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Motivation

To recover the structure of large edge-weighted graphs,
for example: biological, social, economic, or communication
networks.

To find a clustering (partition) of the vertices such that the
induced subgraphs on them and the bipartite subgraphs
between any pair of them exhibit regular behavior of
information flow within or between the vertex subsets.

To find biclustering of a contingency table (e.g., microarray)
such that clusters of equally functioning genes equally
influence conditions of the same cluster.



Motivation Spectral clustering of graphs Noisy random graphs Biclustering of contingency tables

Motivation

To recover the structure of large edge-weighted graphs,
for example: biological, social, economic, or communication
networks.

To find a clustering (partition) of the vertices such that the
induced subgraphs on them and the bipartite subgraphs
between any pair of them exhibit regular behavior of
information flow within or between the vertex subsets.

To find biclustering of a contingency table (e.g., microarray)
such that clusters of equally functioning genes equally
influence conditions of the same cluster.



Motivation Spectral clustering of graphs Noisy random graphs Biclustering of contingency tables

Motivation

To recover the structure of large edge-weighted graphs,
for example: biological, social, economic, or communication
networks.

To find a clustering (partition) of the vertices such that the
induced subgraphs on them and the bipartite subgraphs
between any pair of them exhibit regular behavior of
information flow within or between the vertex subsets.

To find biclustering of a contingency table (e.g., microarray)
such that clusters of equally functioning genes equally
influence conditions of the same cluster.



Motivation Spectral clustering of graphs Noisy random graphs Biclustering of contingency tables

Spectral clustering of edge-wighted graphs

G = (V ,W) edge-weighted graph, |V | = n, W: weight matrix of
edges
wij = wji ≥ 0 (i 6= j) and wii = 0 (i=1,. . . ,n).

di :=
∑n

j=1 wij (i = 1, . . . , n) generalized degrees

d := (d1, . . . , dn)T : degree vector,
√

d := (
√

d1, . . . ,
√

dn)T

D := diag (d1, . . . , dn): degree matrix

w.l.g.
∑n

i=1

∑n
j=1 wij = 1 will be supposed
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Laplacian and modularity matrices

L = D−W: Laplacian
LD = I−D−1/2WD−1/2: normalized Laplacian
Spec (LD) ∈ [0, 2]
If G is connected (W is irreducible), then 0 is a single eigenvalue
with corresponding unit-norm eigenvector

√
d.

MD = D−1/2WD−1/2 −
√

d
√

d
T

: normalized modularity matrix
B, Phys. Rev. E (2011) Spec (MD) ∈ [−1, 1]
1 cannot be an eigenvalue if G is connected, and 0 is always an
eigenvalue with eigenvector

√
d.

The spectral gap of G : 1− ‖MD‖ (spectral norm)
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Quadratic placement problems

Fact: the spectral decomposition of either LD or MD solves the
following quadratic placement problem.
for a given positive integer k (1 < k < n), minimize

Qk(X) =
∑
i<j

wij‖ri − rj‖2

on the conditions

n∑
i=1

di ri r
T
i = Ik−1,

n∑
i=1

di ri = 0,

where the vectors r1, . . . , rn are (k − 1)-dimensional representatives
of the vertices, which form the row vectors of the n × (k − 1)
matrix X.
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Normalized Laplacian eigenvalues

G is connected, 0 = λ0 < λ1 ≤ · · · ≤ λn−1 ≤ 2
eigenvalues of LD with corresponding unit-norm, pairwise
orthogonal eigenvectors u0 =

√
d,u1, . . . ,un−1.

