
Clustering the Nodes of Sparse

Edge-Weighted Graphs via
Non-Backtracking Spectra

Marianna Bolla, Reittu Hannu, Fatma
Abdelkhalek

BME Math. Inst. Budapest, VTT Finland,

Assiut Univ. Egypt
marib@math.bme.hu

FICC 2025 Berlin

April 28, 2025.
2024



Outline

Problem: spectral clustering the nodes of sparse graphs.

Tool: non-backtracking matrix of simple graphs.

Our advantages: k-means clustering with node representatives.

Methods: belief propagation (number of clusters), EM
algorithm (estimating the parameters).

Sparse stochastic block model, inflation–deflation.

Non-backtracking matrix of edge-weighted graphs.

Edge percolation for simulated data.

Application to quantum chemistry data.
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Preliminaries

DENSE SPARSE
Füredi-Komlós, Combinatorica Percolated Gn(p), p = c

n

(1981): E(aij) = µ > 0 (i 6= j) (n → ∞) Erdős-Rényi

B, Wiley (2013): E(aij) = cab Percolated SBM: E(aij) =
cab
n

(i ∈ Va, j ∈ Vb), 1 ≤ a, b ≤ k (i ∈ Va, j ∈ Vb), 1 ≤ a, b ≤ k

λi(A) is aligned with λi(EA), λi (B) is aligned with λi (EA),
i = 1, . . . , k (F-K: k = 1) i = 1, . . . , k non-backtracking

Perturbation: Wigner-type matrix deformed Wigner matrix
Subspace perturbation: Davis-Kahan Bauer–Fike
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Non-Backtracking (Hashimoto) matrix of simple
graphs

G = (V ,E ) simple graph, |V | = n, |E | = m;
The entries of the non-backtracking matrix N = (nef ) are indexed
by the oriented edges (bidirected edges of E ), |E→| = 2m:

nef = δe→f δf 6=e−1 , ni→j , s→l = δjs(1− δil ),

where e = {i → j} and f = {s → l} are oriented edges, and e → f
with e = (e1, e2) and f = (f1, f2) means that e2 = f1;
e−1 = {j → i}.

Alon, Benjamini, Lubetzky, Sodin, Non-backtracking random walks
mix faster, Commun. Contemp. Math. (2007).
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Relation to line-graphs

Proposition

If N =

(
N11 N12

N21 N22

)
, where the two (row/column) blocks

correspond to the edges and their inverses (in the same order), then

N∗
11 = N22, N∗

22 = N11, N∗
12 = N12, N∗

21 = N21.

Further, N11 +N12 +N21 +N22 is equal to the m ×m adjacency
matrix of the line-graph of G .

If the line-graphs of two simple graphs, provided they both have
node-degrees at least 4, are isomorphic, then they are isomorphic
too. However, two simple graphs are isomorphic if and only if, their
non-backtracking graphs (with adjacency matrix N) are isomorphic.
The non-backtracking random walk is not Markovian (it has the
memory that no going back in one step), but the random walk on
the non-backtracking graph is Markovian (non-backtr. Laplacian).
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Transpose (∗), swapping, and parity-time invariance

N is not a normal matrix, even not always diagonalizable.
In particular, if there are nodes of degree 1 (for example, G is a
tree), the algebraic multiplicity of the eigenvalue 0 is larger than
the geometric one. However N exhibits some symmetry:
n∗ef = ne−1 f −1 .

With the notation x̆e := xe−1 for the coordinates of x, x̆ ∈ R
2m: if

x =

(
x1
x2

)
, then x̆ =

(
x2
x1

)
(swapping).

Consequently: if x is a right eigenvector of N corresponding to a
real eigenvalue, then x̆ is a left eigenvector of N (and right
eigenvector of N∗) with the same real eigenvalue.
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Eigenvalues of N (Ihara formula)

If G is connected, not a cycle and the minimum node-degree≥ 2,
then N is irreducible. By Frobenius thm, it has a single real
eigenvalue λmax(N) > 0 of largest modulus. Since the
characteristic polynomial of N has real coefficients, its complex
eigenvalues occur in conjugate pairs in the bulk, and there can be
some other

”
structural” real eigenvalues out of the bulk.

