
ML estimation in exponential family and the EM algorithm

In exponential family, the underlying pdf or pmf is

f(x|θ) = c(θ) · e
∑k
j=1 θjtj(x) · h(x)

where θ = (θ1, . . . , θk) ∈ Θ ⊂ Rk is canonical parameter. Then, based on the
i.i.d. sample X = (X1, . . . , Xn), the canonical sufficient statistic is

t(X) = (
n∑
i=1

t1(Xi), . . . ,
n∑
i=1

tk(Xi)) := (t1(X), . . . , tk(X)),

which is also complete (if Θ contains k-dimensional parallelepiped), and
therefore it is a minimal sufficient statistic.

Proposition 1 Under the usual regularity conditions, in exponential fami-
lies the likelihood equation boils down to solving

Eθ(t(X)) = t(X).

Proof. The likelihood-function has the following form:

Lθ(X) = cn(θ) · e
∑k
j=1 θj

∑n
i=1 tj(Xi) ·

n∏
i=1

h(xi) =
1

a(θ)
· eθ·tT (X) · b(X),

where the vectors are rows, T denotes the transposition, and

a(θ) =

∫
X
eθ·t

T (x) · b(x) dx. (1)

is the normalizing constant, while X ⊂ Rn is the sample space. This formula
will play a crucial role in our subsequent calculations.

The likelihood equation is

∇θ lnLθ(X) = 0,

that is
−∇θ ln a(θ) +∇θ(t(X)θT ) = 0. (2)

Under certain regularity conditions, by (1) we get that

∇θ ln a(θ) =
1

a(θ)

∫
X
t(x)et(x)θT · b(x) dx = Eθ(t(X)).

Therefore, (2) is equivalent to

−Eθ(t(X)) + t(X) = 0

that finishes the proof. �
Note that this resembles the idea of the moment estimation. Indeed, if

t1(X) = 1
n

∑n
i=1Xi, . . . , tk(X) = 1

n

∑n
i=1 X

k
i , then the ML-estimator of the

canonical parameter is the same as the moment-estimator. This is the case,
e.g., when our underlying distribution is Poisson, exponential, or Gaussian.
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EM-ALGORITHM

For the detailed description see [3]. To solve the likelihood equation is some-
times tedious, especially when there are missing data. Instead of numerical
methods, the following iteration works:

1. E-step: based on the actual value of the parameter, we reconstruct the
missing data via taking conditional expectation;

2. M-step: from the so completed data we maximize the likelihood in θ.
With this new θ we go back to step E.

Under general conditions, e.g., in exponential families, the iteration con-
verges. Sometimes not the data themselves are missing, but some model
parameters (e.g., membership vectors when we want to decompose mixtures).

Notation: let X and Y denote the complete and incomplete sample spaces,
between which the

X → Y , x→ y(x)

known many-one mapping works. Denoting by f(x|θ) and g(y|θ) the joint
density of the complete and incomplete sample, respectively,

g(y|θ) =

∫
X (y)

f(x|θ) dx (3)

where X (y) = {x : y(x) = y} ⊂ X . We want to maximize g(y|θ) in θ, based
on the incomplete observation y.

Example

In Rao [6] (Section 5.5.g.), the phenotype of 197 offsprings can be AB, Ab,
aB, or ab with respective probabilities 1

2
+ 1

4
π, 1

4
− 1

4
π, 1

4
− 1

4
π, and 1

4
π, where

π is the unknown parameter to be estimated based on the counts:

y = (y1, y2, y3, y4) = (125, 18, 20, 34).

y follows multinomial distribution with mass function (incomplete likeli-
hood):

g(y|π) =
(y1 + y2 + y3 + y4)!

y1!y2!y3!y4!
(
1

2
+

1

4
π)y1(

1

4
− 1

4
π)y2(

1

4
− 1

4
π)y3(

1

4
π)y4 .
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Maximizing g in π is numerically not tractable, therefore, for technical pur-
poses, we complete our data into an x, by splitting y1 into two parts:

x = (x1, x2, x3, x4, x5), where y1 = x1+x2, y2 = x3, y3 = x4, y4 = x5.

x also follows multinomial distribution with mass function (complete likeli-
hood):

f(x|π) =
(x1 + x2 + x3 + x4 + x5)!

x1!x2!x3!x4!x5!
px11 p

x2
2 p

x3
3 p

x4
4 p

x5
5 ,

where

p1 =
1

2
, p2 =

1

4
π, p3 = p4 =

1

4
− 1

4
π, p5 =

1

4
π.