In B, Tusnády, Discrete Math. (1994): the minimum of Qk(X)
under the constraints for the representatives is

k−1∑
i=1

λi

and is attained by the following representation:
r∗1, . . . , r

∗
n are row vectors of the matrix

X∗ = (D−1/2u1, . . . ,D−1/2uk−1).
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Explanation

Instead of X the augmented n × k matrix X̃ can as well be used,
which is obtained from X by inserting the column x0 = 1 of all 1’s.
In fact, x0 = D−1/2u0=1, where u0 =

√
d is the eigenvector

belonging to the eigenvalue 0 of LD . Then

Qk(X̃) = Qk(X) = tr (D1/2X̃)T (In −D−1/2WD−1/2)(D1/2X̃),

and Qk(X) is minimized on the constraint X̃T DX̃ = Ik ,
or equivalently,
D1/2X̃ is suborthogonal.
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Continuous relaxation of a discrete minimization

This problem is the continuous relaxation of minimizing

Qk(X̃(Pk)) = tr (D1/2X̃(Pk))T (In −D−1/2WD−1/2)(D1/2X̃(Pk))

over the set of k-partitions Pk = (V1, . . . ,Vk) of the vertices such
that Pk is planted into X̃ in the way that the columns of X̃(Pk) are
so-called partition-vectors belonging to Pk :
the coordinates of the ith column are zeros, except those indexing
vertices of Vi which are equal to

1√
Vol (Vi )

, i = 1, . . . , k.
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Representation, spectral relaxation

Qk(X̃(Pk)) is the normalized cut of Pk = (V1, . . . ,Vk):

Qk(X̃(Pk)) =
k−1∑
a=1

k∑
b=a+1

(
1

Vol (Va)
+

1

Vol (Vb)

)
w(Va,Vb)

=
k∑

a=1

w(Va, V̄a)

Vol (Va)
= k −

k∑
a=1

w(Va,Va)

Vol (Va)

Minimum k-way normalized cut of G = (V ,W):

fk(G ) = min
Pk∈Pk

Qk(X̃(Pk)),

where Vol (U) =
∑

i∈U di : volume of U ⊂ V
w(X ,Y ) =

∑
i∈X

∑
j∈Y wij : weighted cut between X ,Y ⊂ V
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Estimation, references

Because of the spectral relaxation:

fk(G ) ≥
k−1∑
i=0

λi =
k−1∑
i=1

λi

B, Tusnády, Discrete Math. (1994) general k, called weighted cut
Azran, Ghahramani, Siam J. Comput (2000) general k
Meila and Shi, NIPS (2001): k = 2
B, M-Sáska, Studia Sci. Math. Hun. (2002) general k
Upper estimate: depends on the corresponding eigenvectors.
Point of spectral clustering: optimizing over Pk is NP-hard.
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Isoperimetric number

Definition

The Cheeger constant of the weighted graph G = (V ,W ) is

h(G ) = min
U ⊂ V

Vol (U) ≤ 1/2

w(U, Ū)

Vol (U)

Theorem

(B, M-Sáska, Discrete Math. (2004)). Let λ1 be the smallest
positive eigenvalue of LD . Then

λ1

2
≤ h(G ) ≤ min{1,

√
2λ1}.

If λ1 ≤ 1 (G is not the complete graph), then

h(G ) ≤
√
λ1(2− λ1).
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Normalized Newman–Girvan modularity

Newman–Girvan, Physical Review E (2004) N-G mod.
B, Physical Review E (2011) normalized N-G mod.:

Mk(W,Pk) =
k∑

a=1

1

Vol (Va)

∑
i ,j∈Va

(wij − didj) =
k∑

a=1

w(Va,Va)

Vol (Va)
− 1

Since
Mk(W,Pk) = k − 1− Qk(X̃(Pk)),

maximizing the k-way normalized Newman-Girvan modularity is
equivalent to the normalized cut problem and it can be solved by
the same spectral relaxation.
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Spectral gap and variance

Weighted k-variance of the vertex representatives:

S2
k (X) = min

Pk=(V1,...,Vk )

k∑
a=1

∑
j∈Va

dj‖rj − ca‖2

where ca = 1
Vol (Va)

∑
j∈Va

djrj .

