
Graphical and log-linear models

Graphical models provide a framework for describing statistical depen-
dencies in (possibly large) collections of random variables. They are mul-
tidimensional generalizations of Markov chains. At their core lie various
correspondences between the conditional independence properties of a ran-
dom vector and the structural properties of the graph used to represent its
distribution. We consider directed and undirected models for discrete, con-
tinuous and mixed types of variables, and show how log-linear and Gaussian
models can give a general treatment to all of these situations.

1 Directed Graphical Model: Bayesian Net-

work (BN)

BN’s are graphical representations of joint distributions. The vertices corre-
spond to random variables (rv’s) X1, . . . , Xd, whereas the directed edges to
causal dependencies between them. The rv’s are usually discrete and take
on finitely many values. The point is that even if the rv’s are binary, it is
time-consuming to learn the underlying distribution from the data (there are
2d entries in the pmf). However, if we parameterize with the conditional
probabilities along the dependencies, we can reduce the calculations, pro-
vided the underlying distribution P is Markov compatible with the directed
graph assigned to the rv’s in the above way.

We consider a directed, acyclic graph (DAG) G on d vertices with vertex-
set V = {1, . . . , d}. It is important that, in case of a DAG, there is a linear
ordering (labeling) of the vertices such that for every directed edge j → i,
j < i holds. We use this, so-called (not necessarily unique) topological labeling
of the vertices.

Let FFac(G) denote the set of all distributions of random vectors (X1, . . . , Xd)
that factorize over G like

P (x1, . . . , xd) =
d∏
i=1

P (xi|x1, . . . , xi−1) =
d∏
i=1

P (xi|xpa(i)), (1)

where pa(i) ⊂ {1, . . . , i−1} denotes the set of vertices j such that from them,
a directed edge j → i emanates to i (they are the parents of i), and for any
A ⊂ V we use the notation xA = {xi : i ∈ A} and XA = {Xi : i ∈ A}.

On the other hand, let FMar(G) denote the set of all distributions of
random vectors (X1, . . . , Xd) that are Markov with respect to G in the sense
that, with the notation µ(i) = {1, . . . , i− 1} \ pa(i),

Xi ⊥ Xµ(i)|Xpa(i), i = 1, . . . , d
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holds, i.e., Xi (future) and Xµ(i) (past) are independent conditioned on Xpa(i)

(present).
This Markov property indicates that every variable is independent of all

of its nondescendants (in G), conditioned on its parents. This generalizes the
fundamental property of Markov chains (when G is a directed path).

Theorem 1 (Theorem 1 of [13]) For any DAG G, we have

FFac(G) = FMar(G).

2 Undirected Graphical Model: Markov Ran-

dom Field (MRF)

MRF’s are undirected graph models that explicitly express the conditional
independence relationships between the vertices:

P (xi|x1, . . . , xi−1, xi+1, . . . , xd) = P (xi|xne(i)),

where ne(i) denotes the set of neighbors (in G) of i.
For an undirected graph G, let FMar(G) denote the set of distributions

that are Markov with respect to G in the following symmetric past–future
scenario: XA ⊥ XB|XS holds for any vertex cutset S between disjoint vertex-
subsets A and B. In fact, this is the global Markov property, but it coincides
with other Markov properties (local) if the underlying distribution is positive
(see the Hammersley–Clifford theorem).

Especially, two vertices are conditionally independent if all paths between
them are blocked by given vertices. A given vertex can be made conditionally
independent of any non-neighboring vertex by observing each neighboring
vertex. This is often called the Markov blanket as it “blankets” the vertex
from the rest of the graph. There are many possible MRF’s for a given P;
however, we can draw the tightest MRF using assumptions that each vertex is
affected only by its neighbors. More precisely, let cl(i) = {i}∪ne(i) denote the
closure of vertex i in G. Then, with the above notation, Xi ⊥ XV \cl(i)|Xne(i)

holds for any variable Xi.
Now, let FFac(G) denote the set of all distributions that factorize as

P (x1, . . . , xd) =
1

Z

∏
C∈C

ψC(xC) (2)

over the undirected graph G, with normalizing constant Z > 0 and non-
negative compatibility functions ψC ’s assigned to the cliques C ∈ C of G.
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Under clique we understand a maximal complete subgraph of G. More pre-
cisely ψC : XC → R+, where XC = ×i∈CXi and Xi is the sample space
corresponding to Xi, i.e., Xi takes on values in the (usually finite) set Xi.
The whole sample space is X = ×di=1Xi.

Theorem 2 (Theorem 2 of [13]) Hammersley–Clifford theorem.

FFac(G) ⊆ FMar(G)

and equality holds if and only if P (x1, . . . , xd) > 0, ∀(x1, . . . , xd) ∈ X , i.e., P
has full support.

Note that we can make a directed BN undirected: not only disregard
the orientation of the edges but also “moralize” the graph. If G is a DAG ,
it can be done by connecting two parents whenever they are not connected
(married). The so obtained moral graph is then used in the MRF setup.

We also remark that condition (1) resembles that of (2), since in case of
a DAG (2) can be written as

P(x1, . . . , xn) =
1

Z

n∏
i=1

fi(xi, xpa(i)) =
1

Z

n∏
i=1

fi(xcl(i))

where Z = 1 and cl(i) = {i} ∪ pa(i) is considered as the closure of vertex i
in the DAG.

Gibbs Field (GF)

P is called a Gibbs distribution if it can be parameterized by a set of pos-
itive functions ψC ’s over the cliques of G, by physicists called clique poten-
tials, such that for its pmf or pdf the condition (2) holds. By the above
Hammersley–Clifford theorem, a GF and MRF are equivalent with regard to
the same G, whenever P is strictly positive.

