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Motivation

To recover the structure of large rectangular arrays, for
example, microarrays, socal, economic, or communication
networks, classical methods of cluster and correspondence
analysis may not be carried out on the whole table because of
computational size limitations. In other situations, we want to
compare contingency tables of different sizes.
Two directions:

1. Select a smaller part (by an appropriate randomization)
and process SVD or correspondence analysis on it.

2. Regard it as a continuous object and set up a bilinear
programming task with constraints. In this way, fuzzy clusters
are obtained.
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effects of random perturbations on the entries to the singular
spectrum, clustering effect, and correspondence factors.
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Notation

Let C = Cm×n be a contingency table of row set
RowC = {1, . . . ,m} and column set ColC = {1, . . . , n}.
cij ’s are interactions between the rows and columns, and they are
normalized such that 0 ≤ cij ≤ 1.
Binary table: 0/1 entries.
Row-weights: α1, . . . , αm ≥ 0
Column-weights: β1, . . . , βn ≥ 0
(Individual importance of the categories. In correspondence
analysis, these are the marginals.)
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A contingency table is called simple if all the row- and
column-weights are equal to 1.
Assume that C does not contain identically zero rows or columns,
moreover C is dense in the sense that the number of nonzero
entries is comparable with mn. Let C denote the set of such tables
(with any natural numbers m and n).
Consider a simple binary table Fa×b and maps Φ : RowF → RowC ,
Ψ : ColF → ColC ; further

αΦ :=
a∏

i=1

αΦ(i), βΨ :=
b∏

j=1

βΨ(j), αC :=
m∑

i=1

αi , βC :=
n∑

j=1

βj .
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Homomorphism density

Definition

The F → C homomorphism density is

t(F ,C ) =
1

(αC )a(βC )b

∑
Φ,Ψ

αΦβΨ

∏
fij=1

cΦ(i)Ψ(j).

If C is simple, then

t(F ,C ) =
1

manb

∑
Φ,Ψ

∏
fij=1

cΦ(i)Ψ(j).

In addition, if C is binary too, then t(F ,C ) is the probability that
a random map F → C is a homomorphism (preserves the 1’s).



Preliminaries Convergence of contingency tables Testability Homogeneous partitions, spectra Application References

The maps Φ and Ψ correspond to sampling a rows and b columns
out of RowC and ColC with replacement, respectively. In case of
simple C it means uniform sampling, otherwise the rows and
columns are selected with probabilities proportional to their
weights.
The following simple binary random table ξ(a× b,C ) will play an
important role in proving the equivalent theorems of testability.
Select a rows and b columns of C with replacement, with
probabilities αi/αC (i = 1, . . . ,m) and βj/βC (j = 1, . . . , n),
respectively. If the ith row and jth column of C are selected, they
will be connected by 1 with probability cij and 0, otherwise,
independently of the other selected row–column pairs, conditioned
on the selection of the rows and columns.
For large m and n, P(ξ(a× b,C ) = F ) and t(F ,C ) are close to
each other.
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Definition

Definition

We say that the sequence (Cm×n) of contingency tables is
convergent if the sequence t(F ,Cm×n) converges for any simple
binary table F as m, n →∞.

The convergence means that the tables Cm×n become more and
more similar in small details as they are probed by smaller 0-1
tables (m, n →∞).
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The limit object

The limit object is a measurable function U : [0, 1]2 → [0, 1] and
we call it contingon.
In the m = n and symmetric case, C can be regarded as the weight
matrix of an edge- and node-weighted graph (the row-weights are
equal to the column-weights, loops are possible) and the limit
object was introduced as graphon, see Borgs et al.
The step-function contingon UC is assigned to C in the following
way: the sides of the unit square are divided into intervals
I1, . . . , Im and J1, . . . , Jn of lengths α1/αC , . . . , αm/αC and
β1/βC , . . . , βn/βC , respectively; then over the rectangle Ii × Jj the
step-function takes on the value cij .
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The metric inducing the convergence

Definition

The cut distance between the contingons U and V is

δ�(U,V ) = inf
µ,ν
‖U − V µ,ν‖� (1)

where the cut norm of the contingon U is defined by

‖U‖� = sup
S,T⊂[0,1]