In B, Tusnády, Discrete Math. (1994)

Theorem

In the representation X∗ = (D−1/2u0, D−1/2u1) = (1, D−1/2u1):

S2
2 (X∗) ≤ λ1

λ2



Motivation Spectral clustering of graphs Noisy random graphs Biclustering of contingency tables

f2(G ) is the symmetric version of h(G ): f2(G ) ≤ 2h(G ) =⇒

f2(G ) ≤ 2
√
λ1(2− λ1), λ1 ≤ 1.

Theorem

Suppose that G = (V ,W) is connected, and λi ’s are the
eigenvalues of LD . Then

∑k−1
i=1 λi ≤ fk(G ) and in the case when

the optimal k-dimensional representatives can be classified into k
well-separated clusters in such a way that the maximum cluster
diameter ε satisfies the relation
ε ≤ min{1/

√
2k,
√

2 mini

√
Vol (Vi )} with k-partition

(V1, . . . ,Vk) induced by the clusters above, then

fk(G ) ≤ c2
k−1∑
i=1

λi ,

where c = 1 + εc ′/(
√

2− εc ′) and c ′ = 1/mini

√
Vol (Vi ).
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Normalized modularity eigenvalues

MD = I− LD −
√

d
√

d
T

eigenvalues:
1− λ1 ≥ · · · ≥ λn−1 ≥ −1 with the same eigenvectors and 0 with
eigenvector

√
d .

1 cannot be an eigenvalue if G is connected / W is irreducible

Large absolute value positive eigenvalues of MD are
responsible for clusters with high intra- and low inter-cluster
densities.

If we minimize Mk(W,Pk) instead of maximizing over Pk :
small negative eigenvalues of MD are responsible for clusters
with low intra- and high inter-cluster densities.

If we take into account eigenvalues from both ends of the
normalized modularity spectrum, we can recover so-called
regular cluster pairs.
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Volume regularity

Lemma

Expander Mixing Lemma for weighted graphs: Supposing
Vol (V ) = 1, for all X ,Y ⊂ V ,

|w(X ,Y )− Vol (X )Vol (Y )| ≤ ‖MD‖ ·
√
Vol (X )Vol (Y )

For simple graphs: Alon, Combinatorica (1986)
Hoory, Linial, Widgerson, Bulletin of AMS (2006)
For edge-weighted graphs: Chung, Graham, Random structures
and algorithms (2008), in context of quasi-random properties.
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What if the gap is not at the ends of the spectrum?

We want to partition the vertices into clusters so that a relation
formulated in the Lemma (1-cluster case) between the
edge-densities and volumes of the cluster pairs would hold.
We will use a slightly modified version of the volume regularity’s
notion introduced by Alon, Coja-Oghlan, Han, Kang, Rödl, and
Schacht, Siam J. Comput. (2010):

Definition

Let G = (V ,W) be a weighted graph with Vol (V ) = 1. The
disjoint pair (A,B) is α-volume regular if for all X ⊂ A, Y ⊂ B we
have

|w(X ,Y )− ρ(A,B)Vol (X )Vol (Y )| ≤ α
√
Vol (A)Vol (B)

where ρ(A,B) = w(A,B)
Vol (A)Vol (B) is the relative inter-cluster density of

(A,B).
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Outline

For general deterministic edge-weighted graphs we’ll prove that the
existence of k − 1 eigenvalues of MD separated from 0 by ε, is
indication of a k-cluster structure, while the eigenvalues
accumulating around 0 are responsible for the pairwise regularities.

The clusters themselves can be recovered by applying the k-means
algorithm for the vertex representatives obtained by the
eigenvectors corresponding to the structural eigenvalues.