Instead of integration, in this discrete situation, we have summation:

g(y|π) =
∑

x1+x2=y1, x1≥0, x2≥0 integer, x3=y2, x4=y3, x5=y4

f(x|π).

Starting with π(0), the iteration is as follows. If we already have π(m), the
(m+ 1)-th step of the iteration:

1. E-step: given y, we find x, namely x1 and x2. Given y1 = 125, the con-

ditional distribution of x1 and x2 is Bin125

(
1
2

1
2

+ 1
4
π(m)

)
and Bin125

(
1
4
π(m)

1
2

+ 1
4
π(m)

)
.

The conditional expectations are therefore the binomial expectations:

x
(m)
1 = 125 ·

1
2

1
2

+ 1
4
π(m)

és x
(m)
2 = 125 ·

1
4
π(m)

1
2

+ 1
4
π(m)

.

2. M-step: based on the the complete data (x
(m)
1 , x

(m)
2 , 18, 20, 34), we max-

imize f in π.

f(x|π) = constant ·
(

1

4
π

)x(m)
2 +34

·
(

1

4
− 1

4
π

)18+20

.

Multiplying with 4x
(m)
2 +34+18+20, we have to maximize

f̃(x|π) = const · (π)x
(m)
2 +34 · (1− π)18+20

in π. Since it resembles the binomial likelihood, the solution is

π(m+1) =
x

(m)
2 + 34

x
(m)
2 + 34 + 18 + 20

that will be the new value of π.

With this new π(m+1), we go back to the E-step. Starting with π(0) = 0.5,
after 2-3 steps π stabilized around 0.6.
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Theoretical considerations

In exponential family, the complete data likelihood is:

f(x|θ) = cn(θ) · e
∑k
j=1 θj

∑n
i=1 tj(xi) ·

n∏
i=1

h(xi) =
1

a(θ)
· eθ·tT (x) · b(x).

The E-M iteration works with the sufficient statistic t, in view of Proposi-
tion 1. Since the observable incomplete observations Y are functions of the
unobservable complete ones X, the conditional density of X at x, conditioned
on Y = y, in view of (3) is

k(x|y, θ) =
f(x|θ)
g(y|θ)

=
1

a(θ|y)
· eθ·tT (x) · b(x), (4)

where

a(θ|y) =

∫
X (y)

eθ·t
T (x) · b(x) dx. (5)

Therefore, the unconditioned and conditioned likelihoods can be written in
terms of the same canonical sufficient statistic and parameter, with the ex-
ception, that their domains are X and X (y), as you see it from (1) and
(5).

We want to maximize the log-likelihood function L(θ) := ln g(y|θ) in θ,
given y. In view of Proposition 1,

∇θL(θ) = −E(t|θ) + E(t|y, θ) (6)

and we look for its root in θ.
Having θ(m), the iteration is:

1. E-step: based on θ(m), we estimate the sufficient statistic t of the com-
plete sample from the incomplete one:

t(m) := E(t|y, θ(m)). (7)

2. M-step: we find θ(m+1), as the root of the complete likelihood equation:

∇θ ln f(x|θ) = 0.

But by Proposition 1, we have to solve

E(t|θ) = t(m). (8)

Its solution is θ(m+1).
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If the iteration converges to θ∗, for m sufficiently large, we approximately
have θ(m) = θ(m+1) = θ∗, and so, in view of (7) and (8),

E(t|θ∗) = E(t|y, θ∗)

holds, i.e., θ∗ is the root of (6).

Now, more generally (not only in exponential family) we will show the
convergence of the GEM (General EM) iteration: in the M-step we not
necessarily maximize, but just increase the objective function. Instead of
natural log, because of information theoretical considerations, we use log
for the logarithm of base 2, and equivalently, we want to maximize L(θ) =
log g(y|θ).

Let us introduce the following notation: for θ, θ′

Q(θ′|θ) := E(log f(x|θ′)|y, θ) =

∫
X (y)

log f(x|θ′)k(x|y, θ) dx. (9)

With this, the θ(m) → θ(m+1) phase of the iteration is:

1. E-step: calculate Q(θ|θ(m)) with taking conditional expectation, just
follow (9). (In exponential family, it can be done through the canonical
sufficient statistic.)

2. M-step: maximize Q(θ|θ(m)) in θ, and define

θ(m+1) := arg maxQ(θ|θ(m)).

Assume that θ(m+1) ∈ Θ.