GF was developed in statistical physics, where the clique potentials are
of the form ψC = e−fC with fC an energy function over values xC of C. The
energy represents the likelihood of the corresponding relationships within the
clique, with a higher energy configuration having lower probability and vice
versa. When the cliques are vertices and vertex-pairs (e.g., G is a grid), then
the GF gives the classical Ising Model. The estimation of these potentials
through energy functions is related to the theory of the forthcoming log-linear
models and Markov Chain Monte Carlo methods, e.g., Gibbs samplers [6, 7].
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3 Log-linear models

3.1 Basic notions

Here the sample space is a contingency table that contains joint observations
for (usually not independent) categorical random variables. We shall describe
special models in which so-called interactions between the rv’s are closely
related to their conditional independences and to graphical models.

Let X1, . . . , Xd be categorical variables, where Xi takes on values in the
finite set Xi = {1, . . . , ri}, i = 1, . . . , d. The components of the random
vector (X1, . . . , Xd) are usually not independent, the observations for their
joint distribution are collected in a so-called contingency table, the frame of
which is provided by the sample space X = X1 × · · · × Xd. In fact, X is a
d-dimensional array, the entries of which are d-tuples x = (x1, . . . , xd) ∈ X ,
and they are called cells ; altogether, there are

∏d
i=1 ri cells. Under contin-

gency table we understand this frame together with the cell counts n(x),
x ∈ X , where the nonnegative integer n(x) is the number of observations
for the random vector (X1, . . . , Xd) that fall in the cell x out of the total n
observations. In other words, n is the sample size, and of course,

n =
∑
x∈X

n(x).

When n is kept fixed, the joint distribution of the counts, N(x)′s as rv’s, is
multinomial with parameters p(x), x ∈ X :

Prob(N(x) = n(x), x ∈ X ) =
n!∏

x∈X n(x)!

∏
x∈X

p(x)n(x). (3)

In the saturated model the parameters are only constrained by restrictions
that are due to the sampling procedure. Under multinomial sampling, the
ML-estimate of the parameters is obtained by equating the count n(x) to the
binomial expectation np(x), for all x ∈ X , and hence,

p̂(x) =
n(x)

n
, x ∈ X .

Now, with some restrictions on the marginal distributions, we shall define
more special models. The marginal of the contingency table corresponding
to a given subset of the variables Xγ = {Xi : i ∈ γ}, with γ ⊂ V =
{1, . . . , d}, is defined as follows. Let us denote the γ-projection of the d-
tuple x = (x1, . . . , xd) ∈ X by xγ = {xi : i ∈ γ}. Then the γ-marginal of the

4



contingency table is given by the marginal counts

n(xγ) =
∑

x′∈X :x′γ=xγ

n(x′), for xγ ∈ Xγ = ×i∈γXi.

So if |γ| = k, then these counts form a k-dimensional contingency table of∏
i∈Γ ri cells, and there are

(
d
k

)
possible γ-marginals (k = 1, . . . , d). Note that

the marginal and the conditional distributions are also multinomial whenever
the underlying distribution is multinomial. The γ-marginal distribution of
the {p(x) : x ∈ X} distribution is defined by

pγ(xγ) =
∑

x′∈X :x′γ=xγ

p(x′), for xγ ∈ Xγ.

Likewise, the γ-marginal distribution of any {P (x) : x ∈ X} distribution
(not necessarily multinomial) over the contingency table is denoted by Pγ
and defined as

Pγ(xγ) =
∑

x′∈X :x′γ=xγ

P (x′), for xγ ∈ Xγ.

Such distributions can be artificially constructed by fixing certain γ-marginals
γ ∈ Γ, where Γ is a family of subsets of V = {1, . . . , d}. Denoting the fixed
marginal distributions by P̄γ (γ ∈ Γ), they define a so-called linear family

L = {P : Pγ = P̄γ, γ ∈ Γ}

(see [3]). In fact, the condition Pγ = P̄γ can as well be formulated in terms
of functions fγ : Xγ → R (γ ∈ Γ), giving some ANOVA-like conditions for
the marginals corresponding to γ ∈ Γ. See Section 3.3 for examples.

Further, we know that the exponential family that corresponds to this
linear family (through any given distribution Q on X via its I-projection
to the linear family) consists of all distributions that can be represented in
product form as

P (x) = cQ(x)e
P
γ∈Γ fγ(xγ) (4)

where c is a normalizing constant, and fγ statistics.
The family of all distributions in the form (4) is called log-affine family

with interactions in Γ. Frequently Q is the uniform distribution (i.e., Q(x) =
1) that results in the log-linear model :

lnP (x) = f0 +
∑
γ∈Γ

fγ(xγ), (5)
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where the individual terms represent interactions corresponding to γ ∈ Γ, for
they depend on x only through xγ, and the constant term f0 corresponds to
∅ ∈ Γ (it is in accord with the forthcoming hierarchical structure of Γ). This
is also in accord with the notation of the Gibbs Field, see Section 2, where
fC = −fγ, apart from a constant, if Γ consists of the maximal cliques C’s.
This is the case in the decomposable models, see the forthcoming Section 3.3.

The representation in (5) is not unique, but it can be made unique if
with any γ ∈ Γ and γ′ ⊂ γ, the relation γ′ ∈ Γ also holds. Such log-linear
models are called hierarchical, and only hierarchical models will be treated
in the sequel. If P obeys a hierarchical log-linear model, it means that it
can be constructed as the product of functions defined on its lower dimen-
sional margins up to a certain dimension. The individual values of these
functions are usually not the marginal probabilities, however, the γ’s in Γ
carry important information on the conditional independences of the vari-
ables X1, . . . , Xd. For this purpose, we will consider graphs and hypergraphs
with vertices assigned to the variables, see Section 3.3.

In hierarchical log-linear models, when Γ is specified with the set

C = {C : C is maximal clique of the underlying graph},

there is another, equivalent form of Equation (5) that uses an exponential
parametrization and shows that we are in exponential family:

Pθ(x) = exp

{∑
C∈C

< θC , IC(xC) > −Z(θ)

}
.

