MATHEMATICAL STATISTICS, Lessons 8-10. TESTING STATISTICAL HYPOTHESES

Parametric tests

Let $(\Omega, \mathcal{A}, \mathcal{P})$ be a dominated, identifiable, parametric statistical space, $\mathcal{P} = \{\mathbb{P}_{\theta} : \theta \in \Theta\}$. We want to decide between: $H_0 : \theta \in \Theta_0$ versus $H_1 : \theta \in \Theta_1$, where $\Theta_0 \cap \Theta_1 = \emptyset$, $\Theta_0 \cup \Theta_1 = \Theta$. In case of $|\Theta_0| = 1$ we have a *simple zero-hypothesis*, otherwise it is *composite*. The same for the alternative hypothesis.

Our decision is based on the $\mathbf{X} = (X_1, \ldots, X_n) \sim \mathbb{P}_{\theta}$ i.i.d. sample from the sample space \mathcal{X} . The decision process is as follows.

- 1. We calculate an appropriate statistic $T(\mathbf{X})$ (whose distribution under H_0 , or on the boundary of H_0 , is known).
- 2. We divide the sample space into acceptance region \mathcal{X}_a and rejection (or critical) region \mathcal{X}_c , where $\mathcal{X}_a \cap \mathcal{X}_c = \emptyset$ and $\mathcal{X}_a \cup \mathcal{X}_c = \mathcal{X}$. Usually, $\mathcal{X}_c = \{\mathbf{x} : T(\mathbf{x}) \ge c_\alpha\}$ or $\mathcal{X}_c = \{\mathbf{x} : |T(\mathbf{x})| \ge c_\alpha\}$ where c_α is a quantile (percentile) value of T, and α is the significance (size) of the test.
- 3. If $\mathbf{X} \in \mathcal{X}_a$, then accept, otherwise reject H_0 with significance α .

Definition: The significance (size) of the test defined by \mathcal{X}_c is

$$\alpha = \sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}(\mathbf{X} \in \mathcal{X}_c)$$

(supremum of the so-called Type I. errors).

Definition: The power of the test defined by \mathcal{X}_c is

$$\gamma(\theta) = \mathbb{P}_{\theta}(\mathbf{X} \in \mathcal{X}_c) = 1 - \mathbb{P}_{\theta}(\mathbf{X} \in \mathcal{X}_a) = 1 - \beta(\theta), \quad \text{for} \quad \theta \in \Theta_1$$

(1 minus the Type II. error $\beta(\theta)$ for the alternative $\theta \in \Theta_1$).

Definition: The test defined by \mathcal{X}_c is uniformly most powerful (UMP) test of significance α , if among the tests with significance at most α , its power is the largest possible, for any alternative. That is, $\sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}(\mathbf{X} \in \mathcal{X}_c) = \alpha$, and for any other \mathcal{X}'_c with $\sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}(\mathbf{X} \in \mathcal{X}'_c) \leq \alpha$, the following also holds:

$$\mathbb{P}_{ heta}(\mathbf{X} \in \mathcal{X}_c) \geq \mathbb{P}_{ heta}(\mathbf{X} \in \mathcal{X}_c'), \quad orall heta \in \Theta_1.$$

It is easier to formulate the problem with the help of the test function Ψ , which is the characteristic function of $\mathbf{X} \in \mathcal{X}_c$, and

$$\alpha = \sup_{\theta \in \Theta_0} \mathbb{E}_{\theta} \Psi(\mathbf{X})$$

whereas

$$\gamma(\theta) = \mathbb{E}_{\theta} \Psi(\mathbf{X}) \text{ for } \theta \in \Theta_1.$$

More generally, we consider randomized tests defined with the following test function. *Definition*: The test function $\Psi(\mathbf{X})$ is the probability of rejecting H_0 based on the observation \mathbf{X} . It is 1 if $\mathbf{X} \in \mathcal{X}_c$, 0 if $\mathbf{X} \in \mathcal{X}_a$, and may be $p \in (0, 1)$ if $\mathbf{X} \in \mathcal{X}_r$ (randomization region), when we cannot decide immediately (see discrete cases).