Ihara formula: If G is not a tree, N has m − n eigenvalues equal
to 1 and m − n eigenvalues equal to −1, whereas its further
eigenvalues are those of the 2n × 2n matrix

K =

(
O DA − In
−In A

)
,

where A is the adjacency- and DA is the degree-matrix of the
graph (diagonal, contains the node-degrees=row-sums of A).
K always has at least one eigenvalue 1, the geometric multiplicity
of which is equal to the number of the connected components of G
and λmax(K) = λmax(N) ≤ λmax(A).
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Real eigenvalues and eigenvectors of N

Two auxiliary matrices are introduced: the 2m × n matrix End has
entries endei = 1 if i is the end-node of the (directed) edge e and
0, otherwise; the 2m × n matrix Start has entries startei = 1 if i is
the start-node of the (directed) edge e and 0, otherwise. Then for
any vector u ∈ R

n and for any directed edge {i → j}:

(End u)i→j := uj and (Start u)i→j := ui .

Consequently, End u is the 2m-dimensional inflated version of the
n-dimensional vector u, where the coordinate uj of u is repeated as
many times, as many edges have end-node j ; likewise, in the
2m-dimensional inflated vector Start u, the coordinate ui of u is
repeated as many times, as many edges have start-node i .
As each edge is considered in both possible directions, these
multiplicities are the node-degrees dj and di , respectively.
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Beyond the Ihara formula

End∗ End = Start∗ Start = diag(d1, . . . , dn) = DA

For any vector x ∈ R
2m, define

xouti :=
∑

j : j∼i

xi→j and x ini :=
∑

j : j∼i

xj→i (i = 1, . . . , n).

These become the coordinates of the n-dimensional (column)
vectors xin and xout : xout = Start∗x and xin = End∗x.

If x is a (right) eigenvector of N∗ with structural real eigenvalue µ,

then the vector

(
xout

xin

)
is a right eigenvector of K with the same

eigenvalue µ, where xout = 1
µ
(DA − In)x

in.
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Edge percolation

The edge percolation threshold for the giant component to appear
in a sparse simple graph is β > 1

λmax (N) , where β is the edge
retention probability, see Newman, M. E. J., Message passing
methods on complex networks, Proc. R. Soc. London A (2023).
The proof uses the method of Belief Propagation (BP) (when the
so-called message passing system of the approximating linear
equations has a non-trivial and unstable trivial solution).
In the dense case, it happens at 1

λmax (A) ≤ 1
λmax (N) , see Bollobás,

B., Borgs, C., Chayes, J., and Riordan, O., Percolation on dense
graph sequences, Ann. Probab. (2010).
More generally, we are looking for the number k , so that k strongly
connected clusters (communities) can be detected (within the
giant component) in a graph coming from the sparse stochastic
block model. We are also looking for the clusters themselves.
The Erdős–Rényi graph Gn(p) is a special case with k = 1, where
the edges of the complete graph on n vertices are retained
independently, with probability β = p.
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The sparse stochastic block model SBMk

The k × k probability matrix P of the random graph Gn ∈ SBMk

has entries pab = cab
n
, where the k × k symmetric affinity matrix

C = (cab) stays constant as n → ∞. An edge between i < j comes
into existence, independently of the others, with probability pab if
i ∈ Va and j ∈ Vb, where (V1, . . . ,Vk) is a partition of the
node-set V into k disjoint clusters; aji := aij . It can be extended to
the i = j case when self-loops are allowed, or else, the diagonal
entries of the adjacency matrix are zeros.
Ā: the n× n inflated matrix of the k × k P: āij = pab if i ∈ Va

and b ∈ Vb. When loops are allowed, then E(aij) = āij for all
1 ≤ i , j ≤ n. In the loopless case, the expected adjacency matrix
EA differs from Ā with respect to the the main diagonal, but the
diagonal entries are negligible.
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Special cases

