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Time domain

{Xt}: d-dimensional, weakly stationary time series with real
components and autocovariance matrices C(h), C(−h) = CT (h),
h ∈ Z.
Cn: covariance matrix of [XT

1 , . . . ,X
T
n ]T ∈ Rnd :

Cn :=


C(0) C(1) C(2) · · · C(n − 1)

CT (1) C(0) C(1) · · · C(n − 2)

CT (2) CT (1) C(0) · · · C(n − 3)
...

...
...

. . .
...

CT (n − 1) CT (n − 2) CT (n − 3) · · · C(0)

 .

This is a symmetric, positive semidefinite block Toeplitz matrix,
the (i , j) block of which is C(j − i).



Eigenvalues of the block circulant matrix

To characterize the eigenvalues of Cn, first we need the symmetric

block circulant matrix C
(s)
n that we consider now for odd n, say

n = 2k + 1.
The (i , j) block of C

(s)
n for 1 ≤ i ≤ j ≤ n is

C
(s)
n (blocki ,blockj) =

{
C(j − i) j − i ≤ k
C(n − (j − i)), j − i > k.

For i > j , it is

C
(s)
n (blocki , blockj) =

{
CT (i − j) i − j ≤ k

CT (n − (i − j)), i − j > k.



C
(s)
n is a symmetric block Toeplitz matrix again, and it is the same

as Cn within the blocks (i , j)s for which |j − i | ≤ k holds. For
example, if n = 7 and k = 3, then we have

C
(s)
7 :=



C(0) C(1) C(2) C(3) C(3) C(2) C(1)

CT (1) C(0) C(1) C(2) C(3) C(3) C(2)

CT (2) CT (1) C(0) C(1) C(2) C(3) C(3)

CT (3) CT (2) CT (1) C(0) C(1) C(2) C(3)

CT (3) CT (3) CT (2) CT (1) C(0) C(1) C(2)

CT (2) CT (3) CT (3) CT (2) CT (1) C(0) C(1)

CT (1) CT (2) CT (3) CT (3) CT (2) CT (1) C(0)


.



1D

In 1D, by Kronecker products (with permutation matrices), it is

well known that the jth eigenvalue of C
(s)
n is

∑n−1
h=0 c(h)ρhj , where

ρj = e iωj is the jth primitive (complex) nth root of 1 and ωj = 2πj
n

is the jth Fourier frequency (j = 0, 1, . . . , n − 1).
The eigenvector corresponding to the jth eigenvalue is
(1, ρj , . . . , ρ

n−1
j )T ; it has norm

√
n.

After normalizing with 1√
n

, we get a complete orthonormal set of

eigenvectors (of complex coordinates).



multi-D

When C(h)s are d × d matrices, by inflation techniques and
applying Kronecker products, we use blocks instead of entries, and
the eigenvectors also follow a block structure.
Friedman (1961) and Tee (2007) characterize the eigenvalues and
eigenvectors of a general symmetric block circulant matrix. We
apply this result in our situation, when n = 2k + 1 is odd (for even
n similar results hold).

The spectrum of C
(s)
n is the union of spectra of the matrices

Mj = C(0) +
k∑

h=1

[C(h)ρhj + CT (h)ρ−hj ]

for j = 0, 2, . . . , n − 1, whereas the eigenvectors are obtained by
compounding the eigenvectors of these d × d matrices.



Mn−j = Mj (entrywise conjugate), therefore, it has the same
eigenvalues as Mj , but the eigenvectors are the (componentwise)
complex conjugates of the eigenvectors of Mj .

Summarizing, for odd n = 2k + 1, the nd eigenvalues of C
(s)
n are

obtained as the union of the eigenvalues of M0 and those of Mj

(j = 1, . . . , k) duplicated. Note that for even n, similar arguments

hold with the difference that there the spectrum of C
(s)
n is the

union of the eigenvalues of M0 and Mn−1, whereas the eigenvalues
of M1, . . . ,M n

2
−1 are duplicated.



The eigenvectors of C
(s)
n are obtainable by compounding the d

orthonormal eigenvectors of the d × d self-adjoint matrices
M0,M1, . . . ,Mn−1 as follows.
For j = 1, . . . , k: if v is an eigenvector of Mj with eigenvalue λ,
then the compounded (stacked) vector

w = (vT , ρjv
T , ρ2j v

T , . . . , ρn−1j vT )T ∈ Cnd

is an eigenvector of C
(s)
n with the same eigenvalue λ. Further, if

z = (tT , ρ`t
T , ρ2`t

T , . . . , ρn−1` tT )T ∈ Cnd

is another eigenvector of C
(s)
n compounded from an eigenvector t

of another M` (` 6= j), then w and z are orthogonal, irrespective
whether M` has the same eigenvalue λ as Mj or not. Similar
construction holds starting with the eigenvectors of M0.