Our theorem bounds the volume regularity’s constants of the
different cluster pairs by means of ε and the k-variance of the
vertex representatives (based on the structural eigenvectors).
Estimates for the intra-cluster densities are also given.
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Result

Theorem

G = (V ,W) is edge-weighted graph on n vertices, Vol (V ) = 1
and there are no dominant vertices: di = Θ(1/n), i = 1, . . . , n as
n→∞. The eigenvalues of MD in decreasing absolute values are:

1 > |µ1| ≥ · · · ≥ |µk−1| > ε ≥ |µi |, i ≥ k.

The partition (V1, . . . ,Vk) of V is defined so that it minimizes the
weighted k-variance s2 = S2

k (X∗) of the vertex representatives.
Suppose that there is a constant 0 < c ≤ 1

k such that |Vi | ≥ cn,

i = 1, . . . , k. Then the (Vi ,Vj) pairs are O(
√

2ks + ε)-volume
regular (i 6= j) and for the clusters Vi (i = 1, . . . , k) the following
holds: for all X ,Y ⊂ Vi ,
|w(X ,Y )− ρ(Vi )Vol (X )Vol (Y )| = O(

√
2ks + ε)Vol (Vi ),

where ρ(Vi ) = w(Vi ,Vi )
Vol 2(Vi )

is the relative intra-cluster density of Vi .
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Remark

The case k = 2 was treated separately in
B, International Journal of Combinatorics, 2011:

Under the same conditions and with notations |µ1| = θ, |µ2| = ε,

the (V1,V2) pair is O
(√

1−θ
1−ε

)
-volume regular.
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Random graphs, Wigner-noise

Definition

The n × n symmetric real matrix W is a Wigner-noise if its entries
wij , 1 ≤ i ≤ j ≤ n, are independent random variables, Ewij = 0,
Varwij ≤ σ2 with some 0 < σ <∞ and the wij ’s are uniformly
bounded (there is a constant K > 0 such that |wij | ≤ K ).

Füredi, Komlós, Combinatorica (1981):

max
1≤i≤n

|λi (W)| ≤ 2σ
√

n + O(n1/3 log n)

with probability tending to 1 as n→∞.
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Sharp concentration theorem

Theorem

W is an n × n real symmetric matrix, its entries in and above the
main diagonal are independent random variables with absolute
value at most 1. λ1 ≥ λ2 ≥ · · · ≥ λn: eigenvalues of W.
For any t > 0:

P (|λi − E(λi )| > t) ≤ exp

(
−(1− o(1))t2

32i2

)
when i ≤ n

2
,

and the same estimate holds for the probability

P (|λn−i+1 − E(λn−i+1)| > t) .

Alon, Krivelevich, Vu, Israel J. Math. (2002)
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Previous results imply:

Lemma

There exist positive constants C1 and C2, depending on the
common bound K for the entries of the Wigner-noise W, such that

P
(
‖W‖ > C1 ·

√
n
)
≤ exp(−C2 · n).

Borel–Cantelli Lemma =⇒
The spectral norm of W is O(

√
n) almost surely.
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Perturbation results for weighted graphs

A = B + W, where
W: n × n Wigner-noise
B: n × n blown-up matrix of P with blow-up sizes n1, . . . , nk ,∑k

i=1 ni = n.
P: k × k pattern matrix
k is kept fixed as n1, . . . , nk →∞“at the same rate”: there is a
constant c such that
ni
n ≥ c, i = 1, . . . k.
growth rate condition: g.r.c.
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Adjacency spectrum of a noisy graph

Gn = (V ,A), A = B + W is n × n, n→∞
B induces a planted partition Pk = (V1, . . . ,Vk) of V .
Weyl’s perturbation theorem =⇒
Adjacency spectrum of Gn: under g.r.c. there are k structural
eigenvalues of order n (in absolute value) and the others are
O(
√

n), almost surely.
The eigenvectors X = (x1, . . . , xk) corresponding to the structural
eigenvalues are “not far” from the subspace of stepwise constant
vectors on Pk =⇒

S2
k (X) ≤ S2

k (Pk ,X) = O(
1

n
), almost surely as n→∞.