Sometimes cab = cin is the within-cluster (a = b) and cab = cout is
the between-cluster (a 6= b) affinity. The network is called
assortative if cin > cout , and disassortative if cin < cout . Of course,
remarkable difference is needed between the two, to recognize the
clusters.
The cluster sizes are n1, . . . , nk (

∑k
i=1 ni = n), so the k × k

diagonal matrix R := diag(r1, . . . , rk), where ra =
na
n

is the relative
size of cluster a (a = 1, . . . , k), is also a model parameter
(
∑k

a=1 ra = 1). It is nearly kept fixed as n → ∞.
The model SBMk is called symmetric if r1 = · · · = rk = 1

k
and all

diagonal entries of the affinity matrix are equal to cin, whereas the
off-diagonal ones to cout .
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Average degrees

The average degree of a real world graph on m edges and n nodes
is 2m

n
. The expected average degree of the random graph

Gn ∈ SBMk is

c =
1

n

k∑

a=1

k∑

b=1

nanbpab =
1

n2

k∑

a=1

k∑

b=1

nanbcab =

k∑

a=1

raca,

where ca =
∑k

b=1 rbcab is the average degree of cluster a. It is
valid only if self-loops are allowed. Otherwise, ca and c should be
decreased with a term of order 1

n
, but it will not make too much

difference in the subsequent calculations.
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Kesten–Stigum threshold

In Bordenave, C., Lelarge, M., Massoulié, L., Non-backtracking
spectrum of random graphs: Community detection and non-regular
Ramanujan graphs, Ann. Probab. (2018), the case when ca = c
for all a is considered. (This is the hardest case, as otherwise the
clusters could be distinguished by sorting the node-degrees.) In
this case 1

c
Ā is a stochastic matrix, and so, the spectral radius of

Ā is c .
In the symmetric case, c = cin+(k−1)cout

k
and the separation of the

clusters only depends on the cin, cout relation. If cin is
”
close” to

cout , then the groups cannot be distinguished. The detectability
Kesten–Stigum threshold in the symmetric case is

|cin − cout | > k
√
c ⇐⇒ µ2 = · · · = µk >

√
c ,

where c = µ1 > µ2 = · · · = µk are the leading (real) eigenvalues of
N.
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BP in the general sparse SBMk model

Given the observed graph G on n nodes, if c1 = · · · = ck = c , then
eigenvalues of λ(N) >

√
c should be considered.

The eigenvalues of N and RC (those of Ā) are aligned, see
Bordenave, C., Lelarge, M., Massoulié, L., Non-backtracking
spectrum of random graphs: Community detection and non-regular
Ramanujan graphs, Ann. Prob.
The matrix Ā has rank k and its non-zero eigenvalues (ν’s) with
unit norm eigenvectors (u’s), which are step-vectors over the
clusters.
Let x be a unit-norm eigenvector of N, corresponding to the
eigenvalue µ that is close to the eigenvalue ν of the expected
adjacency matrix, with corresponding eigenvector u ∈ R

n. If our
graph is from the SBMk model, then (without knowing its
parameters) we know that u is a step-vector with at most k
different coordinates. Then by the above citation,

〈
x,

End u

‖End u‖

〉
≥

√
1− ε ≥ 1− 1

2
ε,

where ε can be arbitrarily
”
small”with increasing n.2024



k-means clustering

Theorem

Assume that the expected adjacency matrix of the underlying
random graph on n nodes and m edges has rank k with k single
eigenvalues and corresponding unit-norm eigenvectors
u1, . . . ,uk ∈ R

n. Assume that the non-backtracking matrix N of
the random graph has k structural eigenvalues (aligned with those
of the expected adjacency matrix) with eigenvectors
x1, . . . , xk ∈ R

2m such that

〈
xj ,

Enduj
‖Enduj‖

〉
≥

√
1− ε, j = 1, . . . , k .

