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Motivation

@ To recover the structure of large edge-weighted graphs,
for example: biological, social, economic, or communication
networks.

@ To find a clustering (partition) of the vertices such that the
induced subgraphs on them and the bipartite subgraphs
between any pair of them exhibit regular behavior of
information flow within or between the vertex subsets.

@ To find biclustering of a contingency table (e.g., microarray)
such that clusters of equally functioning genes equally
influence conditions of the same cluster.
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Spectral clustering of edge-wighted graphs

G = (V, W) edge-weighted graph, |V| = n, W: weight matrix of
edges
Wij = Wji > 0 (i 7é_j) and Wi = 0 (i:].,. .. ,n).

di:=3 7y wy (i =1,...,n) generalized degrees

d:=(di,...,d,)": degree vector, vd := (v/di,...,+/d,)T
D :=diag(di,...,dy): degree matrix

w.lg >35> 7wy =1 will be supposed
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Laplacian and modularity matrices

L =D — W: Laplacian

Lp = | — D~Y2WD~1/2; normalized Laplacian

Spec(Lp) € [0,2]

If G is connected (W is irreducible), then 0 is a single eigenvalue
with corresponding unit-norm eigenvector v/d.

Mp = D-1/2wD1/2 — \/H\/HT: normalized modularity matrix
B, Phys. Rev. E (2011) Spec (Mp) € [-1,1]

1 cannot be an eigenvalue if G is connected, and 0 is always an
eigenvalue with eigenvector V.

The spectral gap of G: 1 — ||[Mp|| (spectral norm)
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Quadratic placement problems

Fact: the spectral decomposition of either Lp or Mp solves the
following quadratic placement problem.
for a given positive integer k (1 < k < n), minimize

Q(X) =Y willri — >
i<j

on the conditions

n n

T
E dirir; = lx_1, § dir; =0,
i—1 i—1

where the vectors rq,...,r, are (k — 1)-dimensional representatives
of the vertices, which form the row vectors of the n x (k — 1)
matrix X.
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Normalized Laplacian eigenvalues

G isconnected, 0 = \g < Ay <--- < )\, 1 <2
eigenvalues of Lp with corresponding unit-norm, pairwise
orthogonal eigenvectors ug = v/d, uy, ..., u,_1.

In B, Tusnady, Discrete Math. (1994): the minimum of Qx(X)
under the constraints for the representatives is

and is attained by the following representation:
ri,...,r, are row vectors of the matrix
X* = (D_1/2U1, ey D_1/2Uk71).
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Explanation

Instead of X the augmented n x k matrix X can as well be used,
which is obtained from X by inserting the column xg = 1 of all 1's.
In fact, xg = D*1/2u0:1, where ug = V/d is the eigenvector
belonging to the eigenvalue 0 of Lp. Then

Qr(X) = Qu(X) = tr (D¥2X)7 (1, — D~Y2WD~1/2)(D/2X),

and Qk(X) is minimized on the constraint XTDX = I,
or equivalently,
D'/2X s suborthogonal.
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Continuous relaxation of a discrete minimization

This problem is the continuous relaxation of minimizing
Qu(X(Py)) = tx (DV2X(P)) (1, -~ D~/2WD ) (DY?K(Py))

over the set of k- part|t|ons Pr = (Vi,..., Vi) of the vertices such

that Py is planted into X in the way that the columns of X(Py) are
so-called partition-vectors belonging to Pj:

the coordinates of the ith column are zeros, except those indexing

vertices of V; which are equal to

1 .
NGSTOR i=1,..., k.
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Representation, spectral relaxation

Minimum k-way normalized cut of G = (V, W):
f —
k(G) = min Qu( X(Px)).

where Vol (U) =) ;. di: volume of U C V
w(X,Y) =2 icx > jey Wij: weighted cut between X, Y C V
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Estimation, references

Because of the spectral relaxation:

k—1 -1

f(G) =D Ni=) N

i= i=1

B, Tusnddy, Discrete Math. (1994) general k, called weighted cut
Azran, Ghahramani, Siam J. Comput (2000) general k

Meila and Shi, NIPS (2001): k =2

B, M-Séska, Studia Sci. Math. Hun. (2002) general k

Upper estimate: depends on the corresponding eigenvectors.
Point of spectral clustering: optimizing over Py is NP-hard.
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Isoperimetric number

