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Outline

Estimating the parameters and underlying partitions of a
stochastic block model by means of the EM-algorithm. The
sample is a weighted graph based on similarities between sites
(e.g., social or metabolic networks).

Non-parametric statistics: modularities. Minima or maxima
over k-partitions of the vertices give modules/clusters with
regular behavior of information flow within or between the
clusters.

Spectral characterization of a generalized random graph
model: blown up structure + random noise.

Deterministic case: volume-regularity and spectra.
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Stochastic block model

Bickel and Chen (PNAS 2009) introduced a random block model
which is, in fact, a generalized random graph.

For given k, vertices independently belong to cluster Va with
probability πa, a = 1, . . . , k;

∑k
a=1 πa = 1.

Vertices of Va and Vb are connected independently of each
other with probabilities P(i ∼ j |i ∈ Va, j ∈ Vb) = pab,
1 ≤ a, b ≤ k.

The parameters are collected in the vector π = (π1, . . . , πk) and in
the k × k symmetric matrix P of pab’s.
Our statistical sample is the n× n symmetric, 0-1 adjacency matrix
A = (aij) of a simple graph on n vertices. There are no loops, so
the diagonal entries are zeroes. We want to estimate the
parameters of the above block model.
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By the theorem of mutually exclusive and exhaustive events, the
likelihood function is

1

2

∑
1≤a,b≤k

πaπb

∏
i∈Ca,j∈Cb,i 6=j

p
aij

ab(1− pab)
(1−aij )

=
1

2

∑
1≤a,b≤k

πaπb · peab
ab · (1− pab)

(nab−eab)

reminiscent of the mixture of binomial distributions, where
eab is the number of edges connecting vertices of Va and Vb

(a 6= b);
eaa is twice the number of edges with endpoints in Va;
nab = |Va| · |Vb| if a 6= b, and naa = |Va| · (|Va| − 1), a = 1, . . . , k.
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EM-algorithm for incomplete data

Here A is the incomplete data specification, as the cluster
memberships are missing. Therefore we complete our data matrix
A by latent membership vectors ∆1, . . . ,∆n of the vertices that
are k-dimensional i.i.d. Poly(1, π) random vectors.
∆i = (∆1i , . . . ,∆ki ), where ∆ai = 1 if i ∈ Va and zero otherwise.
Thus, the sum of the coordinates of any ∆i is 1, and
P(∆ai = 1) = πa.
The likelihood function above is

1

2

∑
1≤a,b≤k

πaπb · p
P

i,j : i 6=j ∆ai∆bjaij

ab · (1− pab)
P

i,j : i 6=j ∆ai∆bj (1−aij )

that is maximized in the alternating E and M steps of the
EM-algorithm.
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We remark that the complete likelihood would be the squareroot of∏
1≤a,b≤k

peab
ab · (1− pab)

(nab−eab)

=
k∏

a=1

n∏
i=1

k∏
b=1

[p
P

j : j 6=i ∆bjaij

ab · (1− pab)
P

j : j 6=i ∆bj (1−aij )]∆ai

that is valid only in case of known cluster memberships.
Starting with initial parameter values π(0), P(0) and membership

vectors ∆
(0)
1 , . . . ,∆

(0)
n , the t-th step of the iteration is the

following (t = 1, 2, . . . ).
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E-step

We calculate the conditional expectation of each ∆i conditioned
on the model parameters and on the other cluster assignments
obtained in the (t − 1)-th step (denoted by M(t−1)).
By the Bayes theorem, the responsibility of vertex i for cluster a:

π
(t)
ai = E(∆ai |M(t−1)) = P(∆ai = 1|M(t−1))

=
P(M(t−1)|∆ai = 1) · π(t−1)

a∑k
l=1 P(M(t−1)|∆li = 1) · π(t−1)

l

(a = 1, . . . , k; i = 1, . . . , n). Thus, for each i , π
(t)
ai is proportional

to the numerator, where

P(M(t−1)|∆ai = 1) =
k∏

b=1

(p
(t−1)
ab )

P
j 6=i ∆

(t−1)
bj aij ·(1−p

(t−1)
ab )

P
j 6=i ∆

(t−1)
bj (1−aij )

is the part of the likelihood affecting vertex i under the condition
∆ai = 1.
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M-step