This extends over the normalized Laplacian and modularity spectra.
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Noisy graph is simple with appropriate noise

The uniform bound K on the entries of W is such that
A = B + W has entries in [0,1].
With an appropriate Wigner-noise the noisy matrix A is a
generalized random graph: edges between Va and Vb exist with
probability 0 < pab < 1.
For 1 ≤ a ≤ b ≤ k and i ∈ Va, j ∈ Vb:

wij :=

{
1− pab, with probability pab

−pab with probability 1− pab

be independent random variables, otherwise W is symmetric. The
entries have zero expectation and bounded variance:

σ2 = max
1≤a≤b≤k

pab(1− pab) ≤ 1

4
.
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Generalized random graphs

Ideal k-cluster case: given the partition (V1, . . . ,Vk) of V ,
vertices i ∈ Va and j ∈ Vb are connected with probability pab,
independently of each other, 1 ≤ a, b ≤ k.
Generalized random graph: random simple graph= edge-weighted
graph with a special block-structure+random noise =⇒ Spectral
characterization in B, Discrete Math. (2008):

If k is fixed and n→∞ such that |Va|
n ≥ c (a = 1, . . . , k) with

some 0 < c ≤ 1
k , then there exists a positive number 0 < θ ≤ 1,

independent of n, such that for every 0 < τ < 1/2

there are exactly k − 1 eigenvalues of MD greater than
θ− n−τ , while all the others are at most n−τ in absolute value,

the k-variance of the vertex representatives constructed by the
k − 1 transformed structural eigenvectors is O(n−2τ ),

with any “small”α > 0, the Va,Vb pairs are α-volume regular,

almost surely.



Motivation Spectral clustering of graphs Noisy random graphs Biclustering of contingency tables

10-fold blow up
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20-fold blow up
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30-fold blow up
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40-fold blow up
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50-fold blow up
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60-fold blow up



Motivation Spectral clustering of graphs Noisy random graphs Biclustering of contingency tables

70-fold blow up
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80-fold blow up
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90-fold blow up
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100-fold blow up
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Before sorting and clustering the vertices
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Biclustering of contingency tables

(Row ,Col ,C) contingency table
Row set: Row = {1, . . . , n}
Column set: Col = {1, . . . ,m}
C: n ×m matrix of entries cij ≥ 0.
cij : some kind of interaction between the objects representing row
i and column j , where 0 means no interaction at all.

drow ,i =
m∑

j=1

cij , i = 1, . . . , n

dcol ,j =
n∑

i=1

cij , j = 1, . . . ,m

Drow = diag (drow ,1, . . . , drow ,n), Dcol = diag (dcol ,1, . . . , dcol ,m)
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Quadratic placement problem

Given the integer 1 ≤ k ≤ min{n,m}: find k-dimensional
representatives r1, . . . , rn ∈ Rk of the rows and c1, . . . , cm ∈ Rk of
the columns such that they minimize

Qk =
n∑

i=1

m∑
j=1

cij‖ri − cj‖2

under the conditions

n∑
i=1

drow ,i ri r
T
i = Ik ,

m∑
j=1

dcol ,jcjc
T
j = Ik
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Equivalence to the correspondence analysis

X := (rT1 , . . . , r
T
n )T = (x1, . . . , xk) n × k

Y := (cT
1 , . . . , c

T
m)T = (y1, . . . , yk) m × k

Constraints:

XT DrowX = Ik , YT DcolY = Ik .