∣∣∣∣∫∫
S×T

U(x , y) dx dy

∣∣∣∣ ,
and the infimum in (1) is taken over all measure preserving
bijections µ, ν : [0, 1] → [0, 1], while V µ,ν denotes the transformed
V after performing the measure preserving bijections µ and ν on
the sides of the unit square, respectively.
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Equivalence classes of contingons

An equivalence relation is defined over the set of contingons: two
contingons belong to the same class if they can be transformed
into each other by measure preserving map, i.e., their cut distance
is zero.
In the sequel, we consider contingons modulo measure preserving
maps, and under contingon we understand the whole equivalence
class. By a theorem of Borgs et al. (2008), the equivalence classes
form a compact metric space with the δ� metric.
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Distance of contingency tables of different sizes

Definition

The cut distance between the contingency tables C ,C ′ ∈ C is

δ�(C ,C ′) = δ�(UC ,UC ′).

By the above remarks, the distance of C and C ′ is indifferent to
permutations of the rows or columns of C and C ′. In the special
case when C and C ′ are of the same size, δ�(C ,C ′) is 1

mn times
the usual cut distance of matrices, cf. Frieze and Kannan (1999).
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Uniqueness of the limit

The following reversible relation between convergent contingency
table sequences and contingons also holds, as a rectangular
analogue of a theorem of Borgs et al. (2008).

Theorem

For any convergent sequence (Cm×n) ⊂ C there exists a contingon
such that δ�(UCm×n ,U) → 0 as m, n →∞. Conversely, any
contingon can be obtained as the limit of a sequence of
contingency tables in C. The limit of a convergent contingency
table sequence is essentially unique: if Cm×n → U, then also
Cm×n → U ′ for precisely those contingons U ′ for which
δ�(U,U ′) = 0.

It also follows that a sequence of contingency tables in C is
convergent if, and only if it is a Cauchy sequence in the metric δ�.
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Randomization

A simple binary random a× b table ξ(a× b,U) can also be
randomized based on the contingon U in the following way. Let
X1, . . . ,Xa and Y1, . . . ,Yb be i.i.d., uniformly distributed random
numbers on [0,1]. The entries of ξ(a× b,U) are indepenent
Bernoully random variables, namely the entry in the ith row and
jth column is 1 with probability U(Xi ,Yj) and 0, otherwise.
It is easy to see that the distribution of the previously defined
ξ(a× b,C ) and that of ξ(a× b,UC ) is the same.
It is important that

P

(
δ�(U, ξ(a× b,U)) <

10√
log2(a + b)

)
≥ 1− e

− (a+b)2

2 log2(a+b)

that is true for UCm×n independently of m, n.
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Exchangeable random arrays

Note, that in the above way, we can as well randomize an infinite
simple binary table ξ(∞×∞,U) out of the contingon U by
generating countably infinitely many i.i.d. uniform random
numbers on [0,1]. The distribution of the infinite binary array
ξ(∞×∞,U) is denoted by PU .
Because of the symmetry of the construction, this is an
exchangeable array in the sense that the joint distribution of its
entries is invariant under permutations of the rows and colums.
Moreover, any exchangeable binary array is a mixture of such PU ’s.
More precisely, the Aldous–Hoover (Kallenberg) Representation
Theorem (Representations for partially exchangeable arrays of
random variables, J. Multivar. Anal. 1981) states that for every
infinite exchangeable binary array ξ there is a probability
distribution µ (over the contingons) such that
P(ξ ∈ A) =

∫
PU(A) µ(dU).
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Definition of testability

A function f : C → R is called a contingency table parameter if it
is invariant under isomorphism and scaling of the rows/columns. In
fact, it is a statistic evaluated on the table, and hence, we are
interested in contingency table parameters that are not sensitive to
minor changes in the entries of the table.

Definition

A contingency table parameter f is testable if for every ε > 0 there
are positive integers a and b such that if the row- and
column-weights of C satisfy

max
i

αi

αC
≤ 1

a
, max

j

βj

βC
≤ 1

b
, (2)

then P(|f (C )− f (ξ(a× b,C ))| > ε) ≤ ε.