Here θ = {θC : C ∈ C} is the canonical parameter, where

θC = {θC;J , J ∈ XC} ∈ R|XC |

is a vector, and so, θ is a
∑

C∈C |XC |-dimensional vector, which dimension is
usually less than |X | =

∏n
i=1 |Xi|. Further, Z(θ) is the log-partition function

(it does not depend on x ∈ X ), and < ., . > denotes the inner product in
the above finite-dimensional spaces. So the canonical statistics IC(xC) take
on values in R|XC | for every C ∈ C. The IC ’s are multiple indicator functions
consisting of usual 0/1 indicator functions of all possible states in XC (cells
with coordinates in C). More exactly,

IC = {IC;J , J ∈ XC},

where the usual indicator function IC;J(xC) is 1 if xC = J and 0, other-
wise. Therefore, the IC;J ’s are canonical statistics, and their sums, i.e., the
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frequencies n(J)’s of the cells within the cliques are the sufficient statistics
entering into the parameter estimation. In fact, the ML estimate of the mean
parameters is

µ̂C;J =
1

n
n(J).

Hence, these estimates and those of the log-linear probabilities are based
on the clique frequencies, and are obtainable by IPS (Iterative Proportional
Scaling), see the next section and [13], page 97. In fact, the mean parameters
µC;J ’s are the true cell probabilities, expectations of the indicator variables,
within the cliques (only those, as many as the θ’s).

Exact formulas are also given later for decomposable models.

3.2 ML-estimation in log-linear models

By [3], the ML-estimate of the true distribution obeying the model (3) is also
an MI-estimate (minimizing the I-divergence), and it is the I-projection of Q
onto L, which is the only element common to L and the exponential family
(4). From [8] we also know the following:

{N(xγ), xγ ∈ Xγ, γ ∈ Γ}

is a sufficient statistic for the parameters fγ : γ ∈ Γ of the log-linear
model. Moreover, as we are in exponential family, the γ-marginals of the
ML-estimate p̂ are equal to their relative frequencies

p̂(xγ) =
n(xγ)

n
, x ∈ X , γ ∈ Γ.

For the numerical approximation of the ML-estimate p̂ we use the follow-
ing Iterative Proportional Scaling (IPS) algorithm. Note that here instead
of the model parameters fγ’s we estimate the cell probabilities under the
model’s assumptions. We are looking for the estimate in the form

p̂(x) =
m(x)

n
, x ∈ X

where m is called expected count or mean-vector. Let m(0)(x) be a starting
estimate, x ∈ X . We know that the Γ-marginals of the ML-estimate are
equal to the observed marginals in Γ. Therefore, we try to alter m(0)(x)
so that its Γ-marginals be equal to the observed marginals in Γ. For this
purpose, we fix some order of the γ’s in Γ, but it suffices to deal only with
the maximal elements of Γ. Indeed, in a hierarchical model, if the γ-marginals
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of a distribution are equal to the observed ones, then so do the γ′-marginals
too, for γ′ ⊂ γ.

The iteration consists of the following cycles: in each cycle each marginal
is treated. If there are M maximal interactions in Γ, then in the t-th step
of the iteration, where t = kM + r, and 0 ≤ r < M counts the inner, while
k = 1, 2, . . . the outer cycles, we update the (r+1)-th marginal based on the
estimate m(t−1):

m(t)(x) = m(t−1)(x)
n(xγr+1)

m(t−1)(xγr+1)
.

Theorem 3 (see [8]) If n(xγ) > 0 and m(0)(xγ) > 0, ∀x ∈ X and ∀γ ∈ Γ,
then

m(t)(x)→ np̂(x) as t→∞.

3.3 Decomposable models

In many applications we have a contingency table of large size: even in case of
binary variables, there are 2d cells the number of which grows exponentially
with the number of variables d. Then the iteration, going through the cells
several times, is time-consuming. However, there are models, where the
ML-estimate of the cell probabilities under the model’s assumptions can be
given by explicit formulas. These models can be characterized by the special
dependency structure of the variables when we build a graph or hypergraph
on them. The so-called decomposable models are strongly related to the
MRF (see Section 2), and therefore, the conditional independences between
certain subsets of the variables are also encoded in these models.

From now on, our log-lineal model is hierarchical, and we keep only the
maximal interactions in Γ. Such a family Γ is called generating class of the
model. Further, we assume that each variable is included in at least one
interaction; in other words, all main effects are present. In case of a special
structure of the generating class, we can introduce an exact algorithm that
goes through the γ’s in a definite order. To discuss this, we need some further
notions.

The generating class Γ uniquely defines the following hypergraph H: the
vertices correspond to the variables and constitute the set V = {1, . . . , d},
while the hyperedges are the elements of Γ (they are the maximal interac-
tions). With our former assumption, each vertex is contained in at least
one hyperedge. As the model is hierarchical, the subsets of the maximal
interactions are also interactions, but they are not hyperedges in H.

The interaction graph G corresponding to H, or equivalently, to the hier-
archical log-linear model with generating class Γ, is defined in the following
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way. Its vertex set is again V , while the edges are as follows:

i ∼ j ⇔ {i, j} ⊆ γ for some γ ∈ Γ,

i.e., two vertices are connected if and only if they are together in some inter-
action.

The clique hypergraph H of a graph G (both are defined on the same
vertex set) consists of hyperedges which are exactly the cliques of G.

Observe that different connected components of the interaction graph cor-
respond to variables that are mutually independent. Also note that different
hierarchical models may have the same interaction graph, see the examples
below. However, we introduce a class of models when there is a one-to-one
correspondence between the model and its interaction graph. Therefore, the
interaction graph is capable to describe such a model. To make it precise,
we need some further definitions.

Definition 1 The hierarchical log-linear model with generating class Γ is
graphical if the hypergraph H defined above (with the hyperedges as the
entries of the generating class Γ) is identical to the clique hypergraph of its
interaction graph.

In other words, the cliques (maximal complete subgraphs) of the interaction
graph assigned to the hypergraph with hyperedges as the maximal interac-
tions, give back the maximal interactions. For example, when the generating
class is

Γ = {{1, 2}, {2, 3}, {1, 3}}, (6)

then the interaction graph has the clique {1, 2, 3}, which is an edge in the
clique hypergraph, but not an edge of the hypergraph generated by Γ, so our
log-linear model is not a graphical interaction model. However, when the
generating class is

Γ′ = {{1, 2, 3}}, (7)

then the interaction graph has the clique {1, 2, 3}, which is an edge both in
the clique hypergraph and in the hypergraph generated by Γ′, so our log-
linear model is a graphical interaction model.

