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Preliminaries Results Further outlook

Motivation

New challenge of multivariate statistics: to find linear
structures in large real-world data sets like communication,
social, cellular networks or microarray measurements.

To fill the gap between the theory of random matrices and
classical multivariate analysis.

To generalize results of Bolla, Lin. Alg. Appl., 2005 for the
SVD of large rectangular random matrices and for the
contingency table matrix formed by categorical variables in
order to perform two-way clustering of these variables.

To regard large contingency tables as continuous objects, or
to investigate testable parameters of them by randomizing
smaller tables out of them.
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Notation

Definition

The m × n real matrix W is a Wigner-noise if its entries wij

(1 ≤ i ≤ m, 1 ≤ j ≤ n) are independent random variables,
E(wij) = 0, and the wij ’s are uniformly bounded (i.e., there is a
constant K > 0, independently of m and n, such that |wij | ≤ K ,
∀i , j).

Though, the main results of this paper can be extended to wij ’s
with any light-tail distribution (especially to Gaussian distributed
wij ’s), our almost sure results will be based on the assumptions of
this definition.
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Definition

The m × n real matrix B is a blown up matrix, if there is an a× b
so-called pattern matrix P with entries 0 ≤ pij ≤ 1, and there are
positive integers m1, . . . ,ma with

∑a
i=1 mi = m and n1, . . . , nb

with
∑b

i=1 ni = n, such that the matrix B can be divided into
a× b blocks, where block (i , j) is an mi × nj matrix with entries
equal to pij (1 ≤ i ≤ a, 1 ≤ j ≤ b).

Such schemes are sought for in microarray analysis and they are
called chess-board patterns, cf. Kluger et al., Genome Research,
2003.
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Blown up matrix
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The investigated situation

Fix P, blow it up to B, and A:=B+W.
Almost sure properties of A are investigated, when
m1, . . . ,ma →∞ and n1, . . . , nb →∞, roughly speaking, at the
same rate.

Growth Condition 1 There exists a constant 0 < c < 1 such
that mi/m ≥ c (i = 1, . . . , a) and there exists a constant
0 < d < 1 such that ni/n ≥ d (i = 1, . . . , b).

Growth Condition 2 There exist constants C ≥ 1, D ≥ 1, and
C0 > 0, D0 > 0 such that m ≤ C0 · nC and n ≤ D0 ·mD hold
for sufficiently large m and n.



Preliminaries Results Further outlook

The investigated situation

Fix P, blow it up to B, and A:=B+W.
Almost sure properties of A are investigated, when
m1, . . . ,ma →∞ and n1, . . . , nb →∞, roughly speaking, at the
same rate.

Growth Condition 1 There exists a constant 0 < c < 1 such
that mi/m ≥ c (i = 1, . . . , a) and there exists a constant
0 < d < 1 such that ni/n ≥ d (i = 1, . . . , b).

Growth Condition 2 There exist constants C ≥ 1, D ≥ 1, and
C0 > 0, D0 > 0 such that m ≤ C0 · nC and n ≤ D0 ·mD hold
for sufficiently large m and n.



Preliminaries Results Further outlook

Almost sure properties of SVD

Definition

Property Pm,n holds for Am×n almost surely (with probability 1) if
P (∃ m0, n0 ∈ N such that for m ≥ m0 n ≥ n0 Am×n has Pm,n) =
1. Here we may assume GC1 or GC2 for the growth of m and n,
while K is kept fixed.

Füredi, Komlós, Combinatorica, 1981 −→ Achlioptas, McSherry,
Proc. ACM, 2001 −→ ‖W‖ = O(

√
m + n) in probability.

N. Alon et al., Israel J. Math., 2002 + Borel–Cantelli Lemma −→

Lemma

There exist positive constants CK1 and CK2, depending on the
common bound on the entries of W, such that

P
(
‖W‖ > CK1 ·

√
m + n

)
≤ exp[−CK2 · (m + n)].
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Alon’s sharp concentration theorem

Theorem

W̃ is q× q real symmetric matrix, its entries in and above the main
diagonal are independent random variables with absolute value at
most 1. λ1 ≥ λ2 ≥ · · · ≥ λq: eigenvalues of W̃. For any t > 0:

P (|λi − E(λi )| > t) ≤ exp

(
−(1− o(1))t2

32i2

)
when i ≤ q

2
,

and the same estimate holds for the probability

P (|λq−i+1 − E(λq−i+1)| > t) .



Preliminaries Results Further outlook

generalization for rectangular matrices

W Wigner-noise, |wij | ≤ K , ∀i , j .

W̃ =
1

K
·
(

0 W
W T 0

)
satisfies the conditions of the theorem, its largest and smallest
eigenvalues:

λi (W̃) = −λn+m−i+1(W̃) =
1

K
· si (W), i = 1, . . . ,min{m, n},

the others are zeros.
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Singular values of a noisy matrix

Under the usual growth condition, all the r = rankP ≤ min{a, b}
non-zero singular values of the m × n blown-up matrix B are of
order

√
mn.

Theorem

Let A = B + W be an m × n random matrix, where B is a blown
up matrix with positive singular values s1, . . . , sr and W is a
Wigner-noise of the same size. Then the matrix A almost surely
has r singular values z1, . . . , zr with |zi − si | = O(

√
m + n),

i = 1, . . . , r , and for the other singular values zj = O(
√

m + n),
j = r + 1, . . . ,min{m, n} hold almost surely, as m, n →∞ under
GC1.
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Classification via singular vector pairs

Y := (y1, . . . , yr ) m × r left singular vectors of A.
Rows of Y: y1, . . . , ym ∈ Rr → genes’ representatives.
X := (x1, . . . , xr ) n × r right singular vectors of A.
Rows of X: x1, . . . , xn ∈ Rr → conditions’ representatives.

