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General latent variable models in function spaces

solved via representation of joint distributions with SD or SVD
of the conditional expectation operator between the two
margins:

the role of the two spaces is symmetric (correspondence
analysis, maximal correlation, canonical correlation analysis);
the role of the two spaces is asymmetric (generalized
regression, ACE algorithm);
symmetric joint distribution (normalized modularity and
discrepancy of edge-weighted graphs).

Compromise factors of independent samples with a novel
matrix decomposition algorithm and application.
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Hilbert spaces of random variables

Let (ξ, η) be a pair of real-valued random variables over the
product space X × Y.
Their joint distribution is W with margins P and Q.
Assume that the dependence between ξ and η is regular, i.e., W is
absolutely continuous with respect to P×Q, and let w denote the
Radon–Nikodym derivative (Rényi, A., On measures of
dependence, Acta Math. Acad. Sci. Hung., 1959).
H = L2(ξ) and H ′ = L2(η) are sets of random variables which are
measurable functions of ξ and η, and have 0 expectation and finite
variance with respect to P and Q.
H and H ′ are Hilbert-spaces with the covariance as inner product;
they are naturally embedded as subspaces into the L2-space
defined likewise by the (ξ, η) pair over the product space endowed
with W (Breiman, L. and Friedman, J.H., Estimating optimal
transformations for multiple regression and correlation, JASA,
1985).
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The operators taking conditional expectation

Integral operators with kernel w :

PX : H ′ → H, ψ = PXφ = E(φ | ξ), ψ(x) =

∫
Y
w(x , y)φ(y)Q(dy)

PY : H → H ′, φ = PYψ = E(ψ | η), φ(y) =

∫
X
w(x , y)ψ(x)P(dx)

PX and PY are projections and P∗X = PY , P∗Y = PX , since

〈PXφ, ψ〉H = 〈PYψ, φ〉H′ = cov W(ψ, φ)

where cov W is the covariance-function:

cov W(ψ, φ) =

∫
X×Y

ψ(x)φ(y)W(dx , dy)

=

∫
X

∫
Y
ψ(x)φ(y)w(x , y)Q(dy)P(dx)
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Riesz, F. and Sz.-Nagy, B., Leçons d’analyse
fonctionnelle, Academic Publishing House,
Budapest, 1952.

Assume that ∫
X

∫
Y
w2(x , y)Q(dy)P(dx) <∞.

With discrete joint distribution {wij} and margins {pi}
(pi =

∑
j wij), {qj} (qj =

∑
i wij):∑

i∈X

∑
j∈Y

(
wij

piqj

)2

piqj =
∑
i∈X

∑
j∈Y

w2
ij

piqj
<∞.

With absolutely continuous joint distribution f (x , y) and margins
f1(x) (f1(x) =

∫
f (x , y) dy), f2(y) (f2(y) =

∫
f (x , y) dx):∫

X

∫
Y

(
f (x , y)

f1(x)f2(y)

)2

f1(x)f2(y) dx dy =

∫
X

∫
Y

f 2(x , y)

f1(x)f2(y)
dx dy <∞.
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Spectral and Singular Value Decompositions (SD
and SVD)

Under this assumption, PX and PY are Hilbert–Schmidt operators
=⇒ compact (absolutely continuous) with discrete spectra:

PX =
∞∑
i=1

si 〈., φi 〉H′ψi és PY =
∞∑
i=1

si 〈., ψi 〉Hφi SVD,

where 1 > s1 ≥ s2 ≥ · · · ≥ 0 (limi→∞ si = 0).
When W is symmetric (H and H ′ are isomorphic), then PX = PY
is self-adjoint and the SD of PX : H ′ → H is

PX =
∞∑
i=1

λi 〈., ψ′i 〉H′ψi

where |λi | ≤ 1 and
PXψ

′
i = λiψi .

ψi and ψ′i are identically distributed (i.d.) with joint distribution
W.
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When the role of the two spaces is symmetric

Definition

We say that the pair (X,Y) of k-dimensional random vectors with
components in H and H ′, respectively, form a k-dimensional
representation of the product space endowed with the measure W
if EPXXT = Ik and EQYYT = Ik (i.e., the components of X and
Y are uncorrelated with zero expectation and unit variance,
respectively); further, Xi and Yj are uncorrelated for i 6= j , whereas
the joint distribution of Xi and Yi is W (i = 1, . . . , k). The cost of
this representation is defined as

Qk(X,Y) = EW‖X− Y‖2.