Theorem 4 (see [8]) The distribution P obeying the hierarchical log-linear
model with generating class Γ defines an MRF , i.e., P ∈ FMar(G) where G
is the interaction graph corresponding to it, if and only if the log-linear model
is graphical.

Now we investigate special graphical models, the decomposable ones.
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Definition 2 The definition is recursive. The graph G is (weakly) decom-
posable if it is either a complete graph or its vertex-set V can be partitioned
into disjoint vertex-subsets A,B,C such that

• C defines a complete subgraph;

• C separates A from B (in other words, C is a vertex cutset between A
and B);

• the subgraphs generated by A ∪ C and B ∪ C are both (weakly) decom-
posable.

Proposition 1 (Proposition 2.5 of [7]) The following two properties are
equivalent to the fact that G is (weakly) decomposable:

• G is triangulated (with other words, chordal), i.e., every cycle of G
with more than 3 vertices has a chord.

• G has the following running intersection property: we can number
the cliques of it to form a so-called perfect sequence C1, . . . , Ck where
each combination of subgraphs induced by Hj−1 = C1∪· · ·∪Cj−1 and Cj
is a decomposition (j = 2, . . . , k), i.e., the necessarily complete subgraph
Sj = Hj−1 ∩ Cj is a separator. More precisely, Sj is a vertex cutset
between the disjoint vertex subsets Hj−1 \ Sj and Cj \ Sj = Hj \Hj−1.
This sequence of cliques is also called a junction tree.

Note that the junction tree is indeed a tree with vertices C1, . . . , Ck and one
less edges, that are the separators S2, . . . , Sk.

Definition 3 The hypergraph H is (weakly) decomposable if it is the clique
hypergraph of a (weakly) decomposable graph.

Proposition 2 (see [8], Corollary 7.5) A log-linear model is a graphical
interaction model whenever the hypergraph H, assigned to its generating class
Γ, is (weakly) decomposable.

In this case, the maximal interactions (in Γ) are identical to the cliques
in the associated clique hypergraph G.

For example, the model with generating class Γ′ of (7) is decomposable,
as G is the complete graph, and its clique hypergraph is H. However, the
model with generating class Γ of (6) is not decomposable: though G is the
complete graph, its clique hypergraph (with the only hyperedge {1, 2, 3}) is
not identical to H (that contains the hyperedges {1, 2}, {2, 3}, {1, 3}).
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So a sufficient condition for a log-linear model to be graphical is that its
interaction graph G is (weakly) decomposable (or equivalently, it is triangu-
lated), and H is the clique hypergraph of G. In this situation, we can use
the following exact (product) estimate for the probabilities, see [7].

Since our interaction graph is (weakly) decomposable, by Proposition 1
we have the perfect sequence C1, . . . , Ck of the cliques. Then for the true
model parameters we have

p(x) =

∏k
j=1 p(xCj)∏k
j=2 p(xSj)

=

∏
C∈C p(xC)∏

S∈S p(xS)ν(S)
, x ∈ X (8)

where C is the set of the cliques, S is the set of the separators, and ν(S)
is the multiplicity of the occurrence of the separator S in the above perfect
sequence of the cliques of G.

Hence, the ML-estimate of the mean vector is

m̂(x) =

∏k
j=1 n(xCj)∏k
j=2 n(xSj)

=

∏
C∈C n(xC)∏

S∈S n(xS)ν(S)
, x ∈ X (9)

and that of the cell probabilities is p̂(x) = m̂(x)
n

, x ∈ X .

Hereby we illustrate some particular models via the following examples.

Example 1. Let us consider the rv’s X1, X2, X3 taking on values in the finite
sets X1 = {1, . . . , r1}, X2 = {1, . . . , r2}, X3 = {1, . . . , r3}. Assume that X2

and X3 are independent conditioned on X1. It means that

Prob(X2 = j,X3 = k|X1 = i) = Prob(X2 = j|X1 = i) ·Prob(X3 = k|X1 = i),

or with pmf’s,

p(i, j, k)

p(i, ∗, ∗)
=
p(i, j, ∗)
p(i, ∗, ∗)

· p(i, ∗, k)

p(i, ∗, ∗)
, i ∈ X1, j ∈ X2, k ∈ X3 (10)

where ∗ stands for the summation with respect to the other coordinates, thus
producing the marginal probability. Here the generating class is

Γ = {{1, 2}, {1, 3}}, (11)

and the interaction graph has the cliques {1, 2} and {1, 3}, which are identical
to the hyperedges in Γ. So this log-linear model is decomposable with the
cliques {1, 2}, {1, 3}, and the only separator S = {1} between them. It is
also a graphical interaction model, since the hypergraph corresponding to
(11) is the clique hypergraph of the interaction graph.
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If we simplify Equation (10), we get the formula

p(i, j, k) =
p(i, j, ∗)p(i, ∗, k)

p(i, ∗, ∗)
, i ∈ X1, j ∈ X2, k ∈ X3

in accord with (8), and also see the forthcoming Example 4(c).
Consider Example 4.1 of [7], based on an investigation of 237 Danish

women performed by the Gallup Institute. X1 is the childhood experience of
physical punishment (yes/no), X2 is whether they use physical punishment
with their children (yes/no), and X3 is their political affiliation (l,s,r). The
model that X2 and X3 are independent conditioned on X1 fits well. Since

p(i, j, k) = α(i, j)β(i, k),

we have that
ln p ∈ FX1X2 + FX1X3 ,

where FX1X2 is the linear subspace of 2×2×3 contingency tables with entries
depending only on the variables X1 and X2 (irrespective of X3), and FX1X3

is defined similarly (linear family).

