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The unrestricted causal VAR(0) model

Recursive linear equations (Wermuth):
X ∼ Nd(0,Σ) is d-dimensional Gaussian random vector.

AX = U with U = (U1, . . . ,Ud)T ∼ Nd(0,∆),

where A is a d × d upper triangular matrix with 1s along its main
diagonal, otherwise it contains the negatives of the partial
regression coefficients aji ’s, when Xj is the target of a multivariate
linear regression with predictors {Xi : i > j}.
aji : path coefficient, statistical tests for its significance.
∆ = diag(δ1, . . . , δd): diagonal matrix with positive diagonal
entries, covariance matrix of the error term U (residual variances).
Taking the covariance matrix, we get

E[(AX)(AX)T ] = AΣAT = ∆.
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By the standard LDL (variant of the simple Cholesky)
decomposition of Σ−1 (Bolla et al., Acta Sci. Math. (Szeged) 85,
2019):

Σ−1 = L∆−1LT .

This decomposition of the positive definite matrix Σ−1 is unique,
where L = AT is lower triangular of entries 1s along its main
diagonal and ∆−1 is a diagonal matrix of entries all positive along
its main diagonal. By uniqueness, this A = LT and ∆ give the
solution to the original problem.
At this point, the ordering of the jointly Gaussian variables is not
relevant, since in any recursive ordering of them (encoded in A) a
Gaussian directed graphical model (in other words, a Gaussian
Bayesian network) can be constructed, where every variable is
regressed linearly with the higher index ones.
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The unrestricted causal VAR(1) model

{Xt}: d-dimensional, weakly stationary process with real valued
components and covariance matrix function C(h),
h = 0,±1,±2, . . . ; C(−h) = CT (h). EXt = 0,
C(h) = EXtXT

t+h does not depend on t.
Recursive VAR(1) model:

AXt + BXt−1 = Ut , t = 1, 2, . . . ,

where the white noise random vector Ut is uncorrelated with Xt−1,
has zero expectation and covariance matrix ∆ = diag(δ1, . . . , δd).
The covariance matrix of (XT

t ,X
T
t−1)T :

C2 =

(
C(0) CT (1)
C(1) C(0)

)
.

It is symmetric and positive definite if the process is of full rank
regular (which means that its spectral density matrix is of full
rank) that is assumed in the sequel.
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It is well known that the inverse of C2, the so-called concentration
matrix K, has the block-matrix form(

C−1(1|0) −C−1(1|0)CT (1)C−1(0)

−C−1(0)C(1)C−1(1|0) C−1(0) + C−1(0)C(1)C−1(1|0)CT (1)C−1(0)

)
,

where C(1|0) = C(0)− CT (1)C−1(0)C(1) is the conditional
covariance matrix C(t|t − 1) of the distribution of Xt conditioned
on Xt−1; by weak stationarity, it does not depend on t either,
therefore it is denoted by C(1|0). Also, C2 is positive definite if
and only if both C(0) and C(1|0) are positive definite.
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Theorem

The parameter matrices A, B, and ∆ of the model equation can
be obtained by the block LDL decomposition of the (positive
definite) concentration matrix K (inverse of the covariance matrix
C2 of the 2d-dimensional Gaussian system (XT

t ,X
T
t−1)T ). If

K = LDLT is this (unique) decomposition with block-triangular
matrix L and block-diagonal matrix D, then they have the form

L =

(
AT Od×d

BT Id×d

)
, D =

(
∆−1 Od×d

Od×d C−1(0)

)
,

where the d × d upper triangular matrix A with 1s along its main
diagonal, the d × d matrix B, and the diagonal matrix ∆ of the
model equation can be retrieved from them.
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Algorithm (recursion)

Outer cycle (column-wise). For j = 1, . . . , d :
δ−1
j = kjj −

∑j−1
h=1 ljhδ

−1
h ljh

(with the reservation that δ−1
1 = k11);

Inner cycle (row-wise). For i = j + 1, . . . , d :

lij =

(
kij −

j−1∑
h=1

lihδ
−1
h ljh

)
δj (1)

and

ld+1,j =

(
kd+1,j −

j−1∑
h=1

ld+1,hδ
−1
h ljh

)
δj

(with the reservation that in the j = 1 case the summand is
zero), where kd+1,j for j = 1, . . . , d is d × 1 vector in the
bottom left block of K.