The couple (X∗,Y∗) is an optimal representation if it minimizes
the above cost.
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Representation theorem for joint distributions

Theorem

Let W be a joint distribution with margins P and Q. Assume that
among the singular values of the conditional expectation operator,
PX , there are at least k positive ones, and denote by
1 > s1 ≥ s2 ≥ · · · ≥ sk > 0 the largest ones. The minimum cost of
a k-dimensional representation is 2

∑k
i=1(1− si ), and it is attained

with X∗ = (ψ1, . . . , ψk) and Y∗ = (φ1, . . . , φk), where ψi , φi is the
singular function pair corresponding to the singular value si ,
i = 1, . . . , k.

The optimal representation resembles the PLS objective: we are
looking for uncorrelated components in function spaces, which are
not necessarily linear transformations of the original ξ and η.
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Maximal correlation (Gebelein, Rényi, and
Sarmanov)

We are looking for the maximally correlated functions of ξ and η:

max
ψ∈H, φ∈H′

corW(ψ, φ) = max
‖ψ‖=‖φ‖=1

covW(ψ, φ) = s1

and the maximum is attained at the ψ1, φ1 pair. We used the
extremal properties of the SVD; further, ‖ψ‖ =

√
varPψ and

‖φ‖ =
√

varQφ.
It also follows and will be illustrated in the forthcoming finite case
that the maximal correlation, s1, is 0 if and only if ξ and η are
independent, or equivalently, W = P×Q.
The optimal 1-dimensional representation is also attained at the
ψ1, φ1 pair, and its cost is

min
‖ψ‖=‖φ‖=1

‖ψ−φ‖2 = min
‖ψ‖=‖φ‖=1

(‖ψ‖2+‖φ‖2−2covW(ψ, φ)) = 2(1−s1).
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Correspondence analysis

Product space: contingency table with entries wij ≥ 0
(
∑m

i=1

∑n
j=1 wij = 1).

X = {1, . . . ,m}: rows, Y = {1, . . . , n}: columns.
Margins: p1, . . . , pm and q1, . . . , qn in the diagonals of P and Q.
The effect of PX : H ′ → H, PXφ = ψ:

ψ(i) =
1

pi

n∑
j=1

wijφ(j) =
n∑

j=1

wij

piqj
φ(j)qj , i = 1, . . . ,m.

PX is integral operator with kernel
wij

piqj
and its SVD is obtained via

the transformation

√
piψ(i) =

n∑
j=1

wij√
pi
√
qj

(
√
qjφ(j)), i = 1, . . . ,m

with the SVD of the normalized contingency table
Wnor = P−1/2WQ−1/2.
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If r = rank Wnor, this SVD is

Wnor =
r−1∑
k=0

skvkuT
k

with singular values 1 = s0 ≥ s1 ≥ · · · ≥ sr−1 > 0 together with
orthonormal singular vector pairs
(v0,u0), (v1,u1), . . . , (vr−1,ur−1). If the matrix WWT is
irreducible (i.e., the contingency table cannot be divided into
blocks with permuting its rows or columns), then 1 is a single
singular value with vector pair v0 = (

√
p1, . . . ,

√
pm)T ,

u0 = (
√
q1, . . . ,

√
qn)T .

The SVD of the operator PX is obtained by back transformation:
the singular values are the same, and the values taken on by the
P-distributed categorical variable ψk are the coordinates of the
vector P−1/2vk , while those taken on by the Q-distributed
categorical variable φk are the coordinates of Q−1/2uk ,
k = 1, . . . , r − 1.
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Maximal correlations sequentially

The pair ψ0 and φ0 take on values constantly 1 (they are not in H
and H ′), and is called trivial correspondence factor pair.
The non-trivial pairs solve the following sequential maximization
task, when r > 1:

max
EPψ=0, varPψ=1
EQφ=0, varQφ=1

covPψψi=0 (i=1,...,k−1)
covQφφi=0 (i=1,...,k−1)

covW(ψ, φ) = covW(ψk , φk) = sk , k = 1, . . . , r−1.

The r = 1 case is equivalent to s1 = 0, i.e., to zero maximal
correlation; this case corresponds to an independent table:
wij = piqj , i = 1, . . . ,m, j = 1, . . . , n.
Representation Theorem =⇒ the first k non-trivial correspondence
factor pairs solve a minimum placement problem with due regard
to the categories (Benzécri, J. P. et al., L’Analyse des
correspondances, Dunod, Paris, 1980).
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Canonical correlation analysis

Any or both of the starting random variables ξ, η can as well be a
random vector (with real components).
For example, if they have m- and n-dimensional Gaussian
distribution, respectively, then their maximum correlation is the
largest canonical correlation between them, and it is realized by
appropriate linear combinations of the components of ξ and η,
respectively.
Akin to the way above, we can find canonical correlations one after
the other with corresponding function pairs (under some
orthogonality constraints), as many as the rank of the
cross-covariance matrix of ξ and η. The procedure relies on the

SVD of the m × n matrix C
−1/2
11 C12C

−1/2
22 , where C11 and C22 are

the covariance matrices of ξ and η, while C12 is their
cross-covariance matrix, usually estimated from a sample.
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When the role of the two spaces is asymmetric

ψ: response, φ: predictor.
Only ‖ψ‖ = 1 is assumed when EW‖ψ − φ‖2 is minimized.