For each j = 0, 1, . . . , n − 1, there are d pairwise orthogonal
eigenvectors (potential vs) of Mj , and the so obtained ws are also
pairwise orthogonal. Assume that the eigenvectors of Mj are
enumerated in non-increasing order of its eigenvalues, and the
inflated ws also follow this ordering, for j = 0, 1, . . . , n − 1.
If v is an eigenvector of Mj with real eigenvalue λ, then v is the
corresponding eigenvector of Mn−j with the same eigenvalue λ;
further, the compounded (stacked) w and w ∈ Cnd are orthogonal

eigenvectors of C
(s)
n corresponding to the eigenvalue λ with

multiplicity (at least) two; w and w have the same norm.
From them, corresponding to this double eigenvalue λ, the new
orthogonal pair of eigenvectors

w + w√
2

and i
w −w√

2
.

Note that it is necessary to have an orthogonal system of
eigenvectors with real coordinates whenever the underlying time

series is real, and so, C
(s)
n is a real symmetric matrix.



After normalization, denote by u1, . . . ,und the so obtained

orthonormal set of eigenvectors (of real coordinates) of C
(s)
n (in the

above ordering) and by U = (u1, . . . ,und) the nd × nd orthogonal
matrix containing them columnwise; further, let

C
(s)
n = UΛ(s)UT

be the corresponding spectral decomposition. After this
preparation, we are able to prove the main theorem.



Frequency domain

Denoting by C(h) = [cij(h)] the d × d autocovariance matrices
(C(−h) = CT (h), h ∈ Z) in the time domain, assume that their
entries are absolutely summable, i.e.,

∑∞
h=0 |cpq(h)| <∞ for

p, q = 1, . . . , d .
Then, the self-adjoint, positive semidefinite spectral density matrix
f(ω) exists in the frequency domain, and it is defined by

f(ω) =
1

2π

∞∑
h=−∞

C(h)e−ihω, ω ∈ [0, 2π].

At the Fourier frequencies, it resembles the formula for Mjs.



The Main Theorem

Let {Xt} be d-dimensional weakly stationary time series of real
components. For odd n = 2k + 1, consider X1, . . . ,Xn with the
block Toeplitz matrix Cn; further, the Fourier frequencies ωj = 2πj

n
for j = 0, . . . , n − 1. Let

Dn = diag (Spec f(0), Spec f(ω1), . . . , Spec f(ωk),

Spec f(ωk), . . . , Spec f(ω1)).

Here Spec contains the eigenvalues of the affected matrix in
non-increasing order if not otherwise stated. (The duplication is
due to the fact that f(ωj) = f(ωn−j), j = 1, . . . , k, for real time
series). Then, with the above spectral decomposition:

UTCnU− 2πDn → O, n→∞,

i.e., the entries of the matrix UTCnU− 2πDn tend to 0 uniformly
as n→∞.



Consequence I: Real PCA
U: nd × nd matrix containing the orthonormal eigenvectors uj (of

real coordinates) of the block circulant matrix C
(s)
n in its columns.

This is a real orthogonal matrix, and so, the
”
principal component”

transformation
Y = UTX

of the nd-dimensional random vector X = (XT
1 , . . . ,X

T
n )T results

in an nd-dimensional random vector Y = (YT
1 , . . . ,Y

T
n )T (of real

coordinates), the components of which are approximately
uncorrelated, since

EYYT = UTCnU ∼ 2πDn

for
”
large”n. Therefore, the

”
principal components”, i.e., the

random variables Yj = uTj X (j = 1, . . . , nd) are asymptotically
uncorrelated.
Consequently, the d-dimensional random vectors Y1, . . . ,Yn are
both cross-sectionally and longitudinally uncorrelated,
approximately.



Consequence II: Complex PCA
W: nd × nd matrix containing the orthonormal eigenvectors wj (of

complex coordinates) of the block circulant matrix C
(s)
n in its

columns.
Let Z = (ZT

1 , . . . ,Z
T
n )T denote the random vector obtained by

Z = W∗X.

Its (complex) components are also uncorrelated and EZZ∗ ∼ 2πDn

again. Instead, we consider the blocks Zjs of it, and perform a

”
partial principal component transformation” (in d-dimension) of

them. Let w1j , . . . ,wdj be the columns of W corresponding to the
coordinates of Zj . Then by the block nature of the eigenvectors:

Zj =
1√
n

(V∗j ⊗ r∗)X,

where r∗ = (1, ρ−1j , ρ−2j , . . . , ρ
−(n−1)
j ) and Vj is the d × d unitary

matrix in the spectral decomposition Mj = VjΛjV
∗
j .



Consequence III: Inverse Discrete Fourier Transform
The main Theorem implies that

E(VjZj)(VjZj)
∗ = VjΛjV

∗
j = Mj .

