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Notes

• In the Introduction we promise to connect graph theory and statistics.
Under this we mean that we apply the techniques of multivariate statistical
methods to find a hidden (low dimensional) structure in the graph, based
on its spectrum and spectral subspaces. We indeed make assessments on
the dimension of the low-dimensional vertex representatives, and relate
spectra to multiway cuts and discrepancies, a new paradigm of spectral
clustering.

In the last section we also consider parametric probabilistic models, and
use the iteration of the EM algorithm for parameter estimation, where the
starting clustering is obtained by spectral clustering tools. However, we
do not deal with graphical models at all in the book. Graphical models
provide a framework for describing statistical dependencies in a collection
of random variables. They rely on probability and information theory, and
though their techniques use graph decompositions, those have nothing to
do with spectral clustering.

• In Section 2.4, we note that the complete and complete multipartite graphs
have the zero as the largest modularity eigenvalue. Dragan Stevanovic
conjectured (posed as an open problem in July 2012, at the Conference
on Applications of Graph Spectra in Computer Science, Barcelona) that
these are the only graphs with a negative semidefinite modularity matrix
(of which zero is always an eigenvalue). In 2013, I was leading an under-
graduate research course on spectral clustering at the Budapest Semester
of Mathematics for visiting undergraduate students from the US. I posed
there this problem, and just when the proofreading of this book was over,
we managed to give an affirmative answer to this question and proved that
the modularity matrix of a simple connected graph is negative semidefinite
if and only if it is complete multipartite. (Note that a complete graph is
also considered as complete multipartite with singleton classes.)

The same is true for the normalized modularity matrix. The backward
statement can be extended to edge-weighted graphs showing that if cer-
tain patterns appear in the edge-weight matrix, then the modularity ma-
trix should be indefinite. The above fact has important consequences for
the isoperimetric inequality, the symmetric maximal correlation, and the
Newman–Girvan modularity, see

Bolla, M., Bullins, B., Chaturapruek, S., Chen, S., Friedl, K., Spectral
properties of modularity matrices, Linear Algebra and Its Applications 73
(2015), 359-376.
http://dx.doi.org/10.1016/j.laa.2014.10.039

• In Section 3.3 (see Theorems 3.3.3 and 3.3.8) we managed to estimate
the discrepancy of the cluster pairs (in the graph and rectangular array
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setup) in a k-clustering by means of the gap between the k structural and
the other singular values and the k-variance of the vertex representatives
(based on the eigenvectors corresponding to the structural eigenvalues).
Since then, we have managed to prove the converse: estimated the kth
largest singular value by a (near 0) strictly increasing function of the k-
way discrepancy, defined for this purpose. The back and forth results are
generalizations of the expander mixing lemma and and its converse for the
k-cluster case, see

Bolla, M., Relating multiway discrepancy and singular values of nonnega-
tive rectangular matrices, Discrete Applied Mathematics 203 (2016), 26-
34.
http://dx.doi.org/10.1016/j.dam.2015.09.013

Errata

• In the Acknowledgements: Katalin Friedl, not Katalin Friedll.

• p.26: in Definition 1.4.1, after the first sentence we should include: The
joint distribution of Xi and Yi is W (i = 1, . . . , k).

• p.27, l.12: in the sentence ‘Observe that in the case of an irreducible con-
tingency table’, instead of irreducible the correct wording is non-decomposable
(irreducibility is defined for quadratic matrices). See Definition A.3.28,
where the notion of a decomposable rectangular matrix is defined. Note
that sometimes it is called degenerate.

• p.50, l.6: correctly, row vectors of Zk.

• p.71: in the main formula of Proposition 2.3.3, in the second line under
the min, correctly ψ,ψ′ ∈ H i.d. should stand.

• p.90: in the first line of the top formula, correctly σbb√
Vol(Cb)

should stand.

• p.115: Table 3.1. correctly is as follows (there are some minor changes).
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Graph Adjacency matrix Laplacian matrix Normalized Laplacian Normalized modularity

G = (V,B) B D −B I −D−1/2BD−1/2 D−1/2BD−1/2 −
√
d
√
d
T

B = ⊕ki=1Bi, λi = (ni − 1)µi + νi 0 with multiplicity k 0 with multiplicity k 1 with multiplicity k − 1
where the ni × ni (i = 1, . . . , k) and piecewise constant and stepwise constant and stepwise constant
Bi has diagonal νi with piecewise constant eigenvectors over Vi’s; eigenvectors over Vi’s; eigenvectors over Vi’s;
and off-diagonal µi eigenvectors over Vi’s; niµi with multiplicity niµi

νi+(ni−1)µi
1− niµi

νi+(ni−1)µi

V = (V1, . . . , Vk) νi − µi with ni − 1, and with multiplicity with multiplicity
|Vi| = ni multiplicity ni − 1, and eigenvectors with 0-sum ni − 1, and ni − 1, and

(i = 1, . . . , k) eigenvectors with 0-sum coordinates over Vi eigenvectors with 0-sum eigenvectors with 0-sum
coordinates over Vi (i = 1, . . . , k) coordinates over Vi coordinates over Vi

(i = 1, . . . , k) (i = 1, . . . , k) (i = 1, . . . , k)
G = Kn1,...,nk

0 with multiplicity n− k 0 single; 0 single;
with independent sets with eigenvectors of n with multiplicity k − 1 1 with multiplicity n− k; 0 with multiplicity n− k;

Vi’s, 0-sum coordinates and piecewise constant k − 1 eigenvalues k − 1 eigenvalues
|Vi| = ni over Vi’s; eigenvectors over Vi’s; in [1 + δ, 2], in [−1,−δ],