For all a, b pairs separately, we maximize the truncated binomial
likelihood

p
P

i,j : i 6=j π
(t)
ai π

(t)
bj aij

ab · (1− pab)
P

i,j : i 6=j π
(t)
ai π

(t)
bj (1−aij )

with respect to the parameter pab. Obviously, the maximum is
attained by the following estimators of pab’s comprising the
symmetric matrix P(t):

p
(t)
ab =

∑
i ,j : i 6=j π

(t)
ai π

(t)
bj aij∑

i ,j : i 6=j π
(t)
ai π

(t)
bj

, 1 ≤ a ≤ b ≤ k,

where edges connecting vertices of clusters a and b are counted
fractionally, multiplied by the membership probabilities of their
endpoints.
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The ML-estimator of π in the t-th step is π(t) of coordinates

π
(t)
a = 1

n

∑n
i=1 π

(t)
ai (a = 1, . . . , k), while that of the membership

vector ∆i is obtained by discrete maximization: ∆
(t)
ai = 1, if

π
(t)
ai = maxb∈{1,...,k} π

(t)
bi and 0, otherwise. (In case of ambiguity,

the cluster with the smallest index is selected.) This choice of π
will increase the likelihood.
The above algorithm is a special case of so-called Collaborative
Filtering, see Hoffman, T., Puzicha, J., Ungar, L., Foster, D.
According to the general theory of EM-algorithm (Dempster, Laird,
Rubin, J. R. Statist. Soc B 39, 1977), in exponential families (as in
the present case), convergence to a local maximum can be
guaranteed (depending on the starting values), but it runs in
polynomial time in n.
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Multiway cuts, modularities

Find community structure in large networks.
Communities/clusters/modules: inter- and intra-cluster
connections mainly depend on the cluster memberships. They are
are strongly or loosely connected subsets of vertices that can be
identified with social groups or interacting enzymes in social or
metabolic networks.
Modularities are non-parametric statistics calculated on the graph
based on its adjacency matrix and maximized/minimized over
k-partitions of the vertices.
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Minimum multiway cut problems; ratio cut and normalized cut:
communities with sparse between-cluster (and dense
within-cluster) connections.
Modularity cuts: communities with more within-cluster (and less
between-cluster) connections than expected under independence.
Spectral methods: looking for spectral gap in the Laplacian or
modularity spectrum, then find the clusters by means of the
eigenvectors, corresponding to the structural eigenvalues.
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Notation

G = (V ,W): edge-weighted graph on n vertices,
W: n × n symmetric matrix, wij ≥ 0, wii = 0.
(wij : similarity between vertices i and j). Simple graph: 0/1
weights
W.l.o.g.,

∑n
i=1

∑n
j=1 wij = 1, joint distribution with marginal

entries:

di =
n∑

j=1

wij , i = 1, . . . , n

(generalized vertex degrees) D = diag (d1, . . . , dn)
Laplacian: L = D−W
Normalized Laplacian LD = I−D−1/2WD−1/2



Preliminaries Stochastic block model Non-parametric view Perturbation on blocks Regular partitions and spectra

1 ≤ k ≤ n
Pk = (V1, . . . ,Vk): k-partition of the vertices
V1, . . . ,Vk : disjoint, non-empty vertex subsets, clusters

Pk : the set of all k-partitions

e(Va,Vb) =
∑

i∈Va

∑
j∈Vb

wij : weighted cut between Va and Vb

Vol (Va) =
∑

i∈Va
di : volume of Va
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Ratio cut of Pk = (V1, . . . ,Vk) given W:

g(Pk ,W) =
k−1∑
a=1

k∑
b=a+1

(
1

|Va|
+

1

|Vb|

)
e(Va,Vb) =

k∑
a=1

e(Va, V̄a)

|Va|

Normalized cut of Pk = (V1, . . . ,Vk) given W:

f (Pk ,W) =
k−1∑
a=1

k∑
b=a+1

(
1

Vol (Va)
+

1

Vol (Vb)

)
e(Va,Vb)

=
k∑

a=1

e(Va, V̄a)

Vol (Va)
= k −

k∑
a=1

e(Va,Va)

Vol (Va)