The Cheeger constant of the weighted graph G = (V, W) is

- . w(U, U)
h(G) = min Vol (U)
Vol (U) < 1/2

Theorem

(B, M-Saska, Discrete Math. (2004)). Let A1 be the smallest
positive eigenvalue of Lp. Then

% < h(G) < min{1, \/E}

If \1 <1 (G is not the complete graph), then

h(G) < VM2 — M)
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Normalized Newman—Girvan modularity

Newman—Girvan, Physical Review E (2004) N-G mod.
B, Physical Review E (2011) normalized N-G mod.:

oo  w(V,, V,
Mi(W. Pk):ZVol(V) 2 (W"f_d"df):z_; VE)l(Va)) -1

a=1 aljjev,

Since -
M(W, P) = k — 1 — Qu(X(Px)),

maximizing the k-way normalized Newman-Girvan modularity is
equivalent to the normalized cut problem and it can be solved by
the same spectral relaxation.
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Spectral gap and variance

Weighted k-variance of the vertex representatives:

k

20yy - e 2
S5i(X) = Pk:(Tl'Pka)Z Z diflrj — <l

a=1jeV,

where ¢, = 7‘,01%\/3) Zjeva djr;.
In B, Tusnady, Discrete Math. (1994)

In the representation X* = (D~Y2uy, D~1/2u;) = (1, D~Y2uy):

A
SEx) <&
A2
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f(G) is the symmetric version of h(G): £(G) <2h(G) =

M(2-X), A <L

Theorem

Suppose that G = (V,W) is connected, and \;’s are the
eigenvalues of Lp. Then Zf-‘;ll Ai < f(G) and in the case when
the optimal k-dimensional representatives can be classified into k
well-separated clusters in such a way that the maximum cluster
diameter ¢ satisfies the relation

e < min{1/v2k,v/2min; \/Vol (V;)} with k-partition

(VAa,..., Vi) induced by the clusters above, then

where c = 1+ ec’/(v/2 — ec’) and ¢’ = 1/ min; \/Vol (V).
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Normalized modularity eigenvalues

Mp=I1—-Lp— \/a\/HT eigenvalues:

1—X > > X,—1 > —1 with the same eigenvectors and 0 with
eigenvector \/a .

1 cannot be an eigenvalue if G is connected / W is irreducible

@ Large absolute value positive eigenvalues of Mp are
responsible for clusters with high intra- and low inter-cluster
densities.

e If we minimize M (W, Py) instead of maximizing over P:
small negative eigenvalues of Mp are responsible for clusters
with low intra- and high inter-cluster densities.

@ If we take into account eigenvalues from both ends of the
normalized modularity spectrum, we can recover so-called
regular cluster pairs.
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Volume regularity

Expander Mixing Lemma for weighted graphs: Supposing
Vol(V)=1, forall X,Y C V,

Iw(X, Y) = Vol (X)Vol (Y)| < [Mp] - \/Vol (X)Vol (Y)

For simple graphs: Alon, Combinatorica (1986)

Hoory, Linial, Widgerson, Bulletin of AMS (2006)

For edge-weighted graphs: Chung, Graham, Random structures
and algorithms (2008), in context of quasi-random properties.
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What if the gap is not at the ends of the spectrum?

We want to partition the vertices into clusters so that a relation
formulated in the Lemma (1-cluster case) between the
edge-densities and volumes of the cluster pairs would hold.

We will use a slightly modified version of the volume regularity’s
notion introduced by Alon, Coja-Oghlan, Han, Kang, R&dl, and
Schacht, Siam J. Comput. (2010):

Definition
Let G = (V, W) be a weighted graph with Vol (V) =1. The
disjoint pair (A, B) is a-volume regular if for all X C A, Y C B we

have
w(X,Y)— p(A, B)Vol (X)Vol(Y)| < ay/Vol(A)Vol(B)
where p(A, B) = % is the relative inter-cluster density of

(A, B).
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Outline

For general deterministic edge-weighted graphs we'll prove that the
existence of k — 1 eigenvalues of Mp separated from 0 by ¢, is
indication of a k-cluster structure, while the eigenvalues
accumulating around 0 are responsible for the pairwise regularities.

The clusters themselves can be recovered by applying the k-means
algorithm for the vertex representatives obtained by the
eigenvectors corresponding to the structural eigenvalues.

Our theorem bounds the volume regularity’s constants of the

different cluster pairs by means of ¢ and the k-variance of the
vertex representatives (based on the structural eigenvectors).

