
MATHEMATICAL STATISTICS, Lessons 8-10.
TESTING STATISTICAL HYPOTHESES

Parametric tests
Let (Ω,A,P) be a dominated, identifiable, parametric statistical space, P = {Pθ : θ ∈ Θ}. We

want to decide between: H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1, where Θ0 ∩ Θ1 = ∅, Θ0 ∪ Θ1 = Θ.
In case of |Θ0| = 1 we have a simple zero-hypothesis, otherwise it is composite. The same for the
alternative hypothesis.

Our decision is based on the X = (X1, . . . , Xn) ∼ Pθ i.i.d. sample from the sample space X .
The decision process is as follows.

1. We calculate an appropriate statistic T (X) (whose distribution under H0, or on the boundary
of H0, is known).

2. We divide the sample space into acceptance region Xa and rejection (or critical) region Xc,
where Xa ∩ Xc = ∅ and Xa ∪ Xc = X . Usually, Xc = {x : T (x) ≥ cα} or Xc = {x :
|T (x)| ≥ cα} where cα is a quantile (percentile) value of T , and α is the significance (size) of
the test.

3. If X ∈ Xa, then accept, otherwise reject H0 with significance α.

Definition: The significance (size) of the test defined by Xc is

α = sup
θ∈Θ0

Pθ(X ∈ Xc)

(supremum of the so-called Type I. errors).
Definition: The power of the test defined by Xc is

γ(θ) = Pθ(X ∈ Xc) = 1− Pθ(X ∈ Xa) = 1− β(θ), for θ ∈ Θ1

(1 minus the Type II. error β(θ) for the alternative θ ∈ Θ1).
Definition: The test defined by Xc is uniformly most powerful (UMP) test of significance α, if
among the tests with significance at most α, its power is the largest possible, for any alternative.
That is, supθ∈Θ0

Pθ(X ∈ Xc) = α, and for any other X ′c with supθ∈Θ0
Pθ(X ∈ X ′c) ≤ α, the following

also holds:
Pθ(X ∈ Xc) ≥ Pθ(X ∈ X ′c), ∀θ ∈ Θ1.

It is easier to formulate the problem with the help of the test function Ψ, which is the charac-
teristic function of X ∈ Xc, and

α = sup
θ∈Θ0

EθΨ(X)

whereas
γ(θ) = EθΨ(X) for θ ∈ Θ1.

More generally, we consider randomized tests defined with the following test function.
Definition: The test function Ψ(X) is the probability of rejecting H0 based on the observation X.
It is 1 if X ∈ Xc, 0 if X ∈ Xa, and may be p ∈ (0, 1) if X ∈ Xr (randomization region), when we
cannot decide immediately (see discrete cases).
Neyman–Pearson Theorem (on the existence of a UMP test). In a parametric statistical space
let Lθ(X) be the likelihood function based on the i.i.d. sample X = (X1, . . . , Xn). Then for the
simple alternative

H0 : θ = θ0 versus H1 : θ = θ1



for any 0 < α < 1 there exists a UMP test of size α, and it is defined uniquely (with probability 1)
in the following way:

ψ(X) = 0 if
Lθ1(X)

Lθ0(X)
< c; ψ(X) = p if

Lθ1(X)

Lθ0(X)
= c; ψ(X) = 1 if

Lθ1(X)

Lθ0(X)
> c,

where p ∈ [0, 1) and c > 0 are appropriate constants depending on α.
Remarks: It is easy to see that the construction of the Neyman–Pearson theorem provides an
unbiased test :

sup
θ∈Θ0

EθΨ(X) ≤ inf
θ∈Θ1

EθΨ(X).

This theorem can be extended to composite hypotheses, when the likelihood function depends
monotonously on a sufficient statistic T . In these cases the above inequalities can be reformulated
in terms of T (with other constants).
Definition: The family {Pθ : θ ∈ Θ} of probability distributions has monotone likelihood ratio if
for θ < θ′, Pθ and Pθ′ are not identical (identifiability), and there exists a statistic T such that
Lθ′ (X)

Lθ(X)
is a non-decreasing function of T (X).