BT := (ld+1,1, . . . , ld+1,d) is d × d as ld+1,j is d × 1.
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Remark: nested structure

It is obvious that the above decomposition has a nested structure,
so for the first d rows of L, only its previous rows or preceding
entries in the same row enter into the calculation, as if we
performed the standard LDL decomposition of K.
Therefore, lij = aji for j = 1, . . . , d − 1, i = j + 1, . . . , d that are
the partial regression coefficients akin to those offered by the

standard LDL decomposition K = L̃D̃L̃
T

;

Consequently, the first d rows of L̃ and L are the same, and the
first d rows of D̃ and D are the same too.
When the process terminates after finding the first d rows of L, we
consider the blocks

”
en block” and get the matrix

BT = (ld+1,1, . . . , ld+1,d).
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The restricted causal VAR(1) model

Assume that we have a causal ordering of the coordinates
X1, . . . ,Xd of X such that Xi can be the cause of Xj whenever
j < i . We can think of Xi s as the nodes of a graph in a directed
graphical model (Bayesian network) and their labeling corresponds
to a topological ordering of the nodes of the underlying directed
acyclic graph (DAG).
For example, when asset prices or log-returns of different assets or
currencies (on the same day) influence each other in a certain
(recursive) order, contemporaneously.
In the restricted cases, only certain asset prices influence some
others on a DAG, but not all possible directed edges are present. In
this case, a covariance selection technique can be initiated to
re-estimate the covariance matrix so that the partial regression
coefficients in the no-edge positions be zeros.
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Decomposable graph, triangulated (chordal),
junction tree, RZP (equivalent)

Definition

Let M be a symmetric or an upper triangular matrix of real entries.
We say that M has a reducible zero pattern (RZP) if mji = 0
(j < i) implies that for each h = 1, . . . , j − 1: either mhj = 0 or
mhi = 0 holds (or both hold).

In the adjacency matrix of a DAG, an RZP is present if and only if
there is no sink V configuration in the topological ordering of the
DAG. Under sink V configuration a triplet j → h← i is
understood, where i is not connected to j (h < j < i).
Indeed, in this case the DAG has a triplet h < j < i with mhi 6= 0,
mhj 6= 0, but mij = 0, in contrast to the Definition.
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If we also require that the so constructed DAG be Markov
equivalent to its undirected skeleton, then the DAG must not
contain sink V configuration. In this case, the positions of the zero
entries of Σ−1 are identical to the positions of the zero entries of
A in the VAR(0) model.
If such an ordering exists, it gives a special DAG which defines a
decomposable graph, the skeleton also triangulated, labeling
compatible with the so-called maximal cardinality search (MCS)
ordering, defines a possible (not necessarily unique) causal ordering
of the variables, and junction tree (JT) structure of the cliques
(maximal complete subgraphs).
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Junction Tree

The cliques C1, . . . ,Ck can be numbered so that Cj is the disjoint
union of Rj (residual) and of Sj (separator) with the following
property: there is an i∗ ∈ {1, . . . , j − 1} such that

Sj = Cj ∩ (∪j−1
i=1Ci ) = Cj ∩ Ci∗ .

This (not necessarily unique) Ci∗ is called parent clique of Cj ,
where S1 = ∅ and R1 = C1. Furthermore, if such an ordering is
possible, a version can be found in which any prescribed clique is
the first one. Also equivalently, any path between Ci and Cj