Minimum k-way ratio cut and normalized cut of G = (V ,W):

gk(G ) = min
Pk∈Pk

g(Pk ,W) and fk(G ) = min
Pk∈Pk

f (Pk ,W)
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The k-means algorithm

The problem: given the points x1, . . . , xn ∈ Rd and an integer
1 ≤ k ≤ n, find the k-partition of the index set {1, . . . , n} (or
equivalently, the clustering of the points into k disjoint non-empty
subsets) which minimizes the following k-variance:

S2
k (x1, . . . , xn) = min

Pk∈Pk

S2
k (Pk , x1, . . . , xn)

= min
Pk=(V1,...,Vk)

k∑
a=1

∑
j∈Va

‖xj − ca‖2,

ca =
1

|Va|
∑
j∈Va

xj .

Usually, d ≤ k � n.
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To find the global minimum is NP-complete, but the iteration of
the k-means algorithm, first described in MacQueen (1963) is
capable to find a local minimum in polynomial time.
If there exists a well-separated k-clustering of the points (even the
largest within-cluster distance is smaller than the smallest
between-cluster one) the convergence of the algorithm to the
global minimum is proved by Dunn (1973-74), with a convenient
starting. Under relaxed conditions, the speed of the algorithm is
increased by a filtration in Kanungo et al. (2002).
The algorithm runs faster if the separation between the clusters
increases and an overall running time of O(kn) can be guaranteed.
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Sometimes the points x1, . . . , xn are endowed with the positive
weights d1, . . . , dn, w.l.o.g.,

∑n
i=1 di = 1.

Weighted k-variance of the points:

S̃2
k (x1, . . . , xn) = min

Pk∈Pk

S̃2
k (Pk , x1, . . . , xn)

= min
Pk=(V1,...,Vk )

k∑
a=1

∑
j∈Va

dj‖xj − ca‖2,

ca =
1∑

j∈Va
dj

∑
j∈Va

djxj .

E.g., d1, . . . , dn is a discrete probability distribution and a random
vector takes on values x1, . . . , xn with these probabilities; e.g., in a
MANOVA (Multivariate Analysis of Variance) setup. The above
algorithms can be easily adapted to this situation.
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Ratio cut, partition matrices

Pk : n × k balanced partition matrix Zk = (z1, . . . , zk)
k-partition vector: za = (z1a, . . . , zna)

T , where
zia = 1√

|Va|
, if i ∈ Va and 0, otherwise.

Zk is suborthogonal: ZT
k Zk = Ik

The ratio cut of the k-partition Pk given W:

g(Pk ,W) = trZT
k LZk =

k∑
a=1

zT
a Lza. (1)

We want to minimize it over balanced k-partition matrices
Zk ∈ ZB

k .
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Estimation by Laplacian eigenvalues

G is connected, the spectrum of L: 0 = λ1 < λ2 ≤ · · · ≤ λn

unit-norm, pairwise orthogonal eigenvectors: u1,u2, . . . ,un;
u1 = 1/

√
n

The discrete problem is relaxed to a continuous one:
r1, . . . , rn ∈ Rk : representatives of the vertices
X = (r1, . . . , rn)T = (x1, . . . , xk)

min
XT X=Ik

n−1∑
i=1

n∑
j=i+1

wij‖ri − rj‖2 = min
XT X=Ik

trXTLX =
k∑

i=1

λi

and equality is attained with X = (u1, . . . ,uk).
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gk(G ) = min
Zk∈ZB

k

trZT
k LZk ≥

k∑
i=1

λi (2)

and equality can be attained only in the k = 1 trivial case,
otherwise the eigenvectors ui (i = 2, . . . , k) cannot be partition
vectors, since their coordinates sum to 0 because of the
orthogonality to the u1 = 1 vector.
Optimum choice of k?

trZT
k LZk =

n∑
i=1

λi

k∑
a=1

(uT
i za)

2. (3)

This sum is the smallest possible if the largest (uT
i za)

2 terms
correspond to eigenvectors belonging to the smallest eigenvalues.
Thus, the above sum is the most decreased by keeping only the k
smallest eigenvalues in the inner summation and the corresponding
eigenvectors are close to the subspace Fk = Span {z1, . . . , zk}.
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Minimizing the normalized cut

n × k normalized partition matrix: Zk = (z1, . . . , zk)
za = (z1a, . . . , zna)

