STATISTICS, Practice Exercises

- 1. Let $X_1, \ldots, X_n \sim \mathcal{G}(\theta)$ be i.i.d. sample.
 - (a) On the basis of this sample find a sufficient statistic for the parameter θ of the geometric distribution!
 - (b) On the basis of this sample find maximum likelihood (ML) estimate of θ !
- 2. Let X_1, \ldots, X_n be i.i.d. sample from the absolute continuous distribution given by the p.d.f.

$$f_{\theta}(x) = \frac{4x^3}{\theta^4},$$

- if $0 \le x \le \theta$, and 0, otherwise ($\theta > 0$ is parameter).
- (a) Find a sufficient statistic for θ !
- (b) On the basis of this sample find maximum likelihood (ML) estimate of θ !
- 3. R.A. Fisher investigated the effect of two seducers on 10 patients. The surplus sleep, A and B pills cause (in hours) are below:

No.	А	В	B-A
1.	+0.7	+1.9	+1.2
2.	-1.6	+0.8	+2.4
3.	-0.2	+1.1	+1.3
4.	-1.2	+0.1	+1.3
5.	-0.1	-0.1	0.0
6.	+3.4	+4.4	+1.0
7.	+3.7	+5.5	+1.8
8.	+0.8	+1.6	+0.8
9.	0.0	+4.6	+4.6
10.	+2.0	+3.4	+1.4

Is the difference between the effect of the two seducers significant? If yes, then is seducer B significantly better than A? Decide with different levels of significance! Be careful, which kind of t-test you use!

- 4. Is the chance of hypertony is the same in normal and overweighted population? Decide using the following evidences with $\alpha = 0.01$. Out of 4200 normal patients 792, while out of 1000 overweighted ones 249 suffered of hypertony. Next decide, whether the overweight increases the chance of hypertony.
- 5. Decide whether the following *die is fair or not*. We cast it n = 1200 times and the frequencies of the sides are: $\nu_1 = 184$, $\nu_2 = 212$, $\nu_3 = 190$, $\nu_4 = 208$, $\nu_5 = 212$, $\nu_6 = 194$.

$$\chi^2 = \sum_{i=1}^{6} \frac{(\nu_i - 200)^2}{200} = \frac{16^2 + 12^2 + 10^2 + 8^2 + 12^2 + 6^2}{200} = 3.72$$

6. 90%-os szinten vizsgálja meg, hogy az alábbi 100 elemű minta származhat-e

(a) 3 paraméterű Poisson eloszlásból? A mintában a 0,1,2,3,4 értékek fordultak elő a következő gyakoriságokkal:

12, 32, 25, 21, 10.

(Használja a Poisson- és $\chi^2\text{-eloszlások táblázatát!})$

(b) Egyáltalán származhat-e a minta Poisson eloszlásból?