S2
a (Y) :=

a∑
i=1

∑
j∈Ai

‖yj − ȳi‖2, where ȳi =
1

mi

∑
j∈Ai

yj ,

S2
b (X) :=

b∑
i=1

∑
j∈Bi

‖xj − x̄i‖2, where x̄i =
1

ni

∑
j∈Bi

xj .

Theorem

S2
a (Y) = O

(
m + n

mn

)
and S2

b (X) = O
(

m + n

mn

)
almost surely, for the a- and b-variances of the representatives.
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Perturbation results for correspondence matrices

P : a× b contingency table (nonnegative, uniformly bounded
entries). B :m × n blown up contingency table.
Correspondence analysis: to find maximally correlated factors with
respect to the marginal distributions of the two underlying
categorical variables. Benzécri et al., Dunod, Paris, 1973.
The categories may be measured in different units −→
normalization: correspondence transformation −→ Bcorr has
entries in [0,1] and maximum singular value 1.
Proposition: Under GC1 and GC2, there is a significant gap
between the r largest (where k = rank (B) = rank (P)) and the
other singular values of Acorr , the matrix obtained from the noisy
matrix A=B+W by the correspondence transformation.



Preliminaries Results Further outlook

Bcorr := D
−1/2
BrowBD

−1/2
Bcol and Acorr := D

−1/2
ArowAD

−1/2
Acol

Noisy correspondence vector pairs

ycorr i := D
−1/2
Arowyi , xcorr i := D

−1/2
Acol xi (i = 1, . . . , r).

a- and b-variances of the representatives:

S2
a (Ycorr ) =

a∑
i=1

∑
j∈Ai

dArow j‖yj
corr−ȳi

corr‖2, ȳi
corr =

∑
j∈Ai

dArow jy
j
corr

S2
b (Xcorr ) =

b∑
i=1

∑
j∈Bi

dAcol j‖xj
corr − x̄i

corr‖2, x̄i
corr =

∑
j∈B′

i

dAcol jx
j
corr

S2
a (Ycorr ), S2

b (Xcorr ) = O(max{n−τ ,m−τ} 0 < τ < 1
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Recognizing the structure

Theorem

Let Am×n be a sequence of m × n matrices, where m and n tend
to infinity. Assume, that Am×n has exactly k singular values of
order greater than

√
m + n (k is fixed). If there are integers a ≥ k

and b ≥ k such that the a- and b-variances of the row- and
column-representatives are O(m+n

mn ), then there is a blown up
matrix Bm×n such that Am×n = Bm×n + Em×n, with
‖Em×n‖ = O(

√
m + n).

The proof gives an explicit construction for Bm×n by means of
metric classification methods. For SVD of large rectangular
matrices: randomized algorithms, e.g., A. Frieze and R. Kannan,
Combinatorica, 1999.
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Szemerédi’s Lemma for rectangular arrays

Lemma

∀ε > 0 and Cm×n ∃Bm×n blown up matrix of pattern matrix Pa×b

with a + b ≤ 41/ε2
(independently of m, n) such that

‖C− B‖� ≤ ε‖C‖2.

Here ‖C−B‖� = maxA⊂{1,...,m}, B⊂{1,...,n}
1

mn

∑
i∈A

∑
j∈B |cij −bij |

and ‖C‖2 =
√

1
mn

∑n
i=1

∑m
j=1 c2

ij .

Proof: apply the Lovász’s version of the lemma to

A =

(
0 C

CT 0

)
(m+n)×(m+n) weight matrix of a weighted graph.
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Szemerédi partition of a rectangular array



Preliminaries Results Further outlook

Convergence of contingency tables

Cm×n: contingency table, 0 ≤ cij ≤ 1
Fa×b: fixed“small”0/1 table.
Randomize an a× b table of 0/1’s out of C: choose a rows and b
columns randomly, then choose the entries conditionally
independently with P(1) = cij , P(0) = 1− cij in the ij-th position.
It can be reached with adding an appropriate Wigner-noise.

P(randomized table = F) =
∑
Φ,Ψ

1

manb

∏
fij=1

cΦ(i),Ψ(j)

∏
fij=0

(1−cΦ(i),Ψ(j)),

F → C homomorphism’s dens (F,C) :=
∑
Φ,Ψ

1

manb

∏
fij=1

cΦ(i),Ψ(j),

where Φ : RowF → RowC , Ψ : ColF → ColC are injective maps.

Definition

Cm,n is convergent, if dens (F,Cm,n) converges, ∀F.

Remark: Cm,n’s are more and more similar in small details.
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Testable contingency table parameters

Limit object: contingon (non-negative, bounded function on
[0, 1]× [0, 1]), generalization of graphons, cf. L. Lovász and B.
Szegedy, J. Combin. Theory, 2006.
Contingon, belonging to Cm×n: stepwise constant function. If
m, n →∞, it becomes a continuous object.

Definition

The contingency table parameter f is testable if f (Cm,n)
converges, whenever Cm,n converges.

Remark: f reflects some statistical property, invariant under
isomorphism of the contingency table and scale of the entries.
Conclusion: to find a good approximation of f (Cm×n) with m and
n“large”, it is enough to appropriately randomize a“smaller”
contingency table out of C.
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