We will show that the following relaxation of the EM algorithm converges.
In the M-step, instead of maximizing Q(θ|θ(m)) in θ, we just increase its value
compared to the preceding iteration step. That is, θ(m+1) satisfies

Q(θ(m+1)|θ(m)) ≥ Q(θ(m)|θ(m)). (10)

We further introduce the notation

H(θ′|θ) := E(log k(x|y, θ′)|y, θ) =

∫
X (y)

log k(x|y, θ′)k(x|y, θ) dx. (11)

Lemma 1
H(θ′|θ) ≤ H(θ|θ)

with equality if and only if k(x|y, θ) = k(x|y, θ′) almost surely.
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Proof.

H(θ|θ)−H(θ′|θ) =

∫
X (y)

log
k(x|y, θ)
k(x|y, θ′)

k(x|y, θ) dx

is the relative entropy of the k(x|y, θ) distribution with respect to the k(x|y, θ′)
distribution, and by Lesson 1, it is nonnegative (it is 0 if and only if the two
distributions are the same almost surely). �

Definition 1 The θ(m+1) = M(θ(m)) iteration defines a GEM algorithm if

Q(M(θ)|θ) ≥ Q(θ|θ), ∀θ ∈ Θ.

Therefore, when (10) holds, we have a GEM algorithm at hand.

Theorem 1 For any GEM algorithm

L(M(θ)) ≥ L(θ), ∀θ ∈ Θ,

with equality if and only if k(x|y,M(θ)) = k(x|y, θ) and Q(M(θ)|θ) = Q(θ|θ)
almost surely.

Proof.

Q(θ|θ′)−H(θ|θ′) = E(log(f(x|θ)−log(k(x|y, θ)|y, θ′) = E(log(g(y|θ))|y, θ′) = log(g(y|θ)) = L(θ)

as log(g(y|θ)) is measurable with respect to y. Therefore,

L(M(θ))− L(θ) = [Q(M(θ)|θ)−Q(θ|θ)] + [H(θ|θ)−H(M(θ)|θ)] ≥ 0,

since in the first [] we have a nonnegative quantity by the definition of the
GEM, and the quantity in the second [] is also nonnegative by Lemma 1. �

If the likelihood-function is bounded, the monotonous increasing sequence
of the GEM – will converge. For further conditions, to have local and global
maximum, see [3].

I. Csiszár and P. Shields in [2] prove that the EM-algorithm is also an
alternating minimizer of the I-divergence or relative entropy, see Lesson 1.

Assume that the unobservable full sample xn1 ∈ An is from an unknown
distribution Q ∈ Q (feasible set of distributions on the finite alphabet A).
We only have the unobservable incomplete sample yn1 ∈ Bn (|B| ≤ |A|).
There is a known mapping T : A→ B such that Txi = yi.

Starting with an arbitrary Q0 ∈ Q, the EM-iteration is as follows:

• E-step: Knowing Qm−1, let Pm = EQm−1(P̂n|yn1 ), where P̂n is the empir-
ical distribution of the unobserved full sample. We take the conditional
expectation, pretending that the true distribution is Qm−1.
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• M-step: Calculate the MLE of the distribution of the full sample,
pretending that the empirical distribution of xn1 equals Pm. This MLE
will be Qm.

It can be shown that during the iteration,

D(P1‖Q0) ≥ D(P1‖Q1) ≥ D(P2‖Q1) ≥ D(P2‖Q2) ≥ . . .

where starting from the distribution Q0, the sequence Q1,Q2, . . . reconstructs
the unknown distribution of the complete sample. Indeed, in the M-step,
D(Pm‖Qm−1) ≥ D(Pm‖Qm), since by Lemma 3.1, the MLE minimizes the
D(Pm‖Q) I-divergence in Q ∈ Q even if Pm is not a possible empirical distri-
bution of the full sample. (However, the M-step is easy to perform.) In the
E-step, D(Pm−1‖Qm−1) ≥ D(Pm‖Qm−1) is obtained by the lumping property
(see Chapter 4), discussed in Section 5.3 of the lecture notes. Since the se-
quence of I-divergences is positive and decreasing, the iteration converges. If
the set Q of feasible distributions is convex and compact, the iteration will
converge to a global optimum, starting with any Q0 ∈ Q of maximal support.
Otherwise, the iteration can get stuck at a local optimum. The method is
non-parametric in that here not the parameter but the distribution itself is
estimated.