T , where zia = 1√
Vol (Va)

, if i ∈ Va and 0,

otherwise.
The normalized cut of the k-partition Pk given W:

f (Pk ,W) = trZT
k LZk = tr (D1/2Zk)TLD(D1/2Zk) (4)

Normalized Laplacian eigenvalues (G is connected):
0 = λ′1 < λ′2 ≤ · · · ≤ λ′n ≤ 2
eigenvalues of LD with corresponding unit-norm, pairwise
orthogonal eigenvectors u1, . . . ,un,
u1 = (

√
d1, . . . ,

√
dn)

T .
Continuous relaxation: X = (r1, . . . , rn)T = (x1, . . . , xk)

min
XT DX=Ik

n−1∑
i=1

n∑
j=i+1

wij‖ri − rj‖2 = min
XT DX=Ik

trXTLX =
k∑

i=1

λ′i

and the minimum is attained with xi = D−1/2ui (i = 1, . . . , k).
Especially, x1 = 1.
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fk(G ) = min
Zk∈ZN

k

trZT
k LZk ≥

k∑
i=1

λ′i

and equality can be attained only in the k = 1 trivial case,
otherwise the transformed eigenvectors D−1/2ui (i = 2, . . . , k)
cannot be partition vectors, since their coordinates sum to 0 due to
the orthogonality of the 1 vector.
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Spectral gap and variance

In B, Tusnády, Discrete Math., 1994

Theorem

In the representation X2 = (D−1/2u1, D−1/2u2) = (1, D−1/2u2):

S̃2
2 (X2) ≤

λ′2
λ′3

Can it be generalized for k > 2?
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Newman–Girvan modularity for edge-weighted
graphs

G = (V ,W), w.l.o.g.
∑n

i=1

∑n
j=1 wij = 1 supposed

Definition

the Newman-Girvan modularity of Pk given W:

Q(Pk ,W) =
k∑

a=1

∑
i ,j∈Va

(wij − didj)

=
k∑

a=1

[e(Va,Va)− Vol 2(Va)],

Under the null-hypothesis, vertices i and j are connected to each
other independently, with probabilities proportional (actually,
because of the normalizing condition, equal) to their generalized
degrees.
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For given k we maximize Q(Pk ,W) over Pk .
We want to penalize partitions with clusters of extremely different
sizes or volumes

Definition

Balanced Newman–Girvan modularity of Pk given W:

QB(Pk ,W) =
k∑

a=1

1

|Va|
∑

i ,j∈Va

(wij − didj)

=
k∑

a=1

[
e(Va,Va)

|Va|
− Vol 2(Va)

|Va|

]
,



Preliminaries Stochastic block model Non-parametric view Perturbation on blocks Regular partitions and spectra

Definition

Normalized Newman–Girvan modularity of Pk given W:

QN(Pk ,W) =
k∑

a=1

1

Vol (Va)

∑
i ,j∈Va

(wij − didj)

=
k∑

a=1

e(Va,Va)

Vol (Va)
− 1,

Maximizing the normalized Newman–Girvan modularity over Pk is
equivalent to minimizing the normalized cut.
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Maximizing the balanced Newman–Girvan
modularity

B = W − ddT : modularity matrix
d = (d1, . . . , dn)

T

Spectrum: β1 ≥ · · · ≥ βp > 0 = βp+1 ≥ · · · ≥ βn

max
Pk∈Pk

QB(Pk ,W) ≤
k∑

a=1

βa ≤
p+1∑
a=1

βa.

The maximum with respect to k is attained with the choice of
k = p + 1.



