MULTIVARIATE STATISTICS, Lesson 7.
 Multivariate statistical methods: reduction of dimensionality

- Principal component analysis. Model: $\mathbf{X}=\mathbf{U Y}+\mathbf{m}$,
where $\mathbf{X} \sim \mathcal{N}_{p}(\mathbf{m}, \mathbf{C}), \mathbf{Y} \sim \mathcal{N}_{p}(\mathbf{0}, \mathbf{D})$, where \mathbf{U} is an appropriately chosen $p \times p$ orthogonal, while \mathbf{D} is diagonal matrix.

1. Proposition: \mathbf{U} contains the eigenvectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}$ of \mathbf{C} columnwise corresponding to the eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{p}$.
2. Definition: $Y_{i}=\mathbf{u}_{i}^{T}(\mathbf{X}-\mathbf{m})$ is the i th principal component with variance $\lambda_{i}(i=$ $1, \ldots, p)$.
3. Remark: The variance of Y_{i} is λ_{i}, and the total variance of the principal components is equal to the total variance of the original X_{i} 's.
4. Theorem: The variance of Y_{1} is the largest possible among the variances of linear combinations $\mathbf{v}^{T}(\mathbf{X}-\mathbf{m})$ subject to $\|\mathbf{v}\|=1$. In general: the variance of Y_{k} is the largest possible among the variances of linear combinations $\mathbf{v}^{T}(\mathbf{X}-\mathbf{m})$ that are uncorrelated with Y_{1}, \ldots, Y_{k-1} (subject to $\|\mathbf{v}\|=1$), $k=2, \ldots, p$.
5. Stronger Theorem: The k-dimensional vector with components $\left(Y_{1}, \ldots, Y_{k}, 0, \ldots, 0\right)$ gives the best k-dimensional approximation of $\mathbf{X} \sim \mathcal{N}_{p}(\mathbf{0}, \mathbf{C})$ in the following sense: the minimum of $\mathbb{E}\|\mathbf{X}-\mathbf{A X}\|$ with a $p \times p$ matrix \mathbf{A} of rank k is attained by the projecton onto the k-dimensional subspace spanned by $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ for any $k=1, \ldots, p$.
6. Sequential testing of hypotheses for the number of relevant principal components. Based on the eigenvalues of the sample covariance matrix, for testing

$$
H_{k}: \lambda_{k+1}=\cdots=\lambda_{p-1}=\lambda_{p}, \quad k=0,1 \ldots, p-1
$$

the transformed test statistic (obtained by likelihood ratio test)

$$
-2 \ln \lambda_{n}=n(p-k) \ln \frac{a}{g}, \quad a=\frac{\hat{\lambda}_{k+1}+\cdots+\hat{\lambda}_{p}}{p-k}, \quad g=\left(\hat{\lambda}_{k+1} \ldots \hat{\lambda}_{p}\right)^{\frac{1}{p-k}}
$$

is used ($\hat{\lambda}_{i}$'s are the eigenvalues of the empirical covariance matrix) that for large n approximately follows $\chi^{2}\left(\frac{1}{2}(p-k+2)(p-k-1)\right)$-distribution.

- Factor analysis. Model: $\mathbf{X}=\mathbf{A f}+\mathbf{e}+\mathbf{m}$,
where $\mathbf{X} \sim \mathcal{N}_{p}(\mathbf{m}, \mathbf{C}), \mathbf{A}$ is $p \times k$ matrix, $\mathbf{f} \sim \mathcal{N}_{k}\left(\mathbf{0}, \mathbf{I}_{k}\right)$ is the common factor and the components of $\mathbf{e} \sim \mathcal{N}_{p}(\mathbf{0}, \mathbf{D})$ are the individual factors of the variables with variances along the main diagonal of the diagonal matrix \mathbf{D}. Further, \mathbf{f} and \mathbf{e} are independent. If multivariate normality is not postulated, the conditions

$$
\mathbb{E} \mathbf{f}=\mathbf{0}, \quad \mathbb{E f f}^{T}=\mathbf{I}_{k}, \quad \mathbb{E} \mathbf{e}=\mathbf{0}, \quad \mathbb{E e e}^{T}=\mathbf{D}, \quad \mathbb{E} \mathbf{f e}^{T}=\mathbf{0} \text { matrix }
$$

are used. For the cordinates and variances of X_{i} 's:

$$
X_{i}=\sum_{j=1}^{k} a_{i j} f_{j}+e_{i}+\mu_{i}, \quad c_{i i}=\sum_{j=1}^{k} a_{i j}^{2}+d_{i i} \quad(=1, \ldots, p) .
$$

1. Definition: $\sum_{j=1}^{k} a_{i j}^{2}$ is called communality of $X_{i}(i=1, \ldots, p)$, and the entries of \mathbf{A} are called factor loadings.
2. Identification: we have to solve the matrix equation $\mathbf{C}=\mathbf{A A}^{T}+\mathbf{D}$. The solution may exist for $k \geq(2 p+1-\sqrt{8 p+1}) / 2$, and it is unique up to orthogonal rotation (if \mathbf{A} is solution, AQ is also solution with any $k \times k$ ortogonal matrix \mathbf{Q}).
3. ML factor analysis (if multivariate normality is postulated): Maximize the multivariate normal likelihood function

$$
-\frac{1}{2} n \ln |\mathbf{C}|-\frac{1}{2} n \operatorname{tr} \mathbf{C}^{-1} \hat{\mathbf{C}}+c
$$

with respect to \mathbf{A}, \mathbf{D} subject to $\mathbf{C}=\mathbf{A A}^{T}+\mathbf{D}$; or equivalently, find the minimum of

$$
F(\mathbf{A}, \mathbf{D})=\ln \left|\mathbf{A A}^{T}+\mathbf{D}\right|+\operatorname{tr}\left(\mathbf{A} \mathbf{A}^{T}+\mathbf{D}\right)^{-1} \hat{\mathbf{C}}
$$

that, after differentiating, gives the model equations:

$$
\frac{\partial F}{\partial \mathbf{A}}=\mathbf{C}^{-1}(\mathbf{C}-\hat{\mathbf{C}}) \mathbf{C}^{-1} \mathbf{A}=\mathbf{0}, \quad \frac{\partial F}{\partial \mathbf{D}}=\operatorname{diag}\left[\mathbf{C}^{-1}(\mathbf{C}-\hat{\mathbf{C}}) \mathbf{C}^{-1}\right]=\mathbf{0}
$$

For the solution, algorithms based on numeric iteration are at our disposal.
4. Principal component factor analysis: Retain the first k transformed principal components, where there is a remarkable spectral gap between the k th and $(k+1)$ th eigenvalues of the sample covariance (or correlation) matrix. We use the transformation:

$$
\mathbf{U Y}=\left(\mathbf{U} \Lambda^{1 / 2}\right)\left(\Lambda^{-1 / 2} \mathbf{Y}\right)
$$

where \mathbf{f} will consist of the first k components of $\Lambda^{-1 / 2} \mathbf{Y}$.
5. Rotation of factor loadings (VARIMAX).
6. See BMDP outputs after processing real world data.