Application of the EM-algorithm for decom-

position of mixtures

EM-algorithm for decomposing Gaussian mixtures

We follow the description of Hastie et al. [4]. If the empirical density of
our continuous observations is bimodal, we suspect that it is the mixture of
two Gaussian distributions. Let Y be the mixture of Y1 ∼ N (µ1, σ

2
1) and

Y2 ∼ N (µ2, σ
2
2), while ∆ is Bernoulli distributed with parameter π: when

∆ = 0, then Y1, and when when ∆ = 1, then Y2 is the true distribution. The
mixture model is

Y = (1−∆)Y1 + ∆Y2

with parameters (µj, σ
2
j ) (j = 1, 2) and π, collected in

θ = (µ1, σ
2
1, µ2, σ

2
2, π).

The pdf of Y is

g(y|θ) = (1− π)f1(y) + πf2(y),
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where fj is the pdf of the N (µj, σ
2
j )-distribution.

Based on the n-element sample, y1, . . . , yn, the likelihood function is

g(y|θ) =
n∏
i=1

g(yi|θ) =
n∏
i=1

[(1− π)f1(yi) + πf2(yi)]

the logarithm of which is complicated to maximize θ. Instead, we apply the
EM-iteration, where g is the pdf of the incomplete sample (the complete
likelihood would be a product if we knew the memberships of the sample
entries), see [4].
0. Initialization:

θ(0) = (µ
(0)
1 , σ2

1
(0)
, µ

(0)
2 , σ2

2
(0)
, π(0)).

For example, π(0) can be 1/2, the two expectations can be two far sample
values, and the variances can be both the empirical. m := 0 and assume that

we have θ(m) = (µ
(m)
1 , σ2

1
(m)
, µ

(m)
2 , σ2

2
(m)
, π(m)). The next step of the inner

cycle:
1. E-step: for each sample entry we calculate its contribution to the two
components: E(∆ |Y = yi) = P(∆ = 1 |Y = yi), and denote it with π

(m+1)
i

(i = 1, . . . , n). By the Bayes rule:

π
(m+1)
i =

π(m)f
(m)
2 (yi)

(1− π(m))f
(m)
1 (yi) + π(m)f

(m)
2 (yi)

(i = 1, . . . , n).

2. M-step: we maximize the two Gaussian likelihoods separately in the
usual way so that we count the sample entries with their contributions to the
components:

µ
(m+1)
1 =

∑n
i=1(1− π(m+1)

i )yi∑n
i=1(1− π(m+1)

i )
, σ2

1
(m+1)

=

∑n
i=1(1− π(m+1)

i )(yi − µ(m+1)
1 )2∑n

i=1(1− π(m+1)
i )

and

µ
(m+1)
2 =

∑n
i=1 π

(m+1)
i yi∑n

i=1 π
(m+1)
i

, σ2
2

(m+1)
=

∑n
i=1 π

(m+1)
i (yi − µ(m+1)

2 )2∑n
i=1 π

(m+1)
i

.

Then

π(m+1) :=
1

n

n∑
i=1

π
(m+1)
i ,

m := m + 1, and start a new outer cycle. With a “not too bad starting”
the iteration will converge, and it can be generalized to the decomposition
of more than two components.
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EM-algorithm for decomposing polynomial (multinomial)
mixtures

We follow the description of [5], sometimes called collaborative filtering. The
model is for decomposition of contingency tables into k layers according to
a latent (missing) variable.

The incomplete (observable) sample space isX×Y , whereX = {x1, . . . , xn},
Y = {y1, . . . , ym} and the counts for the xi, yj pairs are collected into an n×m
contingency table with general entry ν(xi, yj) ≥ 0 (they are usually, but not
necessarily, integers). For example, microarrays or keyword-document ma-
trices. These are the missing data, and completed with the latent discrete
variable taking on values in Z = {z1, . . . , zk}. For example, k different tissues
or topics (k is fixed, and usually much smaller than n or m). Our purpose is
to decompose the table into k layers.

The exact model is the following:

p(xi, yj) =
k∑
l=1

p(xi, yj|zl) · π(zl) =
k∑
l=1

p(xi|zl) · p(yj|zl) · π(zl)

where p(xi, yj) denotes the probability of the xi, yj pair, π(zl) is the probabil-
ity (proportion) of the component zl, and we make the following conditional
independence assumption:

p(xi, yj|zl) = p(xi|zl) · p(yj|zl).