Estimates for the intra-cluster densities are also given.
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Result
Theorem
G = (V,W) is edge-weighted graph on n vertices, Vol (V) =1
and there are no dominant vertices: di = ©(1/n), i=1,...,n as

n — oo. The eigenvalues of Mp in decreasing absolute values are:
1> | 2o = |pe—1| > € 2 |pil, i =k

The partition (Vi, ..., Vk) of V is defined so that it minimizes the
weighted k-variance s> = S2(X*) of the vertex representatives.
Suppose that there is a constant 0 < ¢ < + such that |V;| > cn,
i=1,...,k. Then the (Vi,V;) pairs are O(v/2ks + €)-volume
regular (i # j) and for the clusters V; (i = 1,..., k) the following
holds: for all X, Y C V;,

Iw(X,Y) — p(Vi)Vol (X)Vol(Y)| = O(V2ks +e)Vol (V;),

where p(V;) = \‘;‘;(1\/2'(‘\% is the relative intra-cluster density of V.
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Remark

The case k = 2 was treated separately in
B, International Journal of Combinatorics, 2011:

Under the same conditions and with notations || = 0, |u2| = ¢,
the (V4, V3) pairis O ( %:g>—volume regular.
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Random graphs, Wigner-noise

Definition

The n X n symmetric real matrix W is a Wigner-noise if its entries
wjj, 1 < i < j < n, are independent random variables, Ew;; = 0,
Var wj; < 0 with some 0 < o < oo and the w;;'s are uniformly
bounded (there is a constant K > 0 such that |w;| < K).

Fiiredi, Komlds, Combinatorica (1981):

max [\i(W)| < 20/n+ O(n'"/*log n)

with probability tending to 1 as n — oo.
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Sharp concentration theorem

Theorem

W is an n X n real symmetric matrix, its entries in and above the
main diagonal are independent random variables with absolute
value at most 1. \y > X\p > --- > A\, eigenvalues of W.

For any t > 0:

(1 — o(1))¢?
3202

I

NS

P(Ai —E\)| >t) < exp( > when | <

and the same estimate holds for the probability

P([An—it1 = EQAn-iy1)[ > 1).

Alon, Krivelevich, Vu, Israel J. Math. (2002)
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Previous results imply:

There exist positive constants C; and C,, depending on the
common bound K for the entries of the Wigner-noise W, such that

IP’( > (- ) < exp(—C, - n).

Borel-Cantelli Lemma —
The spectral norm of W is O(y/n) almost surely.
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Perturbation results for weighted graphs

A =B + W, where

W: nxn

B: n x n blown-up matrix of P with blow-up sizes ny, ..., ng,
Zf'(:l ni =n.

P: k x k pattern matrix

k is kept fixed as ni,...,nx — oo “at the same rate™ there is a
constant ¢ such that

h>c, i=1,...k

growth rate condition: g.r.c.
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Adjacency spectrum of a noisy graph

G,=(V,A), A=B+Wisnxn, n— oo

B induces a planted partition Py = (V4,..., V) of V.

Weyl's perturbation theorem —-

Adjacency spectrum of G,: under g.r.c. there are k structural
eigenvalues of order n (in absolute value) and the others are
O(+/n), almost surely.

The eigenvectors X = (x1, ..., Xx) corresponding to the structural
eigenvalues are “not far” from the subspace of stepwise constant
vectors on P, —

1
S2(X) < S2(Py,X) = O(=), almost surely as n — oo.
n

This extends over the normalized Laplacian and modularity spectra.
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Noisy graph is simple with appropriate noise

The uniform bound K on the entries of W is such that

A = B + W has entries in [0,1].

With an appropriate Wigner-noise the noisy matrix A is a
generalized random graph: edges between V, and V}, exist with
probability 0 < p,p < 1.

Foril<a<b<kandi€eV, jE Vs

W 1 — pap, with probability  p.p
UL —pas with probability 1 — p,p

be independent random variables, otherwise W is symmetric. The
entries have zero expectation and bounded variance:

2 ].

— 1-— < —.
o lggggkpab( Pab) < 2
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Generalized random graphs

Ideal k-cluster case: given the partition (V4,..., Vi) of V,
vertices | € V; and j € V), are connected with probability p.p,
independently of each other, 1 < a,b < k.