Preliminaries Stochastic block model Non-parametric view Perturbation on blocks Regular partitions and spectra

Normalized modularity matrix

BD = D−1/2BD−1/2 = I− LD −
√

d
√

d
T

1 ≥ β′1 ≥ · · · ≥ β′n ≥ −1: spectrum of BD (1 is not an eigenvalue
if G is connected)
u′1, . . . ,u

′
n: unit-norm, pairwise orthogonal eigenvectors

u′1 = (
√

d1, . . . ,
√

dn)
T =:

√
d

max
Pk∈Pk

QN(Pk ,W) ≤
k∑

a=1

β′a ≤
p+1∑
a=1

β′a.
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Block matrices

Definition

The n× n symmetric real matrix B is a blown-up matrix, if there is
a k × k symmetric so-called pattern matrix P with entries
0 ≤ pij ≤ 1, and there are positive integers n1, . . . , nk with∑k

i=1 ni = n, such that – after rearranging its rows and columns –
the matrix B can be divided into k × k blocks, where block (i , j) is
an ni × nj matrix with entries all equal to pij (1 ≤ i , j ≤ n).
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Wigner-noise

Definition

The n × n symmetric real matrix W is a Wigner-noise if its entries
wij , 1 ≤ i ≤ j ≤ n, are independent random variables, Ewij = 0,
Varwij ≤ σ2 with some 0 < σ < ∞ and the wij ’s are uniformly
bounded (there is a constant K > 0 such that |wij | ≤ K ).

Füredi, Komlós (Combinatorica, 1981):

max
1≤i≤n

|λi (W)| ≤ 2σ
√

n + O(n1/3 log n)

with probability tending to 1 as n →∞.
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Perturbation results for weighted graphs

A = B + W, where
W: n × n Wigner-noise
B: n × n blown-up matrix of P with blow-up sizes n1, . . . , nk ,∑k

i=1 ni = n.
P: k × k pattern matrix
k is kept fixed as n1, . . . , nk →∞“at the same rate”: there is a
constant c such that
ni
n ≥ c, i = 1, . . . k.
growth rate condition: g.r.c.
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Spectrum of a noisy graph

Gn = (V ,A), A = B + W is n × n, n →∞
B induces a planted partition Pk = (V1, . . . ,Vk) of V .
Weyl’s perturbation theorem =⇒
Adjacency spectrum of Gn: under g.r.c. there are k structural
eigenvalues of order n (in absolute value) and the others are
O(
√

n), almost surely.
The eigenvectors X = (x1, . . . , xk) corresponding to the structural
eigenvalues are“not far” from the subspace of stepwise constant
vectors on Pk =⇒

S2
k (X) ≤ S2

k (Pk ,X) = O(
1

n
), almost surely.
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Spectrum of the normalized Laplacian

Gn = (V ,A), A = B + W is n × n, n →∞
LD = I−D−1/2AD−1/2

Theorem

There exists a positive number δ ∈ (0, 1), independent of n, such
that for every 0 < τ < 1/2 the following statement holds with
probability tending to 1 as n →∞, under the g.r.c.:
there are exactly k eigenvalues of LD that are located in the union
of intervals [−n−τ , 1− δ + n−τ ] and [1 + δ − n−τ , 2 + n−τ ], while
all the others are in the interval (1− n−τ , 1 + n−τ ).

Representation: xi = D−1/2ui , (i = 1, . . . , k)

S̃2
k (Pk ,X) ≤ k

( δ
n−τ − 1)2

w. p. to 1 as n →∞, under g.r.c.
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Noisy graph is a random simple graph with
appropriate noise

The uniform bound K on the entries of W is such that
A = B + W has entries in [0,1].
With an appropriate Wigner-noise the noisy matrix A is a
generalized random graph: edges between Vi and Vj exist with
probability 0 < pij < 1.
For 1 ≤ i ≤ j ≤ k and l ∈ Vi , m ∈ Vj :

wlm :=

{
1− pij , with probability pij

−pij with probability 1− pij

be independent random variables, otherwise W is symmetric. The
entries have zero expectation and bounded variance:

σ2 = max
1≤i≤j≤k

pij(1− pij) ≤
1

4
.
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Szemerédi’s Regularity Lemma

For any graph on n vertices there exist a partition (V0,V1, . . . ,Vk)
of the vertices (here V0 is a“small” exceptional set) such that
“most”of the Vi ,Vj pairs (1 ≤ i < j ≤ k) are ε-regular with ε > 0
fixed in advance.
The pair Vi ,Vj (i 6= j) is ε-regular, if for any A ⊂ Vi , B ⊂ Vj with
|A| > ε|Vi |, |B| > ε|Vj |:

|dens (A,B)− dens (Vi ,Vj)| < ε,

where

dens (A,B) =
e(A,B)

|A| · |B|
is the edge-density between the disjoint vertex-sets A and B.
Informally, ε-regularity means that the edge-densities between the
Vi ,Vj pairs are homogeneous.
If the graph is sparse, then k = 1, otherwise k can be arbitrarily
large (but it depends only on ε).
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The planted partition is ε-regular almost surely