With the notation φ̂ = φ
‖φ‖ (‖φ̂‖ = 1):

EW‖ψ − φ‖2 = 1− 2covW(ψ, φ̂)‖φ‖+ ‖φ‖2 ≥ 1− 2s1‖φ‖+ ‖φ‖2.

covW(ψ, φ̂) ≤ s1 =⇒ minEW‖ψ − φ‖2 = 1− s21

attained at the ψ1, s1φ1 pair.

The ACE algorithm (imitating conditional expectation by
smoothing) converges to the solution, and is applicable to
non-parametric regression (Breiman, L. and Friedman, J.H.,
Estimating optimal transformations for multiple regression and
correlation, JASA, 1985).
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The procedure can be extended to random vectors with
components in H and H ′, when the predictor and response have
the same dimension.
We consider k-dimensional representation of the product space
endowed with the measure W such that only EQYYT = Ik is
assumed, while the components of X are also uncorrelated with
zero expectation (but usually not of unit variance); further, Xi and
Yj are uncorrelated for i 6= j , whereas the joint distribution of Xi

and Yi is W (i = 1, . . . , k).
By a componentwise minimization,

EW‖Y − X‖2 =
k∑

i=1

EW‖Yi − Xi‖2 ≥
k∑

i=1

(1− s2i )

attained with the choice Yi = φi and Xi = siψi , i = 1, . . . , k.
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The case of a symmetric joint distribution

Definition

We say that the k-dimensional random vector X with components
in H forms a k-dimensional representation of the product space
H × H ′ (H and H ′ are isomorphic) endowed with the symmetric
measure W (and margin P) if EPXXT = Ik . Further, the cost of
this representation is defined as

Qk(X) = EW‖X− X′‖2,

where X and X′ are identically distributed and the joint
distribution of their coordinates Xi and X ′i is W (i = 1, . . . , k),
while Xi and X ′j are uncorrelated if i 6= j .
The k-dimensional random vector X∗ is an optimal representation
if it minimizes the above cost.
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Theorem

Let W be a symmetric joint distribution with margin P. Assume
that among the eigenvalues of the conditional expectation operator
PX : H ′ → H (H and H ′ are isomorphic) there are at least k
positive ones and denote by 1 > λ1 ≥ λ2 ≥ · · · ≥ λk > 0 the
largest ones. Then the minimum cost of a k-dimensional
representation is 2

∑k
i=1(1− λi ), and it is attained by

X∗ = (ψ1, . . . , ψk) where ψi is the eigenfunction corresponding to
the eigenvalue λi (i = 1, . . . k).

Guess for the optimal choice of k.
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Finite X : edge-weighted graph (X = V )

G = (V ,W) edge-weighted graph, |V | = n,
wij = wji ≥ 0 (i 6= j) pairwise similarities, wii = 0 (i=1,. . . ,n),∑n

i=1

∑n
j=1 wij = 1.

di :=
∑n

j=1 wij (i = 1, . . . , n): generalized degrees

d := (d1, . . . , dn)T : degree-vector,
√

d := (
√
d1, . . . ,

√
dn)T

D := diag (d1, . . . , dn): degree-matrix
vol (X ) =

∑
i∈X di : volume of X ⊂ V

M = W − ddT : modularity matrix (Newman–Girvan)
The SD of PX is obtained by the SD of the normalized modularity
matrix

Mnor = D−1/2MD−1/2 = D−1/2WD−1/2 −
√

d
√

d
T

with eigenvalues 1 > λ1 ≥ · · · ≥ λn ≥ −1 (1 cannot be an
eigenvalue if the underlying graph is connected, i.e., W is
irreducible).
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Representation of the vertices

Qk−1 =
∑

i<j wij‖ri − rj‖2 with representatives r1, . . . , rn ∈ Rk−1

of the vertices. Then run the k-means algorithm with them.

k − 1 positive structural eigenvalues: community structure;

min∑n
i=1 di ri r

T
i =Ik−1∑n

i=1 di ri=0

Qk−1 =
k−1∑
i=1

(1− λi )

k − 1 negative structural eigenvalues: anticommunity
structure;

max∑n
i=1 di ri r

T
i =Ik−1∑n

i=1 di ri=0

Qk−1 =
k−1∑
i=1

(1− λn−i+1)

both positive and negative structural eigenvalues: regular
structure (cluster pairs with small discrepancy, Szemerédi).
Expander Mixing Lemma (discrepancy): for every X ,Y ⊂ V ,
|w(X ,Y )− vol (X )vol (Y )| ≤ ‖Mnor‖