Example 2. If the generating class is

Γ = {{1, 3}, {2, 3}, {3, 4}, {4, 5, 6}}, (12)

then the entries of Γ are the cliques of the interaction graph, which are
identical to the hyperedges in Γ. So this log-linear model is a graphi-
cal interaction model, and it is of course decomposable with the cliques
{1, 3}, {2, 3}, {3, 4}, {4, 5, 6}, which form a junction tree in this order; the
separators are {3}, {3}, {4}, see Figure 1. Therefore, the probabilities in this
model can be decomposed as

p(x1, x2, x3, x4, x5, x6) =
p(x1, x3) · p(x2, x3) · p(x3, x4) · p(x4, x5, x6)

p2(x3) · p(x4)

for all x = (x1, x2, x3, x4, x5, x6) ∈ X and to simplify notation, we did not
indicate the missing coordinates (∗’s) in the marginal probabilities.

Example 3. Let d = 2 and for simplicity, denote the cells of the r1 × r2

contingency table by (i, j), i = 1, . . . , r1, j = 1, . . . , r2. Then for the cell
probabilities, p(i, j)’s the log-linear model with generating class Γ = {{1, 2}}
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Figure 1: Interaction graph of Example 2, with cliques in (12).

gives the following model equations:

f0 =
1

r1r2

r1∑
i=1

r2∑
j=1

log p(i, j)

f1(i) =
1

r2

r2∑
j=1

log p(i, j)− f0

f2(j) =
1

r1

r1∑
i=1

log p(i, j)− f0

f1,2(i, j) = log p(i, j)− f1(i)− f2(j)− f0.

It can easily be seen that

log p(i, j) = f0 + f1(i) + f2(j) + f1,2(i, j).

The two marginals are independent if and only if p(i, j)’s obey the log-linear
model

log p(i, j) = f0 + f1(i) + f2(j)

with generating class Γ = {{1}, {2}}. However, here the interaction graph is
not connected, but consists of two components.

Example 4. Let d = 3 and denote the cells of the r1 × r2 × r3 contingency
table by (i, j, k), i = 1, . . . , r1, j = 1, . . . , r2, k = 1, . . . , r3. Then for the
cell probabilities, p(i, j, k)’s the log-linear model with generating class Γ =
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{{1, 2, 3}} gives the following model equations:

f0 =
1

r1r2r3

r1∑
i=1

r2∑
j=1

r3∑
k=1

log p(i, j, k)

f1(i) =
1

r2r3

r2∑
j=1

r3∑
k=1

log p(i, j, k)− f0

f2(j) =
1

r1r3

r1∑
i=1

r3∑
k=1

log p(i, j, k)− f0

f3(k) =
1

r1r2

r1∑
i=1

r2∑
j=1

log p(i, j, k)− f0

f1,2(i, j) =
1

r3

r3∑
k=1

log p(i, j, k)− f1(i)− f2(j)− f0

f1,3(i, k) =
1

r2

r2∑
j=1

log p(i, j, k)− f1(i)− f3(k)− f0

f2,3(j, k) =
1

r1

r1∑
i=1

log p(i, j, k)− f2(j)− f3(k)− f0

f1,2,3(i, j, k) = log p(i, j, k)− f1(i)− f2(j)− f3(k)− f1,2(i, j)− f1,3(i, k)− f2,3(j, k)− f0.

It can easily be seen that

log p(i, j, k) = f0+f1(i)+f2(j)+f3(k)+f1,2(i, j)+f1,3(i, k)+f2,3(j, k)+f1,2,3(i, j, k).

Then the conditional independences can be planted, via the following gener-
ating classes, into the model.

(a) The three 1-dimensional marginals are independent if and only if p(i, j, k)’s
obey the log-linear model

log p(i, j, k) = f0 + f1(i) + f2(j) + f3(k)

with generating class Γ = {{1}, {2}, {3}}. Here the interaction graph
is again not connected, but consists of three components.

(b) If (a) does not hold, then the 1-dimensional marginal of the first variable
is independent of the 2-dimensional marginal of the second and third
ones if and only if p(i, j, k)’s obey the log-linear model

log p(i, j, k) = f0 + f1(i) + f2(j) + f3(k) + f2,3(j, k)

with generating class Γ = {{1}, {2, 3}}. Here the not connected inter-
action graph consists of two components.
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(c) If neither the first and second, nor the first and third marginals are
independent, then the second and third marginals are conditionally
independent conditioned on the first one if and only if p(i, j, k)’s obey
the log-linear model

log p(i, j, k) = f0 + f1(i) + f2(j) + f3(k) + f1,2(i, j) + f1,3(i, k)

with generating class Γ = {{1, 2}, {1, 3}}. Here the interaction graph
is connected at last, and the cell probabilities are estimated like in
Example 1.

Similar statements hold for the permutations of the variables, and we want
to emphasize that our primary interest is not to estimate the parameters fi’s,
but to estimate the cell probabilities or certain marginal probabilities under
the model assumptions. If the model has restrictions (the generating class
is not the whole vertex set), then these estimates are not the usual relative
frequencies at all.

3.4 Recursive models

So far, the graph G assigned to our log-linear model was an undirected one
and we showed how log-linear models are related to the MRF’s. When there
are casual dependencies between our variables, then we can build a directed
graph on them and relate it to the BN’s.

Assume that the variables are numbered as X1, . . . , Xd in such a way that
the variable Xj is considered to be a response to variables X1, . . . , Xj−1, but
explanatory to variables Xj+1, . . . , Xd. In this case a directed edge Xj → Xi

shows from the explanatory variables to the responses (j < i) and parent–
child relations can be established as in the BN’s. By its formation, this
graph is a DAG, and the so-called recursive graphical model associated to the
above log-linear model with this ordering of the variables offers the following
factorization of the likelihood function:

L(p) = c
∏
x∈X

p(x)n(x) = c
∏
x∈X

{
d∏
i=1

p(xi|xpa(i))

}n(x)

= c

d∏
i=1

∏
xcl(i)∈Xcl(i)

p(xi|xpa(i))
n(xcl(i)) =

d∏
i=1

Li(p)

where recall that for A ⊂ V , xA denotes the A-projection of x ∈ X , whereas
cl(i) = {i} ∪ pa(i) is the closure of vertex i in the DAG as in Section 2.
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The likelihood function is factorized as the product of the functions Li,
each being proportional to the likelihood function obtained when sampling
the variables in cl(i) with fixed pa(i)-marginals. The joint likelihood can
be maximized by maximizing the factors separately. Each of these factors
is in turn proportional to the likelihood function for the saturated model
involving the variables in cl(i) and therefore, the following ML-estimate is
derived in [7].