(i 6= j) contains Ci ∩ Cj . Note that the junction tree is indeed a
tree with nodes C1, . . . ,Ck and one less edges, that are the
separators S2, . . . ,Sk .
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Also note, that if an undirected graph is triangulated, then in a
convenient labeling of its nodes, its adjacency matrix has an RZP.
This so-called perfect ordering is obtainable, e.g. by the maximal
cardinality search (MCS) algorithm. In this ordering of the nodes,
a DAG can be constructed, the adjacency matrix of which has the
same RZP. In this way, a decomposable undirected graph can be
made directed.
At the beginning, no restrictions for the upper-diagonal entries of
A are made. In practice, we have a sample and all the
autocovariance matrices are estimated, consequently the resulting
A,B matrices are also estimated. Usually a statistical hypothesis
testing advances this procedure, during which it can be found that
certain partial correlations (closely related to the entries of K) do
not significantly differ from zero.
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Covariance Selection

Then we naturally want to introduce zeros for the corresponding
entries of A. The covariance selection (Dempster) is improved:

Proposition

The upper triangular matrix A of the VAR(1) model has an RZP if
and only if the upper left d × d block of K = C−1

2 has an RZP.
Moreover, the zero entries of A are exactly in the same positions as
the zero entries of the upper diagonal part of the upper left block
of K.

The proof follows from Equation (1).
Fixing the zero entries in the left upper block of K, we re-estimate
the matrix C2 that means a product-moment estimate (MLE in the
RZP model).
Product moments are calculated only for the cliques and separators
that decreases computational complexity.
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Higher order causal VAR models

The above model is further generalized to the VAR(p) model
(p ≥ 1):

AXt + B1Xt−1 + · · ·+ BpXt−p = Ut , t = p + 1, p + 2, . . . ,

where the white noise term Ut is uncorrelated with
Xt−1, . . . ,Xt−p, it has zero expectation and covariance matrix
∆ = diag(δ1, . . . , δd). A is d × d upper triangular matrix with 1s
along its main diagonal; whereas, B1, . . . ,Bp are d × d matrices.
Here we have to perform the block Cholesky decomposition of the
inverse covariance matrix (concentration matrix) K of Cp+1,
covariance matrix of the stacked vector (XT

t ,X
T
t−1, . . . ,X

T
t−p)T .
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Estimation of the parameter matrices

Theorem

The parameter matrices A, B1, . . . ,Bp and ∆ of the model
equation can be obtained by the block LDL decomposition of the
(positive definite) concentration matrix K. If K = LDLT is this
(unique) decomposition with block-triangular matrix L and
block-diagonal matrix D, then they have the form

L =

(
AT Od×pd

BT Ipd×pd

)
, D =

(
∆−1 Od×pd

Opd×d C−1
p

)
,

where the d × d upper triangular matrix A with 1s along its main
diagonal, the d × pd matrix B = (B1 . . .Bp) (transpose of BT ,
partitioned into blocks) and the diagonal matrix ∆ of the model
equation can be retrieved from them.
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Restricted causal VAR(p) models

Restricted cases can be treated similarly as in the p = 1 case. Here
too, the existence of an RZP in the DAG on p nodes is equivalent
to the existence of an RZP in the left upper d × d corner of the
concentration matrix K = C−1

p+1. The selection of p is an issue in
the usual (not causal) VAR models too. However, this problem
needs statistical hypothesis testing, akin to the test of the partial
correlations.
Since the conditioning set changes from equation to equation, it is
easier to use the block LDL decompositions here, without the
exact meaning of the coefficients.
Covariance selection can be done similarly, but here zero entries of
the left upper d × d block of C−1

p+1 provide the zero entries of A.
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Conclusions

The model equation has the equivalent reduced form:

Xt+A−1B1Xt−1+· · ·+A−1BpXt−p = Vt , t = p+1, p+2, . . . ,

where Vt is white noise with covariance matrix

Σ = A−1∆A−1T = (AT∆−1A)−1, usually not diagonal, but
positive definite. So we have a solution for the Yule–Walker
equations, an alternative of the Durbin–Levinson algorithm
(essentially encodes the block Cholesky decomposition).
The process Ut = AVt of structural shocks is obtained from
the process Vt of innovations in the reduced form and have an
econometric interpretation. The structural shocks represent
unanticipated changes in the observed econometric variables
and they are mutually uncorrelated. In fact, they are the
orthogonalized innovations, but here the structure of the
matrix A plays an important role.
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Application to financial data (Akbilgic, O. et al.)