√
vol (X )vol (Y ).
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Reproducing Kernel Hilbert Spaces

(48× 48 pixels) n = 482

Structural eigenvalues of MD :
0.137259, 0.014255, 0.000925,
−0.0006707, −0.0006706, . . .
Gaussian kernel, image segmentation.
For treating non-linearities in the data, methods of regularization
and kernelization also fit into this setup, as they merely work with
the covariances. It is almost folklore that, due to the kernel-trick,
the maps into the RKHS need not be performed, but how to select
an appropriate kernel is the crucial question here (B, Spectral
Clustering and Biclustering, Wiley, 2013).
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Compromise factors of independent samples

Having k independent samples for the underlying n-dimensional
random vectors X1, . . . ,Xk (k ≤ n), we are looking for compromise
factors, i.e., linear combinations aT

i Xi so that

var(
k∑

i=1

aT
i Xi ) =

k∑
i=1

aT
i Ciai → max .

subject to aT
i aj = δij (i , j = 1, . . . , k), where Ci is the covariance

matrix of Xi .
The problem is to find maxima of sums of heterogeneous quadratic
forms (B, Michaletzky, Gy., Tusnády, G., Ziermann, M., Extrema of
sums of heterogeneous quadratic forms, Lin. Alg. Appl., 1998).
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Solution

Theoretical solution (by Lagrange’s multipliers): C(A) = AS,
where A = (a1, . . . , ak), ATA = Ik ,
C(A) = (C1a1, . . . ,Ckak), and S is k × k symmetric matrix of
the multipliers. A non-trivial solution exists if
det (C− In ⊗ S) = 0, characteristic polynomial of degree
k(k + 1)/2 of the diagonal and upper-diagonal entries of the
compromise matrix S, where C = C1 ⊕ · · · ⊕ Ck .

Algorithm (iteration converging to the solution):
Starting with a suborthogonal matrix A(0), the t-th step of
the iteration: C(A(t−1)) := A(t)S(t) polar decomposition.
tr S(t) converges to the maximum. An orthonormal system
a∗1, . . . , a

∗
k giving the maximum is called a compromise system

of the matrices C1, . . . ,Ck .

In the possession of k independent samples, we use the empirical
covariance matrices. The algorithm is also applicable to small
samples with positive semidefinite matrices.
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Application

The coordinates of the compromise vectors ai ’s, called compromise
factor loadings, help us to identify the variables that best
characterize the samples in relation to the others, and hence,
together with other sample scores they accomplish the best
possible compromise between the samples, in contrast to the
discriminant analysis, where we rather want to separate the
samples. Sometimes there are no remarkable differences between
the sample means, or even the sample covariances, to make
discriminant analysis techniques applicable.
We applied the method for clinical measurements (protein,
triglyceride and other organic matter levels in the urine) of 100
patients suffering from nephrosis. We distinguished between three
stages of the illness; a no symptoms stage and two nephrotic
stages: one in an intermediate stage, the other in a more seriously
developed stage.
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Compromise factor loadings for three nephrotic
stages of 100 patients

no symptoms intermediate nephrotic
AT -0.104339 -0.151711 -0.068392
PC -0.151864 +0.060398 +0.062981
KO2 -0.355027 -0.662945 -0.423931
TG -0.134190 -0.372486 +0.781611
HK -0.241672 +0.194526 +0.421601
LK +0.496214 -0.543357 +0.149016
PROT +0.522984 +0.194241 -0.027665
URIN -0.493607 +0.155758 +0.001543
NAK -0.014336 +0.005123 +0.001286

One may conclude that mainly measurements with high loadings in
absolute value have to be considered seriously in the diagnosis.
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Conclusions

In contrast with the algorithmic approaches to PLS methods,
a rather theory-oriented description of latent variable models
is presented, where the number of latent variables depends on
the spectral properties of the underlying operators.

Via these so-called representation techniques, we establish a
common outline structure for the contents of each algorithm
based on traditional or novel matrix decompositions, together
with appropriate normalizations.

For treating non-linearities, methods of kernelization also fit
into this setup, as they merely work with the covariances.

For the SD or SVD, fast numerical algorithms are at our
disposal, which usually make use of the conjugate gradient
method, a well-known PLS technique. Randomized methods
are also useful when we want to find only some leading
eigenvalues or singular values, and we suggest to confine the
numerical efforts to this part.
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