Theorem 5 (Theorem 4.36 of [7]) The ML-estimate in a recursive graph-
ical model based on a multinomial sample is given as

p̂(x) =
d∏
i=1

n(xcl(i))

n(xpa(i))
, x ∈ X (13)

with the understanding that n(x∅) = n. (This will appear in the denominator
whenever a vertex has no parents.)

More generally, in [7] composite models are also discussed, where directed
and undirected edges both occur, or the vertices can correspond to continu-
ously distributed rv’s such that their distribution conditioned on the discrete
rv’s is multivariate normal.

Block-recursive models are applicable for chain-graphs, where there is
a partition of the vertices into V1, . . . VT such that the subgraphs have no
directed edges, and between the subgraphs arrows show from Vi → Vj with
(i < j). The likelihood function factorizes according to the chain components
Vi’s. DAG’s are also chain graphs, where each vertex is a singleton class.

3.5 Marked graph notation

Sometimes we want to treat uniquely discrete and continuous variables, fur-
ther, directed and undirected graphs. The vertices of a marked graph belong
to both discrete and continuous rv’s (V and V ′) and usually first we label
the discrete ones (if directed, then in the topological ordering), then the con-
tinuous ones. (Parent and child are defined in the directed, and neighbors,
in the undirected case).

Definition 4 (Strongly decomposable graph) The definition is recur-
sive. The marked graph G is (strongly) decomposable if it is either a complete
graph or its vertex-set (V, V ′) can be partitioned into disjoint vertex-subsets
A,B,C such that

• C is a complete subset of (V, V ′);
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• C ⊆ V or B ⊆ V ′.

• C separates A from B (in other words, C is a vertex cutset between A
and B);

• the subgraphs generated by A∪C and B∪C are both (strongly) decom-
posable.

Definition 5 (Weakly decomposable graph) The definition is recursive.
The marked graph G is weakly decomposable if it is either it is a complete
graph or its vertex-set (V, V ′) can be partitioned into disjoint vertex-subsets
A,B,C such that

• C is a complete subset of (V, V ′);

• C separates A from B (in other words, C is a vertex cutset between A
and B);

• the subgraphs generated by A∪C and B∪C are both (strongly) decom-
posable.

Strong decomposability implies the weak one, and usually the weak suf-
fices, as it guarantees the existence of a junction tree structure by the fol-
lowing proposition. However, in case of mixed models, usually the decom-
posability is assumed (if it is the strong one, then a special junction tree is
needed: the separators are either discrete, or the residuals are continuous).

Proposition 3 (Proposition 2.5 of [7] and Theorem 4 of [13]) The fol-
lowing properties are equivalent to the fact that G is weakly decomposable:

• G is triangulated (with other words, chordal), i.e., every cycle of G
with more than 3 vertices has a chord.

• G has the following running intersection property: we can number
the cliques of it to form a so-called perfect sequence C1, . . . , Ck where
each combination of subgraphs induced by Hj−1 = C1∪· · ·∪Cj−1 and Cj
is a decomposition (j = 2, . . . , k), i.e., the necessarily complete subgraph
Sj = Hj−1 ∩Cj is a separator. More precisely, Sj is a vertex cutset be-
tween the disjoint vertex subsets Hj−1\Sj and Cj \Sj = Hj \Hj−1. This
sequence of cliques is also called a junction tree, and equivalently, the
graph has a junction tree. That is, Sj is a subset of all cliques on the
path between Cj−1 and Cj in the tree.

17



• The graph is recursively simplicial. A vertex is simplicial if its
neighbors form a complete subgraph. A non-empty graph is recursively
simplicial if it contains a simplicial vertex, and when that is removed,
any graph that remains is recursively simplicial. (Possible relation to
graphs with strongly maximal cliques.)

Note that the junction tree is indeed a tree with vertices C1, . . . , Ck and
one less edges, that are the separators S2, . . . , Sk. To form it, basically we
can start with any clique, but then label the vertices in a so-called perfect
order. The last ones are vertices, representing continuous variables.

Proposition 4 (Proposition 2.17 of [7]) The following properties are equiv-
alent to the fact that G is strongly decomposable:

• the vertices of G admit a perfect numbering;

• The cliques of G can be nubered to form a perfect sequence.

See also Lemma 14 of [7].

3.6 Undirected Gaussian graphical models

Let G = (V,E) be an undirected graph with vertex set V and edge set
E and let Y = (Yi)i∈V be a multivariate Gaussian random vector. The
conditional independences in this case can be easily described as follows. Let
Y ∼ Nd(µ,C) with expectation (vector) µ and positive definite, symmetric
d × d covariance matrix C (d = |V |). Note that a multivariate Gaussian
Nd(µ,C) distribution with K = C−1 = (kij) belongs to the expoential family
with canonical parameter (Kµ,K). The also positive definite, symmetric
matrix K = C−1 is called concentration matrix, and its zero entries indicate
conditional independences between two components of Y , conditioned on the
remaining components.

Proposition 5 For the above Gaussian random vector: if i 6= j, then

Yi ⊥ Yj |YV \{i,j} ⇔ kij = 0.

Moreover, − kij√
kiikjj

is the partial correlation coefficient between Yi and Yj

after eliminating the effect of the remaining components of Y .
With the help of the concentration matrix K and the vector h = Kµ, the

log-density of Y has the following form:

ln f(y) = c− 1

2

∑
i∈V

kiiy
2
i +

∑
i∈V

hiyi −
∑
i 6=j

kijyiyj,
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where c is appropriate constant. Compared to the discrete case, the log-
density is additively decomposed of quadratic main effects with coefficients
−1

2
kii, linear main effects with coefficients hi, and quadratic interactions

with coefficients −kij. Observe that the interaction terms of the highest
order involve pairs of variables, and there are no terms involving groups of
variables with more than two elements. The hyperedges are usual edges.