The model parameters are: π(zl) (l = 1, . . . , k), (
∑k

l=1 π(zl) = 1); p(xi|zl),
p(yj|zl) (i = 1 . . . , n; j = 1, . . . ,m; l = 1, . . . , k). We collect them in θ.
Our purpose is to maximize the following incomplete likelihood (mixture of
polynomial distributions):

k∑
l=1

π(zl) · cl
n∏
i=1

m∏
j=1

p(xi, yj|zl)ν(xi,yj |zl),

where the conditional cell frequencies ν(xi, yj|zl)’s are not integers any more,
and the constant cl (depends only on l) contains factorials or Γ-functions.
We estimate the parameters via the following EM-iteration:
0. Initialization: π(0)(zl), p

(0)(xi|zl), p(0)(yj|zl). t:=0, and assume that we

already have θ(t).
1. E-step: we find the conditional expectation of zl’s conditioned on the cell
observations. Since z1, . . . , zk are k alternatives, we apply the Bayes rule:

p(t+1)(zl|xi, yj) =
p(t)(xi, yj|zl) · π(t)(zl)∑k

l′=1 p
(t)(xi, yj|zl′) · π(t)(zl′)

=
p(t)(xi|zl) · p(t)(yj|zl) · π(t)(zl)∑k
l′=1 p

(t)(xi|zl′)p(t)(yj|zl′) · π(t)(zl′)
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(i = 1, . . . , n; j = 1, . . . ,m).
2. M-step: we maximize the parameters of the truncated polynomial distri-
butions for l = 1, . . . k, separately. For this purpose, we maximize

cl

n∏
i=1

m∏
j=1

p(xi, yj|zl)
ν(xi,yj)·p

(t+1)(zl|xi,yj)
hl

where the constant hl is the sum of the terms in the numerator (for i, j). By
the conditional independence, we have to maximize

cl

[
n∏
i=1

m∏
j=1

{p(xi|zl) · p(yj|zl)}ν(xi,yj)·p(t+1)(zl|xi,yj)

] 1
hl

in p(xi|zl), p(yj|zl) for fixed l (l = 1, . . . k). Rearranging, and using the
classical polynomial ML-estimate, we get the new parameter values

p(t+1)(xi|zl) =

∑m
j=1 ν(xi, yj) · p(t+1)(zl|xi, yj)∑n

i′=1

∑m
j=1 ν(xi′ , yj) · p(t+1)(zl|xi′ , yj)

(i = 1, . . . , n)

and

p(t+1)(yj|zl) =

∑n
i=1 ν(xi, yj) · p(t+1)(zl|xi, yj)∑n

i=1

∑m
j′=1 ν(xi, yj′) · p(t+1)(zl|xi, yj′)

(j = 1, . . . ,m).

Then

π(t+1)(zl) :=

∑n
i=1

∑m
j=1 p

(t+1)(zl|xi, yj)
nm

(l = 1, . . . , k)

t := t + 1 and go back to the E-step. Depending on the starting parameter
value, θ(t) will converge to a local argmax θ∗ of the above likelihood function.

EM-algorithm for estimating the parameters of the stochas-
tic block-model for graphs

We follow the description of [1]. The assumptions of the model are the
following. Given a simple graph G = (V,A) (|V | = n, with adjacency matrix
A) and k (1 < k < n), we are looking for the hidden k-partition (V1, . . . , Vk)
of the vertices such that

• vertices are independently assigned to cluster Va with probability πa,
a = 1, . . . , k;

∑k
a=1 πa = 1;
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• given the cluster memberships, vertices of Va and Vb are connected
independently, with probability

P(i ∼ j | i ∈ Va, j ∈ Vb) = pab, 1 ≤ a, b ≤ k.

The parameters are collected in the vector π = (π1, . . . , πk) and the k × k
symmetric matrix P of pab’s.

Our statistical sample is the n×n symmetric, 0-1 adjacency matrix A =
(aij) of G. There are no loops, so the diagonal entries are zeros. Based on
A, we want to estimate the parameters of the above block model.

Using the theorem of mutually exclusive and exhaustive events, the like-
lihood function is the mixture of joint distributions of i.i.d. Bernoulli dis-
tributed entries:

1

2

∑
1≤a,b≤k

πaπb
∏

i∈Va,j∈Vb,i 6=j

p
aij
ab (1− pab)(1−aij)

=
1

2

∑
1≤a,b≤k

πaπb · peabab (1− pab)(nab−eab).