At the same time,

VjZj =
1√
n
Vj(V

∗
j ⊗ r∗)X =

1√
n

(Id ⊗ r∗)X

=
1√
n

n∑
t=1

Xte
−itωj , j = 1, . . . , n.

This is the finite DFT of X1, . . . ,Xn. It is also in accord with the
definition of the orthogonal increment process {Zω} of which
VjZj ∼ Zωj is the discrete analogue. Also, Z1, . . . ,Zn are
asymptotically pairwise orthogonal akin to V1Z1, . . . ,VnZn.
Further,

E(VjZj)(VjZj)
∗ ∼ 2πf(ωj),

and it is in accord with the fact that

EZjZ
∗
j ∼ 2π diag spec f(ωj), j = 1, . . . , n.



Consequence IV: Bounds for the eigenvalues of Cn

m := inf
ω∈[0,2π],q∈{1,...,d}

λq(f(ω)) > 0,

M := sup
ω∈[0,2π],q∈{1,...,d}

λq(f(ω)) <∞.

(Note that under the conditions of the Main Theorem, f(ω) > 0
and it is continuous almost everywhere on [0, 2π], so the above
conditions are readily satisfied.)
Then for the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λnd of the block
Toeplitz matrix Cn the following holds:

2πm ≤ λ1 ≤ λnd ≤ 2πM.



Low rank approximation of the process

To find the best k-rank approximation of the weakly stationary,
regular d-dimensional process, the d-dimensional vectors VjZjs,
obtained by DFT, should be projected onto the subspace spanned

by the k leading eigenvectors of Vj , k ≤ d , denoted by V
(k)
j .

Assume that the eigenvalues in Λj are in non-increasing order. Let
us denote the k leading eigenvectors by vj1, . . . , vjk . Then the best
rank k approximation of VjZj :

(VjZj)
(k) = Proj Span {vj1,...,vjk}VjZj =

[
V

(k)
j (V

(k)
j )∗

]
VjZj

=
k∑
`=1

(v∗j`VjZj)vj` =
k∑
`=1

Zj`vj`,

where Zj` denotes the `th coordinate of Zj .



Frequency domain to time domain

This transformation gives rise to rank reduction in the frequency
domain, then via DFT (due to X = WZ), in the time domain too.
The best rank k approximation of Xt :

(Xt)
(k) =

1√
n

n∑
j=1

(VjZj)
(k)e itωj

=
1√
n

n∑
j=1

(
k∑
`=1

Zj`vj`

)
e itωj ,

for t = 1, . . . , n.
We can show that is is also a d-dimensional real time series, but its
spectral density matrix is of rank k ≤ d .
This can be the common component for DFA.



Application to stock returns (Akbilgic, O. et al.)
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The raw data were used.
The spectra shows 3 leading eigenvalues, the size of the gap after
the leading eigenvalues depends on the spectral density estimation
method.



Singular Autoregression

In a d-dimensional, weakly stationary time series with zero
expectation, we linearly predict Xn based on past values
X1, . . . ,Xn−1. Let X̂1 := 0, and denote by X̂n the best one-step
ahead linear prediction (based on (n− 1)-long past) that minimizes
the mean square error

E(Xn − X̂n)2 = ‖Xn − X̂n‖2, n = 1, 2, . . .

which is the instance of simultaneous linear regressions.
Xt can be expanded in terms of the now d-dimensional
innovations, i.e. the prediction error terms

ηn := Xn − X̂n,

with error covariance matrix En = Eηnη
T
n .



Block LDL decomposition with pseudo-inverses
Consider the first n steps, i.e. the recursive equations

Xj =

j−1∑
k=1

Bjkηk + ηj , j = 1, 2, . . . , n

in the case when the observations X1, . . . ,Xn are available. If our
process is stationary, the coefficient matrices are irrespective of the
choice of the starting time, and in the regular case, they approach
the one-step ahead projection based on the infinite past. It can be
that the error covariance matrices are not zeros, but they are of
reduced rank or better and better approach a rank r innovation
covariance matrix, with decreasing ranks (r ≤ d).
Multiplying the above equations by XT

j from the right, and taking
expectation, the solution for the matrices Bjk and Ej

(j = 1, . . . , n; k = 1, . . . , j − 1) can be obtained via the block LDL
(variant of the block Cholesky) decomposition:

Cn = LnDnL
T
n .



Hhere Cn is nd × nd positive semidefinite block Toeplitz matrix of
general block entry C(i − j),

Ln =


I O . . . O O

B21 I . . . O O
...

...
...

...
...

Bn1 Bn2 . . . Bn,n−1 I

 , Dn =


E1 O . . . O O
O E2 . . . O O
...

...
...

...
...