Qk =
n∑

i=1

drow ,i‖ri‖2 +
m∑

j=1

dcol ,j‖cj‖2 =
n∑

i=1

m∑
j=1

cijr
T
i cj

= 2k − trXT CY = 2k − tr (D
1/2
rowX)T (D

−1/2
row CD

−1/2
col )(D

1/2
col Y),

where D
1/2
rowX and D

1/2
col Y are suborthogonal matrices.
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Correspondence matrix / normalized contingency
table

Ccorr := D
−1/2
row CD

−1/2
col

SVD:

Ccorr =
r∑

l=1

siviu
T
i ,

where r ≤ min{n,m} is the rank of Ccorr , or equivalently (as there
are not identically zero rows or columns), that is the rank of C.
1 = s1 ≥ s2 ≥ · · · ≥ sr > 0: non-zero singular values of Ccorr with
singular vector pairs vi ,ui (i = 1, . . . , r).
1 is a single singular value if Ccorr (or equivalently, C) is
irreducible. In this case
v1 = (

√
drow ,1, . . . ,

√
drow ,n)T and u1 = (

√
dcol ,1, . . . ,

√
dcol ,m)T .
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Representation theorem for contingency tables

Theorem

Let (Row ,Col ,C) be an irreducible contingency table with the
above SVD of its correspondence matrix Ccorr . Let k ≤ r be a
positive integer such that sk > sk+1. Then the minimum of Qk

under the given constraints is 2k −
∑k

i=1 si and it is attained with
the optimum row representatives r∗1, . . . , r

∗
n and column

representatives c∗1, . . . , c
∗
m, the transposes of which are row vectors

of X∗ = D
−1/2
row (v1, . . . , vk) and Y∗ = D

−1/2
col (u1, . . . ,uk),

respectively.

Remark: if 1 is a single singular value, the first columns of X∗ and

Y∗: D
−1/2
row v1 and D

−1/2
col u1 are the constantly 1 vectors in Rn and

Rm, respectively.
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Normalized two-way cuts of a contingency table

(Row ,Col ,C): n ×m contingency table
k (0 < k ≤ r): fixed integer
Partition simultaneously the rows and columns into disjoint,
nonempty subsets

Row = R1 ∪ · · · ∪ Rk , Col = C1 ∪ · · · ∪ Ck

such that the cuts

c(Ra,Cb) =
∑
i∈Ra

∑
j∈Cb

cij , a, b = 1, . . . , k

between the row-column cluster pairs be as homogeneous as
possible.
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The normalized two-way cut of the contingency table with respect
to the above k-partitions Prow = (R1, . . . ,Rk) and
Pcol = (C1, . . . ,Ck) of its rows and columns and to the collection
of signs σ:

νk(Prow ,Pcol , σ) =

k∑
a=1

k∑
b=1

(
1

Vol (Ra)
+

1

Vol (Cb)
+

2δabσab√
Vol (Ra)Vol (Cb)

)
c(Ra,Cb),

where

Vol (Ra) =
∑
i∈Ra

m∑
j=1

cij , Vol (Cb) =
∑
j∈Cb

n∑
i=1

cij

are volumes of the clusters, and σ = (σ11, . . . , σkk) with σaa = ±1
(a = 1, . . . , k), whereas σab has no relevance if a 6= b.
The objective function also penalizes clusters of extremely different
volumes.
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Theorem

The normalized two-way cut of the contingency table C:

νk(C) := min
Prow ,Pcol ,σ

νk(Prow ,Pcol , σ) ≥ 2k −
k∑

i=1

si .

Proof: νk(Prow ,Pcol , σ) is Qk in the special representation, where
the column vectors of X and Y are partition vectors belonging to
Prow and Pcol :

xia :=
1√

Vol (Ra)
if i ∈ Ra and 0 otherwise (a = 1, . . . k)

yjb :=
σbb√

Vol (Cb)
if j ∈ Cb and 0 otherwise (b = 1, . . . , k)

X = (x1, . . . , xk) and Y = (y1, . . . , yk) satisfy the conditions
imposed on the representatives and

‖ri−cj‖2 =
1

Vol (Ra)
+

1

Vol (Cb)
+

2δabσbb√
Vol (Ra)Vol (Cb)

if i ∈ Ra, j ∈ Cb.
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Symmetric contingency table = edge-weighted
graph