Then for the transformed vectors D−1
A xinj ∈ R

n:

Obj. function of k-means ≤
k∑

j=1

∥∥∥∥D
−1
A xinj − uj

‖End uj‖

∥∥∥∥
2

≤ kε.
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Non-Backtracking matrix of edge-weighted graphs

Let G = (V ,E ) be the skeleton of an edge-weighted graph,
|V | = n, |E | = m; the weight of edge e = {i , j} is
We = wij = wji > 0, where the remaining entries of the the n × n
symmetric edge weight matrix W are zeros (including the
diagonal).
Let the 2m × 2m diagonal matrix D contain the positive
edge-weights in its main diagonal (the first m diagonal entries are
the same as the second m ones as We = We−1). With them,

B = ND and B∗ = DN∗.

The general entry of the 2m × 2m non-backtracking matrix B is

bef = Wf δe→f δf 6=e−1 .
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Notation

We assume that there are constants C1 and C2 (independent of n):

C1 ≤ wij ≤ C2, for wij 6= 0.

Further, we assume that the skeleton’s node degrees

di = |{i : wij > 0, j = 1, . . . , n}| , i = 1, . . . , n

are of constant order (it is the case in the k-cluster stochastic
block model (SBMk)).
Let DW denote the n× n diagonal matrix of diagonal entries

dW
i =

n∑

j=1

wij , i = 1, . . . , n,

that are the so-called generalized degrees. In the unweighted case
(0-1 weights), dW

i = di and C1 = C2 = 1; in general,

C1di ≤ dW
i ≤ C2di , i = 1, . . . , n.
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Start- and End-matrices, in- and out-vectors

The End and Start matrices are defined as in the unweighted case:

End∗ DEnd = Start∗DStart = DW and Start∗ DEnd = W.

For any vector x ∈ R
2m, the following n-dimensional vectors are

introduced:

xout := Start∗Dx and xin := End∗Dx.

Coordinatewise, for i = 1, . . . , n,

xouti =
∑

j : j∼i

wijxi→j =
∑

e: e1=i

Wexe , x ini =
∑

j : j∼i

wijxj→i =
∑

e: e2=i

Wexe .
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Tracing back the problem to lower order matrices

No counterpart of matrix K works here, but if we know a real
eigenvalue µ of B, we are able to find a linear system of equations
for the out-transform of the corresponding eigenvector that is
necessary for spectral clustering. With a Laplacian type equation,
µ can also be concluded.
Proposition: Let x be a (right) eigenvector of B corresponding to
a single positive real eigenvalue µ such that µ 6= wij ,
∀i , j ∈ {1, . . . , n}. Then y = xout satisfies the homogeneous
system of linear equations

[In − Ã(µ) + D̃(µ)]y = 0

with a Laplacian type coefficient matrix, where

Ã(µ)ij =
µwij

µ2 − w2
ij

and D̃(µ)ii =
n∑

j=1

w2
ij

µ2 − w2
ij

,

with the understanding that wij = 0 whenever i 6∼ j .
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Consequences

The above homogeneous system of linear equations for the
coordinates of y must have a non-trivial solution, so

|In − Ã(µ) + D̃(µ)| = 0.