With the above Wigner-noise, e(Vi ,Vj) is the sum of |Vi | · |Vj |
independent, identically distributed Bernoulli variables with
parameter pij (1 ≤ i , j ≤ k). Hence, e(A,B) is binomially
distributed with expectation |A| · |B| · pij and variance
|A| · |B| · pij(1− pij).
By Chernoff’s inequality for large deviations:

P (|dens (A,B)− pij | > ε) ≤ e
− ε2|A|2|B|2

2[|A||B|pij (1−pij )+ε|A||B|/3]

= e
− ε2|A||B|

2[pij (1−pij )+ε/3]

≤ e
−

ε4|Vi ||Vj |
2[pij (1−pij )+ε/3

that tends to 0, as |Vi | = ni →∞ and |Vj | = nj →∞. Hence,
any pair Vi ,Vj is ε-regular with probability tending to 1
if n1, . . . , nk →∞ under the g.r.c. (weaker than the structure
guaranteed by Szemerédi’s Lemma)
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Recognizing the structure

Theorem

Let An be a sequence of n × n matrices, where n →∞. Assume
that An has exactly k eigenvalues of order greater than

√
n, and

there is a k-partition of the vertices such that the k-variance of the
representatives is O( 1

n ), in the representation with the
corresponding eigenvectors. Then there is a blown-up matrix Bn

such that An = Bn + En with ‖En‖ = O(
√

n).

Proof: construction by the cluster centers.
Results with planted partitions and cut-matrices or low-rank
approximation of the column space of A:

Frieze, A., Kannan, R.

McSherry, F.

Amin Coja-Oghlan
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Volume regularity

Definition

Let G = (V ,W) be weighted graph with Vol (V ) = 1. The disjoint
pair (A,B) is α-volume regular if for all X ⊂ A, Y ⊂ B we have

|e(X ,Y )− ρ(A,B)Vol (X )Vol (Y )| ≤ α
√
Vol (A)Vol (B),

where ρ(A,B) = e(A,B)
Vol (A)Vol (B) is the relative inter-cluster density of

(A,B).
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Result

Let G = (V ,W) be an edge-weighted graph on n vertices, with
generalized degrees d1, . . . , dn and degree matrix D. Suppose that
Vol (V ) = 1 and there are no dominant vertices: di = Θ(1/n),
i = 1, . . . , n as n →∞. Let the eigenvalues of D−1/2WD−1/2,
enumerated in decreasing absolute values, be

1 = ρ1 > |ρ2| ≥ · · · ≥ |ρk | > ε ≥ |ρi |, i ≥ k + 1.

The partition (V1, . . . ,Vk) of V is defined so that it minimizes the
weighted k-variance s2 = S̃2

k (X) of the vertex representatives
obtained as row vectors of the n × (k − 1) matrix X of column
vectors D−1/2ui , where ui is the unit-norm eigenvector belonging
to ρi (i = 2, . . . , k). Then the (Vi ,Vj) pairs are
O(
√

ks + ε)-volume regular (i 6= j).
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Further, for the clusters Vi (i = 1, . . . , k) the following holds.
For all X ,Y ⊂ Vi :

|e(X ,Y )− ρ(Vi )Vol (X )Vol (Y )| = O(
√

ks + ε)Vol (Vi ),

where ρ(Vi ) = e(Vi ,Vi )
Vol 2(Vi )

is the relative intra-cluster density of Vi .
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In the k = 2 case, due to the relation between the 2-variance and
the spectral gap, we are able to prove the following.
Let the eigenvalues of D−1/2WD−1/2, enumerated in decreasing
absolute values, be

1 = ρ1 > |ρ2| = δ > ε = |ρ3| ≥ |ρi |, i ≥ 4.

The partition (A,B) of V is defined in such a way that it
minimizes the weighted 2-variance of the coordinates of D−1/2u2,
where u2 is the unit-norm eigenvector belonging to ρ2. Then the

(A,B) pair is O(
√

1−δ
1−ε)-volume regular.
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