Generalized random graph: random simple graph= edge-weighted
graph with a special block-structure+random noise = Spectral
characterization in B, Discrete Math. (2008):

If k is fixed and n — oo such that Y2l > ¢ (a=1,..., k) with
some 0 < c < % then there exists a positive number 0 < 0 < 1,
independent of n, such that for every 0 < 7 < 1/2

@ there are exactly kK — 1 eigenvalues of Mp greater than
0 — n~7, while all the others are at most n~" in absolute value,

@ the k-variance of the vertex representatives constructed by the
k — 1 transformed structural eigenvectors is O(n~27),

@ with any “small” a > 0, the V,, V}, pairs are a-volume regular,

almost surely.
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30-fold blow up
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40-fold blow up
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50-fold blow up
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90-fold blow up
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100-fold blow up
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Before sorting and clustering the vertices
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Biclustering of contingency tables

(Row, Col, C) contingency table

Row set: Row = {1,...,n}

Column set: Col = {1,..., m}

C: n x m matrix of entries c;j > 0.

cjj: some kind of interaction between the objects representing row
i and column j, where 0 means no interaction at all.

m
drow,i: E Cij, izl,...,n
j=1

col,_; E Cij, J_ 1

Diow = diag (drow,la ceey drow,n): Deo = diag(dcol,b ceey dcol,m)
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Quadratic placement problem

Given the integer 1 < k < min{n, m}: find k-dimensional
representatives ri, ..., r, € R of the rows and c1, ..., cm € R¥ of
the columns such that they minimize

n m
Qu=>_> cilri—¢lf

i=1 j=1

under the conditions

n m

T T
§ drow,itit; = lk, E deor jCjcj = lk
i—1 =1
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Equivalence to the correspondence analysis

X:=(],....r)T =(x1,...,xk) nxk

' n
Yi=(c,....c))T =(y1,....yx) mxk
Constraints:

X" DowX =1, Y'DoyY = Iy

n m n m
Qe =Y drow,ilIFillP + ) dearjlicil> =Y ) e/ ¢
i=1 j=1

i=1 j=1

=2k —tr XTCY = 2k — tr (DX2X)T(D,o’CD_Y?) (DY),

col col

where D%V%,X and Dic/),QY are suborthogonal matrices.
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Correspondence matrix / normalized contingency

table

Ceorr = Drow -CD /2
SVD:

P

T

Ccorr — E siviu;
=1

where r < min{n, m} is the rank of Cco, or equivalently (as there
are not identically zero rows or columns), that is the rank of C.
1=s>s >--->s5,>0: non-zero singular values of Co with
singular vector pairs vj,u; (i=1,...,r).

1 is a single singular value if Ccopr (or equivalently, C) is
irreducible. In this case

V] = (\/ drow,1> e/ drow,n)T and u; = (\/ dcol,17 EEREIY dcol,m)T-
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Representation theorem for contingency tables

Theorem

Let (Row, Col,C) be an irreducible contingency table with the
above SVD of its correspondence matrix Ccorr. Let k < r be a
positive integer such that s > sxi1. Then the minimum of Qx
under the given constraints is 2k — Zf-‘zl s; and it is attained with

the optimum row representatives v, ..., r, and column

representatives cl,...,Cy,, the transposes of which are row vectors
D~ /?2

of X* = row (v1,...,vk) and Y* =D_,/"(uy,...,uy),

respectively.

Remark: if 1 is a single singular value, the first columns of X* and

Y*: DrOW/ vy and Dc_oll/zul are the constantly 1 vectors in R"” and
R™, respectively.
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Normalized two-way cuts of a contingency table

(Row, Col,C): n x m contingency table

k (0 < k < r): fixed integer

Partition simultaneously the rows and columns into disjoint,
nonempty subsets

Row = RiU---URk, Col=CU---UCk

such that the cuts

c(Ra, Cp) = ZZCU, a,b=1,... .k

i€R; jeCy

between the row-column cluster pairs be as homogeneous as
possible.
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The normalized two-way cut of the contingency table with respect
to the above k-partitions P,o, = (Ry,..., Rk) and

Peor = (Ci, ..., Cx) of its rows and columns and to the collection
of signs o

Vk(PrOW7 PCO/aa) =
k

]- 20260 ab
+ c(Rs, Cp),
2 1<V01 R,) | Vol( \/Vol L)Vol Cb)> (Ra: Co)

a=1 b=

where

Vol(Ra): ZZC,'J', VOl(Cb): ZZCU

i€R, j=1 jeCy i=1
are volumes of the clusters, and o = (011, ...,0k) With 0., = £1
(a=1,...,k), whereas o, has no relevance if a # b.