The graphical Gaussian model represented by G is the set of Gaussian
distributions for which the maximal interactions are pairwise, and the non-
zero kij’s correspond to {i, j} ∈ E pairs. This is in contrast to the discrete
case and it follows in particular that within the normal distribution there are
no hierarchical interaction models which are not graphical.

Given the interaction graph and a sample (of more than d elements), we
want to fit a (Gaussian) distribution so that Yi is conditionally independent
of Yj given the remaining variables, denoted by Yi ⊥ Yj |YV \{i,j}, whenever
there is no edge between i and j in G. That is, we want to estimate the
parameters (µ and C) from the i.i.d. sample X1, . . . , Xn ∼ Nd(µ,C) (n > d),
such that the concentration matrix has zero entries in the no-edge positions:
kij be 0 whenever {i, j} /∈ E. This can be done by the covariance selection
model: it can be proven (see Theorem 5.3 of [7]) that under this model the
ML-estimate of the parameters is: µ̂ = X̄ = 1

n

∑n
i=1Xi and that of C = (cij)

can be calculated as follows. We estimate the entries in the edge-positions
as in the saturated model (no restrictions):

ĉij =
1

n
sij, {i, j} ∈ E,

where S = (sij) =
∑n

`=1(X` − X̄)(X` − X̄)T . The other entries (in the
no-edge positions) are free, but after taking K = (kij) = C−1 with these
undetermined entries, we get the same number of equations for them from
kij = 0 whenever {i, j} /∈ E. There are numerical algorithms at our disposal,
for instance, the iterative proportional scaling (see [7], p. 134). Actually, the
equations can be stated for the cliques, and instead of the n > d condition
n > c would suffice, where c is the cardinality of the largest (maximum)
clique.

If the graph G is decomposable, and we have a junction tree, then direct
estimates, like (8), are available:

f(y) =

∏k
j=1 f(yCj)∏k
j=2 f(ySj)

=

∏
C∈C f(yC)∏

S∈S f(yS)ν(S)
, y ∈ Rd. (14)

There are also exact tests in decomposable models (see [7], p. 149).
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3.7 Mixed models

Here the variables can be either quantitative (discrete/ordinal/nominal) or
qualitative (continuous/scaled) rv’s, and they can capture covariation be-
tween the discrete and continuous ones. If they are all continuous, we assume
the model of Section 3.6, where standard methods of multivariate statistical
analysis are applicable.

In the mixed case, we assume that the conditional distribution of the
continuous rv’s, conditioned on the discrete ones, is multivariate normal. Hi-
erarchical mixed interaction models are full and regular exponential models,
being defined through linear restrictions on the canonical parameters of the
saturated model. The ML-estimate of the parameters exists. If the graph is
decomposable and undirected, the ML-estimate can be calculated explicitly.

So we have a so-called marked graph with vertices corresponding to dis-
crete or continuous variables, and the edges are relations between them. Let
V and V ′ denote the vertices corresponding to the discrete and continuous
variables, |V | := d, |V ′| := d′. The observations for the discrete rv’s are cell
counts of a d-dimensional contingency table X , and we shall denote the cells
by x as in Section 3.1. The continuous rv’s have values y ∈ Rd′ . So the
sample space is X × Rd′ .

The joint distribution of the d+ d′ variables is given with the density f ,
the natural logarithm of which, at (x, y), is the following.

ln f(x, y) = g(x) + h(x)Ty − 1

2
yTK(x)y

where x ∈ Rd, y ∈ Rd′ , g(x) ∈ R, h(x) ∈ Rd′ (∀x ∈ X ), T denotes the
transposition, and K(x) is a d′ × d′, positive definite matrix (∀x ∈ X ).
Actually, K(x) is the inverse covariance matrix, called concentration matrix,
of the multivariate Gaussian random vector of the continuous rv’s occurring
together with the joint value x of the discrete ones.

Such a distribution is called CG distribution, and it is named homo-
geneous if K(x) = K (∀x ∈ X ). The marginal of a CG distribution is
not always a CG distribution, but the conditional distribution of any sub-
set of the continuous rv’s conditioned on any discrete one is multivariate
Gaussian. More precisely, the conditional distribution of the continuous
rv’s, conditioned on that the discrete ones taking on value in cell x, is
Nd′(K(x)−1h(x), K(x)−1). We estimate the covariance matrix K(x)−1 as
the empirical covariance matrix, based on the yi part of the sample entries
(x, yi)’s.

In graphical interaction models, since the CG distributions are strictly
positive, the different Markov properties are all equivalent (we use the global
one).
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By Proposition 4, we have the following factorization of the joint density
into weak marginals to cliques and separators:

f(x) =
k∏
j=1

fCj(xCj)

fSj(xSj)
.

Within each of these complete sets we can further partition the variables into
discrete and continuous to obtain

f(x, y) =
k∏
j=1

p(xCj)

p(xSj)

k∏
j=1

fCj(yCj |xCj)
fSj(ySj |xSj)

,

where S1 = ∅ and f∅ = 1.
With special interactions, we get an interaction graph G on the vertex set

V ∪V ′ (in the homogeneous model, the continuous rv’s are fully connected if
K is positive definite). If G is decomposable, then with the perfect sequence
C1, . . . , Ck of the cliques and the separators Sj’s, we have the following esti-
mates for the cell probabilities and the conditional densities, provided that
for every clique C: n(xC) > 0 and the empirical covariance matrix, based on
the yi part of the sample entries (xC , yi) is positive definite (it holds almost
surely whenever n(xC) > |C ∩V ′|). Therefore, by Proposition 6.21 of [7], the
ML estimates are as follows.

p̂(x) =
k∏
j=1

n(xCj∩V )

n(xSj∩V )

with the understanding that n(x∅) = n; further,

f̂(y|x) =
k∏
j=1

f̂xCj∩V (yCj∩V ′ |xCj∩V )

f̂xSj∩V (ySj∩V ′|xSj∩V )
.

