factor analysis (if multivariate normality is postulated): Maximize the multivariate
normal likelihood function
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with respect to A, D subject to C = AAT 4 D; or equivalently, find the minimum of
F(A,D) =In|AAT + D| +tr (AAT + D)"!C

that, after differentiating, gives the model equations:

or _
0A

For the solution, algorithms based on numeric iteration are at our disposal.

. Ja .
c(C-C)C'A =0, Z—D = diag[C}(C - C)C'] = 0.

4. Principal component factor analysis: Retain the first k transformed principal compo-
nents, where there is a remarkable spectral gap between the kth and (k-+1)th eigenvalues
of the sample covariance (or correlation) matrix. We use the transformation:

UY = (UAY?)(AV2Y),

where f will consist of the first & components of A~1/2Y.
5. Rotation of factor loadings (VARIMAX).
6. See BMDP outputs after processing real world data.