Neyman–Pearson Theorem (on the existence of a UMP test). In a parametric statistical space let $L_{\theta}(\mathbf{X})$ be the likelihood function based on the i.i.d. sample $\mathbf{X} = (X_1, \ldots, X_n)$. Then for the simple alternative

$$H_0: \theta = \theta_0$$
 versus $H_1: \theta = \theta_1$

for any $0 < \alpha < 1$ there exists a UMP test of size α , and it is defined uniquely (with probability 1) in the following way:

$$\psi(\mathbf{X}) = 0 \quad \text{if} \quad \frac{L_{\theta_1}(\mathbf{X})}{L_{\theta_0}(\mathbf{X})} < c; \qquad \psi(\mathbf{X}) = p \quad \text{if} \quad \frac{L_{\theta_1}(\mathbf{X})}{L_{\theta_0}(\mathbf{X})} = c; \qquad \psi(\mathbf{X}) = 1 \quad \text{if} \quad \frac{L_{\theta_1}(\mathbf{X})}{L_{\theta_0}(\mathbf{X})} > c,$$

where $p \in [0, 1)$ and c > 0 are appropriate constants depending on α . *Remarks*: It is easy to see that the construction of the Neyman–Pearson theorem provides an *unbiased test*:

$$\sup_{\theta \in \Theta_0} \mathbb{E}_{\theta} \Psi(\mathbf{X}) \le \inf_{\theta \in \Theta_1} \mathbb{E}_{\theta} \Psi(\mathbf{X}).$$

This theorem can be extended to composite hypotheses, when the likelihood function depends monotonously on a sufficient statistic T. In these cases the above inequalities can be reformulated in terms of T (with other constants).

Definition: The family $\{\mathbb{P}_{\theta} : \theta \in \Theta\}$ of probability distributions has monotone likelihood ratio if for $\theta < \theta'$, \mathbb{P}_{θ} and $\mathbb{P}_{\theta'}$ are not identical (identifiability), and there exists a statistic T such that $\frac{L_{\theta'}(\mathbf{X})}{L_{\theta}(\mathbf{X})}$ is a non-decreasing function of $T(\mathbf{X})$.

Theorem: Let the family $\{\mathbb{P}_{\theta} : \theta \in \Theta\}$ have monotone likelihood ratio. Then for the (one-tail) alternative

$$H_0: \theta \leq \theta_0$$
 versus $H_1: \theta > \theta_0$

with any $0 < \alpha < 1$ there exists a UMP test of significance α . Its test function is the following:

$$\psi(\mathbf{X}) = 0$$
 if $T(\mathbf{X}) < c$; $\psi(\mathbf{X}) = p$ if $T(\mathbf{X}) = c$; $\psi(\mathbf{X}) = 1$ if $T(\mathbf{X}) > c$;

where T is that of the definition, and the constants c > 0, $p \in [0,1)$ can be chosen such that $\mathbb{E}_{\theta_0}(\psi(\mathbf{X})) = \alpha$ be satisfied. Further, $\mathbb{E}_{\theta}(\psi(\mathbf{X}))$ is strictly increasing in θ until it possibly becomes 1.

For the most important parametric tests, see the formula sheet enclosed for z, t, F, and Welchtests (one- and two-sample, one- and two tail situations; further independent sample and paired sample tests).