This is the mixture of binomial distributions, where eab is the number of
edges connecting vertices of Va and Vb (a 6= b), while eaa is twice the number
of edges with both endpoints in Va; further,

nab = |Va| · |Vb| (a 6= b) and naa = |Va| · (|Va| − 1) (a = 1, . . . , k) (12)

are the numbers of possible edges between Va, Vb and within Va, respectively.
Here A is the incomplete data specification as the cluster memberships

are missing. Therefore, it is straightforward to use the EM-algorithm, for
parameter estimation from incomplete data.

First we complete our data matrix A with latent membership vectors
∆1, . . . ,∆n of the vertices that are k-dimensional i.i.d. Poly(1, π) (polinomi-
ally distributed) random vectors. More precisely, ∆i = (∆1i, . . . ,∆ki), where
∆ai = 1 if i ∈ Va and zero otherwise. Thus, the sum of the coordinates of
any ∆i is 1, and P(∆ai = 1) = πa.

Based on these, the likelihood function above is

1

2

∑
1≤a,b≤k

πaπb · p
∑
i 6=j ∆ai∆bjaij

ab · (1− pab)
∑
i 6=j ∆ai∆bj(1−aij)

that is maximized in the alternating E and M steps of the EM-algorithm.
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Note that that the complete likelihood would be the squareroot of∏
1≤a,b≤k

peabab · (1− pab)
(nab−eab)

=
k∏
a=1

n∏
i=1

k∏
b=1

[p
∑
j: j 6=i ∆bjaij

ab · (1− pab)
∑
j: j 6=i ∆bj(1−aij)]∆ai

(13)

that is valid only in case of known cluster memberships.
Starting with initial parameter values π(0), P(0) and membership vectors

∆
(0)
1 , . . . ,∆

(0)
n , the t-th step of the iteration is the following (t = 1, 2, . . . ).

• E-step: we calculate the conditional expectation of each ∆i conditioned
on the model parameters and on the other cluster assignments obtained
in step t−1 and collectively denoted by M (t−1). By the Bayes theorem,
the responsibility of vertex i for cluster a is

π
(t)
ai = E(∆ai |M (t−1))

=
P(M (t−1)|∆ai = 1) · π(t−1)

a∑k
b=1 P(M (t−1)|∆bi = 1) · π(t−1)

b

(a = 1, . . . , k; i = 1, . . . , n). For each i, π
(t)
ai is proportional to the

numerator, where

P(M (t−1)|∆ai = 1)

=
k∏
b=1

(p
(t−1)
ab )

∑
j 6=i ∆

(t−1)
bj aij · (1− p(t−1)

ab )
∑
j 6=i ∆

(t−1)
bj (1−aij)

is the part of the likelihood (13) effecting vertex i under the condition
∆ai = 1.

• M-step: we maximize the truncated binomial likelihood

p
∑
i 6=j π

(t)
ai π

(t)
bj aij

ab · (1− pab)
∑
i6=j π

(t)
ai π

(t)
bj (1−aij)

with respect to the parameter pab, for all a, b pairs separately. Ob-
viously, the maximum is attained by the following estimators of pab’s

comprising the symmetric matrix P(t): p
(t)
ab =

∑
i,j: i 6=j π

(t)
ai π

(t)
bj aij∑

i,j: i 6=j π
(t)
ai π

(t)
bj

(1 ≤ a ≤

b ≤ k), where edges connecting vertices of clusters a and b are counted
fractionally, multiplied by the membership probabilities of their end-
points.
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The maximum likelihood estimator of π in the t-th step is π(t) of coordi-

nates π
(t)
a = 1

n

∑n
i=1 π

(t)
ai (a = 1, . . . , k), while that of the membership vector

∆i is obtained by discrete maximization: ∆
(t)
ai = 1 if π

(t)
ai = maxb∈{1,...,k} π

(t)
bi

and 0, otherwise. (In case of ambiguity, the cluster with the smallest index
is selected.) This choice of π will increase (better to say, not decrease) the
likelihood function. Note that it is not necessary to assign vertices uniquely
to the clusters, the responsibility πai of a vertex i can as well be regarded as
the intensity of vertex i belonging to cluster a.

According to the general theory of the EM-algorithm, in exponential fam-
ilies (as in the present case), convergence to a local maximum can be guar-
anteed (depending on the starting values), but it runs in polynomial time in
the number of vertices n. However, the speed and limit of the convergence
depends on the starting clustering, which can be chosen by means of prelim-
inary application of some nonparametric multiway cut algorithm or spectral
clustering methods, see [1].
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