(i = 1, . . . , k). the other k n− ni with where δ where δ
w.l.g. assume that eigenvalues are in multiplicity ni − 1 does not depend does not depend
n1 ≤ · · · ≤ nk [−nk,−n1] ∪ [n− nk, n− n1] and eigenvectors on n under on n under

(n =
∑k
i=1 ni) with piecewise constant with 0-sum coordinates ni

n ≥ c
ni

n ≥ c
eigenvectors over Vi’s (i = 1, . . . , k) (i = 1, . . . , k)

B is the blown-up 0 with multiplicity n− k 0 single; ∃0 < δ < 1 s.t. ∃0 < δ < 1 s.t.
matrix of P = (pij) with eigenvectors of λ1, . . . , λk−1 = Θ(n) there are k eigenvalues there are k − 1 eigenvalues

(i, j = 1, . . . , k), 0-sum coordinates with piecewise constant (including the 0) (excluding the 1)
with blow-up sizes over Vi’s; eigenvectors over Vi’s; in [0, 1− δ] ∪ [1 + δ, 2] in [−1,−δ] ∪ [δ, 1)

n1, . . . , nk k non-zero eigenvalues γi =
∑
j 6=i njpij with piecewise constant with piecewise constant

and clusters λ1, . . . , λk = Θ(n) with multiplicity ni − 1 eigenvectors eigenvectors
V1, . . . , Vk; with piecewise constant and zero-sum coordinates over Vi’s, over Vi’s,

|Vi| = ni (n =
∑k
i=1 ni) eigenvectors over Vi (i = 1, . . . , k); and the 1 and the 0

rank(P ) = k, ni

n ≥ c over V1, . . . , Vk
∑k−1
i=1 λi =

∑k
i=1 γi with multiplicity n− k with multiplicity n− k

Table 1: Spectra and spectral subspaces of some special block- and blown-up matrices
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• p.117, l.1: the title of Lemma 3.1.16 correctly is Berstein inequality, not
Chernoff inequality (this form of a large deviation theorem is attributed
to Bernstein, originally).

• p.118, l.4: An = Bn + En is the correct formula.

• p.119, l.-2: Lemma 3.1.18, not Theorem 3.1.8.

• p.125: in the last paragraph of this page, there are problems with the
indexing. This paragraph correctly is as follows.

‘With an appropriate Wigner-noise we can guarantee that the noisy table
Am×n contains 1’s in the (u, v)-th block with probability puv, and 0’s
otherwise. Indeed, for indices 1 ≤ u ≤ a, 1 ≤ v ≤ b, and i ∈ Ru, j ∈ Cv
let

wij :=

{
1− puv with probability puv
−puv with probability 1− puv

(1)

be independent random variables. This Wm×n satisfies the conditions of
Definition 3.2.1 with uniformly bounded entries of zero expectation. Let
R1, . . . , Ra and C1, . . . , Cb denote the row- and column clusters induced
by the blow-up. In the random 0-1 contingency table Am×n, the row and
column categories of Ru and Cv are in interaction with probability puv.’

• p.143: the long formula starting in l.11 is as follows, correctly.

|w(X,Y )−Vol(X)Vol(Y )| =

∣∣∣∣∣
n−1∑
i=1

µiaibi

∣∣∣∣∣ ≤ max
i≥1
|µi|

n−1∑
i=1

|ai||bi|

≤ ‖MD‖ ·

√√√√n−1∑
i=1

a2i

n−1∑
i=1

b2i

= ‖MD‖ ·
√

Vol(X)(1−Vol(X))Vol(Y )(1−Vol(Y ))

≤ ‖MD‖ ·
√

Vol(X)Vol(Y ),

• p.151: the long formula starting in l.10 is as follows, correctly.

|c(R,C)−Vol(R)Vol(C)| =

∣∣∣∣∣
r−1∑
i=1

siaibi

∣∣∣∣∣ ≤ s1
r−1∑
i=1

|ai||bi|

≤ s1

√√√√r−1∑
i=1

a2i

r−1∑
i=1

b2i

= s1
√

Vol(R)(1−Vol(R))Vol(C)(1−Vol(C))

≤ s1
√

Vol(R)Vol(C),

• p.152, last line: correctly Rm, not Rn.

• p.153, first line: correctly Rn, not Rm.

• p.175, l.8. of Section 4.5: in the parenthesis, ‘note that GBn
’ stands

correctly.
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• p.180, in Theorem 4.6.3, the following modifications (for the better under-
standing) should be made. As the first sentence, include ‘Let (Gn)→W ’.

In the 5th line of this theorem, correctly write D
−1/2
n un,1, . . . ,D

−1/2
n un,k−1.

• p.206. The citation correctly:
Holland P, Laskey KB and Leinhardt S 1983 Stochastic blockmodels: some
first steps. Social Networks 5, 109–137.

• p.222: in Equation (A.11), AT should be written, not A∗.

• p.231, l.4: Note that in Definition A.3.28, the notion of a decomposable
rectangular matrix is equivalent to the notion of a degenerate one.

• p.237, l.-3: ‘conitional expectations’ should stand correctly, not ‘condi-
tional distributions’.

• p.239, l.-8: Proposition B.1.5 should stand, not Theorem B.1.5.

• p.251: in the second Equation, under the max, in the 3rd line CovPψψi =
0, i = 1, . . . , k−1, and in the 4th line CovQφφi = 0, i = 1, . . . , k−1 should
stand correctly.

• p.254, l.5: ‘structure matrix’ instead of ‘design matrix’ is a better wording.

• p.268, in the Index: under Szemerédi’s regularity lemma, weak, 163, 166,
186 are the correct numbers of the pages.

Marianna Bolla
Last modified on August 9, 2016.
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