O O . . . O En

 .
To find the block LDL (Cholesky) decomposition, the following
recursion is used: for j = 1, . . . , n

Ej := C(0)−
j−1∑
k=1

BjkEkB
T
jk , j = 1, . . . , n

and for i = j + 1, . . . , n

Bij :=

(
C(i − j)−

j−1∑
k=1

BikEkB
T
ik

)
E+
j ,

where we take the Moore–Penrose inverse (denoted by + in the
superscript) if necessary and we do not enter into the summation if
j = 1.



Remarks

I The innovation algorithm (variant of the Durbin–Levinson)
also does it, provided Cn is non-singular.

I Because of

|Cn| = |Dn| =
n∏

j=1

|Ej |,

if |Cn| = 0, then |Ej | becomes 0 (at least from a certain index
j), but we can treat this situation with the pseudoinverse.

I Since |Cn| is the product of the eigenvalues of Cn, which
asymptotically comprise the union of the spectra of f(ω)
(d × d spectral density matrix) at the Fourier frequencies,
singular prediction error matrices indicate reduced rank
spectral density.

I E1 = C(0), rankC(0) = r , and Ejs are the one-step ahead
prediction (based on j − 1 long past) error covariance matrices
with non-increasing ranks.



By the multi-dimensional Wold decomposition, En → Σ in
L2-norm, where Σ is the error covariance matrix of the one-step
ahead prediction based on the infinite past, rankΣ = q ≤ r .
If the prediction is based on the infinite past, then with n→∞
this procedure (which is a nested one) extends to the
multidimensional Wold decomposition.
If n→∞, the matrix Ln better and better approaches a block
Toeplitz one, and the matrices E1, . . . ,En are closer and closer to
Σ, the covariance matrix of the innovation process. Since
‖En −Σ‖2 → 0 as n→∞, Bnj → Bj as n→∞ too, as it
continuously depends on Ejs.
As Ej is Cauchy sequence and we stop at a j (j < n, n is

”
large”)

where it does not change
”
much”, then the jth block-row of Ln can

be considered that it contains the effective coefficient matrices
Bjks (k = 1, . . . , j − 1) in a finite segment of the Wold
decomposition. So a singular VAR(j) process is obtained if q < r .



Perturbation of eigenvalues
If there is a gap in the spectrum of Σ, like

λ1 ≥ · · · ≥ λk ≥ ∆� ε ≥ λk+1 ≥ · · · ≥ λd ,

then there is a gap in the spectrum of En too. Indeed, to any
δ > 0 there is an N such that for n ≥ N: ‖En −Σ‖ < δ. Then for
the eigenvalues of En,

λ
(n)
1 ≥ · · · ≥ λ

(n)
k ≥ ∆− δ � ε+ δ ≥ λ(n)k+1 ≥ · · · ≥ λ

(n)
d .

Consequently, for the best rank k approximations (with
Gram-decompositions):

‖Σ−Σk‖ ≤ ε and ‖En − Ek
n‖ ≤ δ + ε

holds by the Weyl perturbation theorem. Therefore,

‖Σk−Ek
n‖ ≤ ‖Σk−Σ‖+‖Σ−En‖+‖En−Ek

n‖ ≤ ε+δ+(δ+ε) = 2(δ+ε)

that can be arbitrarily close to 2ε.



Perturbation of spectral subspaces
At the same time, the projections onto the subspaces spanned by
the eigenvectors of the r structural eigenvalues of these matrices
are close to each other, in the sense of the Davis–Kahan theorem.
Let S1 := [∆− δ, λ1 + δ] and S2 := [λd + δ, ε+ δ]. Then for n > N:

‖PΣ(S1)− PEn(S1)‖2F = ‖PΣ(S1)‖2F + ‖PEn(S1)‖2F − 2tr [PΣ(S1)PT
En

(S1)]

= 2r − 2tr [PΣ(S1)(Id − PT
En

(S2))]

= 2r − 2tr [PΣ(S1)− PΣ(S1)PT
En

(S2)]

= 2r − 2r + 2tr [PΣ(S1)PT
En

(S2)]

≤ 2d‖PΣ(S1)PT
En

(S2)‖

≤ 2d
c

∆− δ − ε
‖Σ− En‖ ≤ 2d

cδ

∆− δ − ε
that can be arbitrarily

”
small” is δ is arbitrarily

”
small”. Here PΣ(S)

denotes the projection onto the subspace spanned by the
eigenvectors of Σ corresponding to its eigenvalues in S .
Note that Davis–Kahan type theorems are effective is there is
indeed a

”
large” gap in the spectrum (like O(n) and o(n)).



Partly inspired by
Lippi, M., Deistler, M., Anderson, B., High-dimensional dynamic
factor models . . . (arXiv: 2202.07745).

Happy birthday and many happy returns,

Manfred.


	Results
	Time domain
	Frequency domain
	Main Theorem
	Consequences
	Low rank approximation
	Singular autoregression