Based on these, we can estimate h(x) and K(x) for x ∈ X .
Note that here the running intersection C1, . . . , Ck exhausts the cliques,

but for the separators and the remaining parts there are additional require-
ments (they should contain all discrete or continuous vertices), see [7].

Note that there are exact tests in decomposable models, and CG regres-
sions.

4 Mode prediction

Let X1, . . . , Xd be categorical variables, where Xi takes on ri distinct values.
We want to predict the value of the target variable (say, X1) based on the
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given values x2, . . . , xd of the others. If x1i denotes the ith possible value of
X1, we are looking for the conditional probabilities

p(x1i|x2, . . . , xd) =
p(x1i, x2, . . . , xd)

p(x2, . . . , xd)
, i = 1, . . . , r1 (15)

and find the i∗ for which it is maximal. This is a discrete maximization
(integer programming) task. Then x1i∗ is the mode of X1 conditioned on
the given values of the other variables, and this is our prediction for X1.
For example, if X2, . . . , Xd are possible symptoms, and X1 is the diagnosis,
then x1i∗ is the most likely diagnosis under the given symptoms. In the
child support example, if X2, . . . , Xd describe the status of the father (salary
category, number of children, years spent together, remarried:yes/no), X1 is
the most likely category of the child support fee he has to pay.

Input of the algorithm

• the observed frequency counts n(x1, . . . , xd): there could be r1 · · · rd
frequencies, but we keep only the positive ones. The sum of them is n.

• The graphical interaction structure: a graph with vertices X1, . . . , Xd

that are organized into a junction tree structure: the vertices of this
junction tree are the cliques C (maximal complete subgraphs) and the
edges are the separators S between them (the number of separators is
one less than the number of cliques, and they can occur with multi-
plicities). Such a structure is guaranteed if the graph (with edges as
interactions) is triangulated (chordal), but with d ≤ 30 we can build it
manually.

Output of the algorithm: The conditional probabilities (15) and the mode
of X1. As the denominator does not depend on i, we only consider the
numerator:

p(x1i, x2, . . . , xd) = pi(x) ∝
∏

C n(xC)∏
S n(xS)

.

However, the C’s and S’s that do not contain X1 can be disregarded, as those
marginal counts do not depend on i at all. Therefore,

p(x1i, x2, . . . , xd) = pi(x) ∝ qi :=

∏
C:X1∈C n(xC)∏
S:X1∈S n(xS)

.

Eventually,

p(x1i|x2, . . . , xd) =
qi∑r1
j=1 qj

, i = 1, . . . , r1

and a discrete maximization in i closes the mode finding procedure.
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Note that the estimate can be extended to directed graphs or to CG
models, where some of the variables can be continuous (scaled). We can
either categorize them or assuming, that they are Gaussian (conditioned on
the discrete ones), similar procedures are available via covariance estimates.

5 Algorithms

Exact algorithms are used for estimating marginals, modes, and likelihoods,
e.g., message-passing, sum-product, and max-product algorithms for trees
and factor graphs (bipartite graphs to facilitate the description of the clique
memberships of the vertices). Graphical models are widely used in statistical
machine learning and artificial intelligence; further, in statistical physics,
social sciences, communication, information, and network control theory.

The Belief Propagation Algorithm [5, 11] is capable to estimate marginal
conditional probabilities based on some evidences (given the values of some
Xi’s) in BN’s. If there are no evidences, it estimates the marginals. The
algorithm is an iteration, in due course of which the processors (vertices)
send informations along the edges of the so-called factor graph, to be con-
structed for this convenience. The Belief Propagation Algorithm converges
for DAG’s, and it is a special case of the Sum-Product Algorithm, for which
advanced versions were developed, e.g., the Turbo Codes [1], and relations
to information theoretical coding and the Shannon entropy were recovered.

These algorithms are as well applicable to directed and undirected graphs,
through moralization. In [7], Markov Chain Monte Carlo (MCMC) meth-
ods are also introduced to find the mode estimates, i.e., the most probable
category-configurations, provided our distribution is positive. If not, other
possibilities are available (they treat the variables in blocks), see programs
like BUGS, see [13]. Missing data can be treated via the EM-algorithm.

6 Conclusions

We saw that the graphical hierarchical log-linear models are identical to
FMar(G), where G is the interaction graph corresponding to the generat-
ing class Γ of the model. On the one hand, under the conditions of the
Hammersley–Clifford theorem the (positive) joint distribution factorizes ac-
cording to the cliques of G and in this case, FFac(G) = FMar(G). On the
other hand, when our graphical interaction model is especially decompos-
able, a factorization over the cliques and separators is possible, no matter
whether all cell counts are positive or there are zeros among them. Recall,
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that G is (weakly) decomposable if and only if it is chordal. How can a
non-chordal graph be made chordal with adding the fewest possible edges,
there are numerical algorithms at our disposal, e.g., [12].

When the number of variables (d) is not too large, it is not hard to find
out whether G is decomposable. If not, we may triangulate it, if yes, we can
find a perfect sequence of cliques in it. Since we are interested only in some
special cell probabilities, the number of the variable categories can be large.
When we have categorical variables with finite state space, the most general
are the estimates of (9) in the directed, and of (13) in the undirected case.

When d is large, to find the cliques, though this problem is NP-complete,
numerical approximation algorithms are available. In the computer science
literature, under clique a complete subgraph is understood and what is called
clique by graph theorists, they call it maximal clique. This so-called maximal
clique problem is widely treated in computer science literature, starting from
the seminal paper [9]. For example, the replicator dynamics algorithm of [10]
can find dominant sets (which are generalizations of maximal cliques for edge-
weighted graphs) with an iteration. Under some conditions, the iteration
converges to the characteristic vector of a maximal clique (in the unweighted
case), depending on the starting. There can be many overlapping maximal
cliques in a graph, and the one (it is also not necessarily unique) with maximal
cardinality is called maximum clique by theoretical computer scientists.

In the mixed case, to estimate the densities classical methods of Gaussian
based multivariate statistics, nonparametric methods, or the ACE algorithm
of [2] can be used.
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