The objective function also penalizes clusters of extremely different
volumes.
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The normalized two-way cut of the contingency table C:

k
Vk(C) = o mIiDn, UI/k(PmW, PCOI,O') Z 2k — ZS,'.

Proof: vk(Prow, Peol, @) is Qx in the special representation, where
the column vectors of X and Y are partition vectors belonging to
Prow and P:

1
Xjg .= ———1if i € R,andOotherwise(a=1,...k)
Vol (R,)
Obb L .
Vb 1= ifj € CpandOotherwise(b=1,...,k)

Vol (Cp)
X =(x1,...,xx) and Y = (y1, ..., yk) satisfy the conditions
imposed on the representatives and
||2 1 1 20260 bb

+ ifi € R,, j€ Cp.
Vol (R,) Vol(Gp) \/Vol 2)Vol (Gp) / b

[ri—¢;
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Symmetric contingency table = edge-weighted

graph

o If the k — 1 largest absolute value eigenvalues of the
normalized modularity matrix are all positive: the k — 1
largest singular values (apart of the 1) of C.,,, are identical to
the k — 1 largest eigenvalues of Mp, and the left and right
singular vectors are identical to the corresponding eigenvector
with the same orientation =— r; = ¢; for all
(k — 1)-dimensional row and column representatives;
vk(C) = 2fx(G) = the normalized two-way cut favors
k-partitions with low inter-cluster edge-densities.

o If all the kK — 1 largest absolute value eigenvalues of the
normalized modularity matrix are negative: r; = —c;, and any
(but only one) of them can be the corresponding vertex
representative; vy (C) differs from f,(G) in that it also counts
the edge-weights within the clusters. Here, minimizing v (C),
rather a so-called anti-community structure is detected.
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Regular row-column cluster pairs

In the generic case, for given k, if the clusters are formed via
applying the k-means algorithm for the row- and column
representatives, respectively, then the so obtained row—column
cluster pairs are homogeneous in the sense, that they form equally
dense parts of the contingency table.

Definition

The row—column cluster pair R C Row, C C Col of the
contingency table (Row, Col, C) (where the sum of the entries is 1)
is y-volume regular, if for all X C R and Y C C the relation

|c(X,Y) — p(R, C)Vol (X)Vol(Y)| < v+/Vol(R)Vol(C)

holds, where p(R, C) = \m((Rvgl)(% is the relative inter-cluster

density of the row—column pair R
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Weighted k-variances

The weighted k-variance of the k-dimensional row representatives:

S2(X)=  min (Pk,X)_ min ZdeWHrJ b.|?,

Prow k€P
row, k row, k ].9 ) k a= ]-_IERa

where b, = VO%(RB) ZjeRa drowjtj (a=1,...,k).

The weighted k-variance of the k-dimensional column
representatives:

S2(Y)= min  SHQY)= min_ ZZdCO/JHcJ b ||,

Qeot, kEP, yns
col , k col k l k b— 1J€Cb

1
where by, = o1 (Cy) Yjec, deotj€j  (b=1,... k).
Observe, that the trivial vector components can be omitted, and
the k-variance of the so obtained (k — 1)-dimensional
representatives will be the same.
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Volume regularity versus spectral properties

Theorem

Let (Row, Col, C) be a contingency table of n rows and m
columns, with row- and column sums dyow 1, - - -, drow, n and
deol1s - - - s deol,m, respectively. Suppose that 27:1 J 16 =1
and there are no dominant rows and columns: dy,, ; = ©(1/n),
(i=1,...,n)and deo)j =O(1/m), (j =1,...,m) as n,m — oo.
Let the singular values of Cor be

l=s1>>--->s>e>s;, i>k+1.

The partition (Ry, ..., Rk) of Row and (G, ..., Ck) of Col are
defined so that they minimize the weighted k-variances S2(X*) and
Sz(Y*) of the row and co/umn representatives. Suppose that there
are constants 0 < Ky, Ko < k such that |R;| > Kin and

|Gi| > Kom (i =1,..., k), respectively. Then the R;, C; pairs are
O(V2k(Sk(X*) 4 Sk(Y*)) + €)-volume regular (i,j = 1, ooy k).
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Noisy contingency table sequences

Figure: noisy table; table close to the limit; approximation by SVD

THE END
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