Theorem: Let the family {Pθ : θ ∈ Θ} have monotone likelihood ratio. Then for the (one-tail)
alternative

H0 : θ ≤ θ0 versus H1 : θ > θ0

with any 0 < α < 1 there exists a UMP test of significance α. Its test function is the following:

ψ(X) = 0 if T (X) < c; ψ(X) = p if T (X) = c; ψ(X) = 1 if T (X) > c,

where T is that of the definition, and the constants c > 0, p ∈ [0, 1) can be chosen such that
Eθ0(ψ(X)) = α be satisfied. Further, Eθ(ψ(X)) is strictly increasing in θ until it possibly becomes
1.

For the most important parametric tests, see the formula sheet enclosed for z, t, F , and Welch-
tests (one- and two-sample, one- and two tail situations; further independent sample and paired
sample tests).

Likelihood ratio test. Applicable when Θ0 is a low-dimensional manifold of Θ and our sample
is from an absolutely continuous distribution.

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1

where Θ0 ∩ Θ1 = ∅, Θ0 ∪ Θ1 = Θ, and with the notation dim(Θ0) = r, dim(Θ) = k, r < k is
satisfied. The test statistic based on an n-element sample is the following:

λn(X) =
supθ∈Θ0

Lθ(X)

supθ∈Θ Lθ(X)
.

Note that λn(X) does not depend on θ and takes on values between 0 and 1. Here Xc = {λn ≤ c},
where c depends on the significance α; however, we can find it, only if the distribution of λn under
H0 is known. Otherwise, we use the fact, that under certain regularity conditions,

−2 lnλn(X)→ χ2(k − r)

as n → ∞, under H0. Therefore, Xc = {−2 lnλn ≥ c′}, where c′ is the upper α-point of the
χ2(k − r) distribution. For instance, the one-sample, two-tail z-test is such.



Non-parametric tests. H0 applies not to the parameter. Basic idea: find the limit distribution
under the zero hypothesis of a conveniently constructed statistic, where this limiting distribution
does not depend on the parameters of the underlying so-called population distribution.

• Pearson’s χ2-test. Test statistic:

χ2 =
r∑
i=1

(Oi − Ei)2

Ei

where Oi’s are the Observed and Ei’s are the Expected frequencies. If n =
∑r

i=1 Oi =∑r
i=1Ei → ∞, then under the zero hypothesis it asymptotically follows χ2(df)-distribution,

where df = r − 1 − e (e is the number of estimated parameters). So the critical region,
corresponding to a test with significance α, is the upper α-point of the χ2(df)-distribution
(1− α quantile value, see Table).

1. χ2-test for goodness of fit:

χ2 =
r∑
i=1

(νi − npi)2

npi

2. χ2-test for homogeneity:

χ2 = nm
r∑
i=1

(νi
n
− µi

m
)2

νi + µi

3. χ2-test for independence:

χ2 =
r∑
i=1

s∑
j=1

(νij − nνi·n
ν·j
n

)2

nνi·
n

ν·j
n

= n
r∑
i=1

s∑
j=1

(νij − νi·ν·j
n

)2

νi·ν·j

with df = rs− 1− [(r − 1) + (s− 1)] = (r − 1)(s− 1).

• Kolmogorov–Smirnov-test

1. One-sample K–S-test (for goodness of fit):

Dn = sup
x∈R
|F ∗n(x)− F (x)|.

Under the zero hypothesis (the ordered sample is from the continuous F - distribution)

lim
n→∞

P(
√
nDn < z) = K(z), ∀z ∈ R,

that is the test statistic
√
nDn asymptotically follows Kolmogorov-distribution.

2. Two-sample K–S-test (for homogeneity):

Dn,m = sup
x∈R
|F ∗n(x)−G∗m(x)|.

Under the zero hypothesis (the two ordered samples are from the same continuous dist-
ribution), the test statistic

√
nm
n+m

Dn,m asymptotically follows Kolmogorov-distribution.
So the critical region corresponding to a test with significance α is the upper α-point of
the Kolmogorov-distribution (1 − α quantile value, see Table). Observe that the abo-
ve suprema are, in fact, maxima of finitely many terms, and the distributions can be
transformed into the U(0, 1) distribution.