Likelihood ratio test. Applicable when Θ_0 is a low-dimensional manifold of Θ and our sample is from an absolutely continuous distribution.

$$H_0: \theta \in \Theta_0$$
 versus $H_1: \theta \in \Theta_1$

where $\Theta_0 \cap \Theta_1 = \emptyset$, $\Theta_0 \cup \Theta_1 = \Theta$, and with the notation $\dim(\Theta_0) = r$, $\dim(\Theta) = k$, r < k is satisfied. The test statistic based on an *n*-element sample is the following:

$$\lambda_n(\mathbf{X}) = \frac{\sup_{\theta \in \Theta_0} L_{\theta}(\mathbf{X})}{\sup_{\theta \in \Theta} L_{\theta}(\mathbf{X})}.$$

Note that $\lambda_n(\mathbf{X})$ does not depend on θ and takes on values between 0 and 1. Here $\mathcal{X}_c = \{\lambda_n \leq c\}$, where c depends on the significance α ; however, we can find it, only if the distribution of λ_n under H_0 is known. Otherwise, we use the fact, that under certain regularity conditions,

$$-2\ln\lambda_n(\mathbf{X}) \to \chi^2(k-r)$$

as $n \to \infty$, under H_0 . Therefore, $\mathcal{X}_c = \{-2 \ln \lambda_n \geq c'\}$, where c' is the upper α -point of the $\chi^2(k-r)$ distribution. For instance, the one-sample, two-tail z-test is such.

Non-parametric tests. H_0 applies not to the parameter. Basic idea: find the limit distribution under the zero hypothesis of a conveniently constructed statistic, where this limiting distribution does not depend on the parameters of the underlying so-called population distribution.

• Pearson's χ^2 -test. Test statistic:

$$\chi^{2} = \sum_{i=1}^{r} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

where O_i 's are the Observed and E_i 's are the Expected frequencies. If $n = \sum_{i=1}^r O_i = \sum_{i=1}^r E_i \to \infty$, then under the zero hypothesis it asymptotically follows $\chi^2(df)$ -distribution, where df = r - 1 - e (e is the number of estimated parameters). So the critical region, corresponding to a test with significance α , is the upper α -point of the $\chi^2(df)$ -distribution $(1 - \alpha \text{ quantile value, see Table}).$

1. χ^2 -test for goodness of fit:

$$\chi^{2} = \sum_{i=1}^{r} \frac{(\nu_{i} - np_{i})^{2}}{np_{i}}$$

2. χ^2 -test for homogeneity:

$$\chi^2 = nm \sum_{i=1}^r \frac{(\frac{\nu_i}{n} - \frac{\mu_i}{m})^2}{\nu_i + \mu_i}$$

3. χ^2 -test for **independence**:

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(\nu_{ij} - n\frac{\nu_{i.}}{n}\frac{\nu_{\cdot j}}{n})^{2}}{n\frac{\nu_{i.}}{n}\frac{\nu_{\cdot j}}{n}} = n\sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(\nu_{ij} - \frac{\nu_{i.}\nu_{\cdot j}}{n})^{2}}{\nu_{i.}\nu_{\cdot j}}$$

with df = rs - 1 - [(r - 1) + (s - 1)] = (r - 1)(s - 1).

- Kolmogorov-Smirnov-test
 - 1. One-sample K–S-test (for goodness of fit):

$$D_n = \sup_{x \in \mathbb{R}} |F_n^*(x) - F(x)|.$$

Under the zero hypothesis (the ordered sample is from the continuous F- distribution)

$$\lim_{n \to \infty} \mathbb{P}(\sqrt{n}D_n < z) = K(z), \quad \forall z \in \mathbb{R}.$$

that is the test statistic $\sqrt{n}D_n$ asymptotically follows Kolmogorov-distribution.

2. Two-sample K–S-test (for homogeneity):

$$D_{n,m} = \sup_{x \in \mathbb{R}} |F_n^*(x) - G_m^*(x)|.$$

Under the zero hypothesis (the two ordered samples are from the same continuous distribution), the test statistic $\sqrt{\frac{nm}{n+m}}D_{n,m}$ asymptotically follows Kolmogorov-distribution. So the critical region corresponding to a test with significance α is the upper α -point of the Kolmogorov-distribution $(1 - \alpha \text{ quantile value, see Table})$. Observe that the above suprema are, in fact, maxima of finitely many terms, and the distributions can be transformed into the $\mathcal{U}(0, 1)$ distribution.