Such a contingency table parameter can be consistently estimated
based on a fairly large sample.
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Equivalent statements of testability

Theorem

For a testable c. t. parameter f the following are equivalent:

For every ε > 0 there are positive integers a and b such that
for every contingency table C ∈ C satisfying the condition (2),

|f (C )− E(f (ξ(a× b,C )))| ≤ ε.

For every convergent sequence (Cm×n) of contingency tables
with no dominant row- or columnn-weights, f (Cm×n) is also
convergent (m, n →∞).

f can be extended to contingons such that the extended
functional f̃ is continuous in the cut-norm and
f̃ (UCm×n)− f (Cm×n) → 0, whenever maxi αi/αC → 0 and
maxj αj/αC → 0 as m, n →∞.

f is continuous in the cut metric.
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Examples

For example, in case of simple binary tables the singular spectrum
is testable, as Cm×n can be regarded as part of the adjacency
matrix of a bipartite graph on m + n vertices, where RowC and
ColC are the two independent vertex sets; further, the ith vertex of
RowC and the jth vertex of ColC are connected by an edge if and
only if cij = 1. The non-zero real eigenvalues of the symmetric
(m + n)× (m + n) adjacency matrix of this bipartite graph are the
numbers ±s1, . . . ,±sr , where s1, . . . , sr are the non-zero singular
values of C , and r ≤ min{m,m} is the rank of C . Consequently,
the convergence of adjacency spectra implies the convergence of
the singular spectra.
By the Equivalence Theorem, any property of a large contingency
table based on its singular value decomposition (e.g.,
correspondence decomposition) can be concluded from a smaller
part of it. In the last section, testability of some balanced
classification properties is discussed.
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Noisy contingency tables

Definition

The m × n random matrix E is a noise matrix if its entries are
independent, uniformly bounded random variables of zero
expectation.

Theorem

The cut norm of any sequence (Em×n) of noise matrices tends to
zero as m, n →∞, almost surely.

Definition

The m × n real matrix B is a blown up matrix, if there is an a× b
so-called pattern matrix P with entries 0 ≤ pij ≤ 1, and there are
positive integers m1, . . . ,ma with

∑a
i=1 mi = m and n1, . . . , nb

with
∑b

i=1 ni = n, such that the matrix B, after rearranging its
rows and columns, can be divided into a× b blocks, where block
(i , j) is an mi × nj matrix with entries all equal to pij .



Preliminaries Convergence of contingency tables Testability Homogeneous partitions, spectra Application References

Let us fix the matrix Pa×b, blow it up to obtain matrix Bm×n, and
let Am×n = B + E , where Em×n is a noise matrix. If the block sizes
grow proportionally, the following almost sure statements are
proved in Bolla et. al (2010): the noisy matrix A has as many
structural (outstanding) singular values of order

√
mn as the rank

of the pattern matrix, all the other singular values are of order√
m + n; further, by representing the rows and columns by means

of the singular vector pairs corresponding to the structural singular
values, the a- and b-variances of the representatives tend to 0 as
m, n →∞.
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Convergence of noisy tables

Theorem

Let the block sizes of the blown up matrix Bm×n are m1, . . . ,ma

horizontally, and n1, . . . , nb vertically (
∑a

i=1 mi = m and∑b
j=1 nj = n). Let Am×n := B + E and m, n →∞ is such a way

that mi/m → ri (i = 1, . . . , a), nj/n → qj (j = 1, . . . , b), where
ri ’s and qj ’s are fixed ratios. Under these conditions, the“noisy”
sequence (Am×n) converges almost surely.

Conversely, in the presence of structural singular values, with some
additional conditions for the representatives, the block structure
can be recovered.



Preliminaries Convergence of contingency tables Testability Homogeneous partitions, spectra Application References

Homogeneous partitions

In many applications we are looking for clusters of the rows and
columns of a rectangular array such that the densities within the
cross-products of the clusters be homogeneous. E.g., in microarray
analysis we are looking for clusters of genes and conditions such
that genes of the same cluster equally influence conditions of the
same cluster. The following theorem ensures the existence of such
a structure with possibly many clusters. However, the number of
clusters does not depend on the size of the array, it merely depends
on the accuracy of the approximation.