Daily log-returns of 8 different asset prices, spanning 534 trading
days (nearly stationary and Gaussian).
A DAG was constructed by making the undirected graph on 8
nodes directed. The undirected graph was made by testing
statistical hypotheses for the partial correlations of the pairs of the
variables conditioned on all the others. As the test statistic is
increasing in the absolute value of the partial correlation in
question, a threshold 0.04 for the latter one was used.
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RZP

Since the graph was triangulated, with the MCS algorithm, we
were able to label the nodes so that the adjacency matrix of this
undirected graph had an RZP:

1 : NIK (stock market return index of Japan),

2 : EU (MSCI European index),

3 : ISE (Istanbul stock exchange national 100 index)

4 : EM (MSCI emerging markets index),

5 : BVSP (stock market return index of Brazil),

6 : DAX (stock market return index of Germany),

7 : FTSE (stock market return index of UK),

8 : SP (Standard & poor’s 500 return index).
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Undirected and directed graphs (path coefficients)

NIK

EU

ISE

EM

BVSP

DAX

FTSE

SP

-0.819

0.208

-0.042

-0.027

-0.378

-0
.5

3

-0.939

0.165

-0
.1

67

-0.316-0.148

-0
.3

42

-0.118

-0.246

0.1

-0.013

-0.273
-0.642

-0.81

-0.234
-0.61

NIK

EU

ISE

EM

BVSP

DAX

FTSE

SP
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The unrestricted VAR(p) model, p = 1, 2, 3, 4, 5

First we run the unrestricted VAR(p) algorithm with
p = 1, 2, 3, 4, 5 and found that the A matrices do not change much
with increasing p, akin to B1. The B2, ..,B5 matrices have
relatively

”
small” entries.

Consequently, contemporaneous effects and one-day lags are the
most important.
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The restricted causal VAR(1) model

We want to introduce structural zeros into the matrix A. Now the
matrix C−1(1|0), the left upper 8× 8 corner of C−1

2 is used for
covariance selection.
The JT structure has the following cliques and separators:

C1 = {BVSP,DAX,EM,FTSE,ISE,SP}
C2 = {BVSP,DAX,EU,FTSE,ISE}
C3 = {BVSP,EM,NIK}
S2 = {BVSP,DAX,FTSE,ISE}
S3 = {BVSP,EM},

where the parent clique of both C2 and C3 is C1.
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A matrix of the restricted causal VAR(1) model

NIK EU ISE EM BVSP DAX FTSE SP
NIK 1 0 0 -0.819 0.208 0 0 0
EU 0 1 -0.042 0 -0.027 -0.378 -0.529 0
ISE 0 0 1 -0.939 0.165 -0.168 -0.316 -0.148
EM 0 0 0 1 -0.342 -0.118 -0.246 0.099

BVSP 0 0 0 0 1 -0.013 -0.273 -0.642
DAX 0 0 0 0 0 1 -0.810 -0.234

FTSE 0 0 0 0 0 0 1 -0.610
SP 0 0 0 0 0 0 0 1
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B matrix of the restricted causal VAR(1) model

NIK−1 EU−1 ISE−1 EM−1 BVSP−1 DAX−1 FTSE−1 SP−1

NIK 0.181 -0.179 -0.086 0.084 0.074 -0.006 -0.115 -0.266
EU -0.013 0.121 -0.005 0.0304 -0.013 -0.042 -0.097 0.000
ISE 0.068 0.281 -0.066 0.248 -0.294 -0.057 0.012 -0.147
EM -0.002 -0.057 -0.017 0.107 -0.091 -0.095 0.089 -0.109

BVSP -0.014 0.070 0.014 -0.104 0.139 -0.149 0.119 -0.083
DAX -0.003 0.202 -0.034 -0.005 -0.035 -0.047 -0.067 -0.067

FTSE 0.029 -0.017 -0.011 0.042 -0.113 0.214 0.081 -0.264
SP 0.042 0.261 -0.026 0.012 -0.003 -0.071 -0.285 0.124
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