If the k − 1 largest absolute value eigenvalues of the
normalized modularity matrix are all positive: the k − 1
largest singular values (apart of the 1) of Ccorr are identical to
the k − 1 largest eigenvalues of MD , and the left and right
singular vectors are identical to the corresponding eigenvector
with the same orientation =⇒ ri = ci for all
(k − 1)-dimensional row and column representatives;
νk(C) = 2fk(G ) =⇒ the normalized two-way cut favors
k-partitions with low inter-cluster edge-densities.
If all the k − 1 largest absolute value eigenvalues of the
normalized modularity matrix are negative: ri = −ci , and any
(but only one) of them can be the corresponding vertex
representative; νk(C) differs from fk(G ) in that it also counts
the edge-weights within the clusters. Here, minimizing νk(C),
rather a so-called anti-community structure is detected.
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Regular row-column cluster pairs

In the generic case, for given k, if the clusters are formed via
applying the k-means algorithm for the row- and column
representatives, respectively, then the so obtained row–column
cluster pairs are homogeneous in the sense, that they form equally
dense parts of the contingency table.

Definition

The row–column cluster pair R ⊂ Row , C ⊂ Col of the
contingency table (Row ,Col ,C) (where the sum of the entries is 1)
is γ-volume regular, if for all X ⊂ R and Y ⊂ C the relation

|c(X ,Y )− ρ(R,C )Vol (X )Vol (Y )| ≤ γ
√
Vol (R)Vol (C )

holds, where ρ(R,C ) = c(R,C)
Vol (R)Vol (C) is the relative inter-cluster

density of the row–column pair R,C .
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Weighted k-variances

The weighted k-variance of the k-dimensional row representatives:

S2
k (X) = min

Prow,k∈Prow,k

S2
k (Pk ,X) = min

(R1,...,Rk)

k∑
a=1

∑
j∈Ra

drow ,j‖rj − ba‖2,

where ba = 1
Vol (Ra)

∑
j∈Ra

drow ,jrj (a = 1, . . . , k).
The weighted k-variance of the k-dimensional column
representatives:

S2
k (Y) = min

Qcol,k∈Pcol,k

S2
k (Qk ,Y) = min

(C1,...,Ck )

k∑
b=1

∑
j∈Cb

dcol ,j‖cj − bb‖2,

where bb = 1
Vol (Cb)

∑
j∈Cb

dcol ,jcj (b = 1, . . . , k).
Observe, that the trivial vector components can be omitted, and
the k-variance of the so obtained (k − 1)-dimensional
representatives will be the same.
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Volume regularity versus spectral properties

Theorem

Let (Row ,Col ,C) be a contingency table of n rows and m
columns, with row- and column sums drow ,1, . . . , drow ,n and
dcol ,1, . . . , dcol ,m, respectively. Suppose that

∑n
i=1

∑m
j=1 cij = 1

and there are no dominant rows and columns: drow ,i = Θ(1/n),
(i = 1, . . . , n) and dcol ,j = Θ(1/m), (j = 1, . . . ,m) as n,m→∞.
Let the singular values of Ccorr be

1 = s1 > s2 ≥ · · · ≥ sk > ε ≥ si , i ≥ k + 1.

The partition (R1, . . . ,Rk) of Row and (C1, . . . ,Ck) of Col are
defined so that they minimize the weighted k-variances S2

k (X∗) and
S2

k (Y∗) of the row and column representatives. Suppose that there
are constants 0 < K1,K2 ≤ 1

k such that |Ri | ≥ K1n and
|Ci | ≥ K2m (i = 1, . . . , k), respectively. Then the Ri ,Cj pairs are
O(
√

2k(Sk(X∗) + Sk(Y∗)) + ε)-volume regular (i , j = 1, . . . , k).
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Noisy contingency table sequences

Figure: noisy table; table close to the limit; approximation by SVD

THE END
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