Theorem

For every ε > 0 and Cm×n ∈ C there exists a blown up matrix
Bm×n of an a× b pattern matrix with a + b ≤ 41/ε2

(independently
of m and n) such that δ�(C ,B) ≤ ε.
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The theorem is a consequence of the Szemerédi’s Regularity
Lemma (see Frieze and Kannan (1999), Borgs et al. (2008)) and
can be proved by embedding C into the adjacency matrix of an
edge-weighted bipartite graph. The statement of the theorem is
closely related to the testability of the following contingency table
parameter:

S2
a,b(C ) = min

a∑
i=1

b∑
j=1

∑
k∈Ai

∑
l∈Bj

(ckl−c̄ij)
2, c̄ij =

1

|Ai | · |Bj |
∑
k∈Ai

∑
l∈Bj

ckl

where the minimum is taken over balanced a- and b-partitions
A1, . . . ,Aa and B1, . . . ,Bb of RowC and ColC , respectively;
further, instead of ckl we may take αkβlckl in the row- and
column-weighted case, provided there are no dominant
rows/columns.
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Partitions of contingons

As S2
a,b(C ) is a testable contingency table parameter, by the

Equivalence Theorem, it can be continuously extended to
contingons:

S2
a,b(U) = min

a∑
i=1

b∑
j=1

∫
Ai×Bj

(U(x , y)−Ūij)
2dxdy , Ūij =

∫
Ai×Bj

U(x , y)dxdy

λ(Ai ) · λ(Bj)

and the minimum is taken over balanced a- and b-partitions
A1, . . . ,Aa and B1, . . . ,Bb of the [0, 1] interval into measurable
subsets, respectively (λ is the Lebesgue measure).
Minimizing S2

a,b(UC ) is a bilinear programming task in the variables
xij = λ(Ai ∩ Ij) (i = 1, . . . , a; j = 1, . . . ,m) and yij = λ(Bi ∩ Jj)
(i = 1, . . . , b; j = 1, . . . , n) under constraints of balance.
As for large m, n S2

a,b(UC ) is very close to S2
a,b(C ), the solution of

the continuous problem gives fuzzy clusters.
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Application

We applied our spectral partitioning algorithm for mixture of noisy
data: a = 3, b = 4, m1 = 3,m2 = 2,m3 = 1,
n1 = 2, n2 = 4, n3 = 1, n4 = 3. After the starting blow up: 6× 10
table, then its 5, 10, . . . , 100-fold blown up tables with noise are
presented.

the 300× 500 noisy table
the 600× 1000 blown up table, with rows and columns sorted
according to their cluster memberships obtained by k-means
algorithm
the colour illustration of the average densities of the blocks
formed by low rank approximation via SVD

Figure: noisy table (1); table close to the limit (2); limit contingon (3)
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5-fold blow up
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10-fold blow up
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15-fold blow up
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20-fold blow up
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25-fold blow up
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30-fold blow up
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35-fold blow up
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40-fold blow up
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45-fold blow up
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50-fold blow up
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55-fold blow up
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60-fold blow up
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65-fold blow up
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70-fold blow up
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75-fold blow up
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80-fold blow up
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85-fold blow up
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90-fold blow up



Preliminaries Convergence of contingency tables Testability Homogeneous partitions, spectra Application References

95-fold blow up
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100-fold blow up
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100-fold blow up without sorting
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structural singular values (10-fold blow up)
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structural singular values (50-fold blow up)
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structural singular values (70-fold blow up)

1 2 3 4 5 6 7 8

50

100

150

200



Preliminaries Convergence of contingency tables Testability Homogeneous partitions, spectra Application References

structural singular values (80-fold blow up)

1 2 3 4 5 6 7 8

50

100

150

200

250



Preliminaries Convergence of contingency tables Testability Homogeneous partitions, spectra Application References

structural singular values (90-fold blow up)

1 2 3 4 5 6 7 8

50

100

150

200

250

300



Preliminaries Convergence of contingency tables Testability Homogeneous partitions, spectra Application References

structural singular values (100-fold blow up)

1 2 3 4 5 6 7 8

50

100

150

200

250

300

350



Preliminaries Convergence of contingency tables Testability Homogeneous partitions, spectra Application References

References

ALDOUS D. J. (1981): Representations for partially
exchangeable arrays of random variables. J. Multivar. Anal.
11, 581-598.

BOLLA, M., FRIEDL, K., and KRÁMLI, A. (2010): Singular
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