This is not a polynomial (characteristic) equation, but it is a
rational function of µ. By the assumptions of the Proposition, the
denominators are not zeros, so we can multiply the determinant
equations with them, and we obtain an high-degree (higher than n)
polynomial of µ.
The leading positive real solutions µ1 ≥ · · · ≥ µk are the same as
the structural eigenvalues of B. Their number will be denoted by
k . The corresponding y1, . . . , yk can be obtained by solving the
system of the above homogeneous linear equations (with only an
n × n coefficient matrix).
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Clustering

Proposition of Stephan, L., Massoulié, Non-backtracking spectra of
inhomogeneous random graphs, Mathematical Statistics and
Learning (2022) is applicable to the edge-weighted case too.
At the instance, when the number of vertices is n: P = (pij) is the
n × n symmetric probability matrix of the edges and W = (Wij) is
the n× n symmetric matrix of random weights of the edges.
The proposition is applicable if Ā := P ◦ EW is a low rank matrix
and the so obtained graph is sparse enough. A constant average
degree can be guaranteed if, in the instance of n nodes, the pij ’s
are proportional to 1

n
. The authors only require for the average

degree to be of order o(log n). In the classical literature, for the
average degrees, the order o(n) is considered as sparse. Nowadays
the notion of intermediate density is introduced, e.g., for log n or
Poly(log n) order average degrees, which is the case in the
subsequent quantum chemistry examples.
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The SBMW
k model

The stochastic block models discussed before are special cases,
where the weights are constantly 1.
In many practical situations, the entry Wij of the n × n random
weighted adjacency matrix W is w̃ij times a Bernoulli distributed
random variable with parameter pij , for 1 ≤ i < j ≤ n; these
entries above the diagonal are independent of each other, while
those below the diagonal are identical to them.
So the parameters of this distribution are contained in the
symmetric matrices P and W̃ = (w̃ij) of real entries in (0,1]. In

this way, the expected adjacency matrix is Ā = P ◦ W̃, with
approximate matrix of variances P ◦ W̃ ◦ W̃ (if the entries of P are
decreasing with n), and so, the above theory is applicable to it.
However, for given (large) n, we only observe a realization W from
the the distribution W, in the non-zero positions of which the
entries are equal to those of W̃.
Even if the observed W is sparse, the expected weighted adjacency
matrix Ā is not sparse (it is full) =⇒ dense matrix techniques.
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k-means clustering in the SBMW
k model

Assume that the non-backtracking matrix B has k structural (real)
eigenvalues with eigenvectors x1, . . . , xk ∈ R

2m. Then for the
transformed vectors W−1xoutj ∈ R

n:

k∑

j=1

∥∥∥∥W
−1xoutj − vj

‖End vj‖

∥∥∥∥
2

≤ kε
C 2
2

C 2
1

.

If vj ’s (eigenvectors of Ā) are step-vectors on k steps, then the
left-hand side estimates from above the sum of the inner variances
of the node representatives that are row vectors of

(W−1xout1 , . . . ,W−1xoutk ).

To get the xoutj ∈ R
n vectors we do not need the 2m-dimensional

eigenvectors xj ’s of N, but the previous calculations can be used.
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The SBM
β
k model: edges are retained with prob. β

This is in accord with the fact, that in the k = 1 case
(Erdős–Rényi model), λ(N) = c and β = 1

c
; special case of

the percolation threshold 1
µ1
, see Newman, M. E. J., Message

passing methods on complex networks, Proc. R. Soc. London
A (2023), when the complete graph is edge-percolated.

In the multiclass scenario, βi :=
c
µ2
i

are further phase

transitions, leading to i clusters, for i = 1, . . . , k0 until
µk0 ≥

√
c , but µk0+1 <

√
c .

This has relevance only if λmax(N) >
√
c , so eigenvalues of N

greater than
√
c give the phase transitions.

Since µ1 ≥ µ2 ≥ . . . , with larger β, larger number of clusters
can be detected.

SBMW
k is a generalization of the SBMβ

k model, where the
edges may have different edge-retention probability
(0 < wij ≤ 1 for the connected vertex-pair i , j); e.g.,
transmission of the infection depends on the randomly coupled
individuals. Then the eigenvalues of B = ND are used.
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Simulation

A random graph was generated on n = 900 nodes, with parameter
matrices R = diag( 35

107 ,
42
107 ,

30
107) and

C =




30 11.28 7.728
11.28 25 10.36
7.728 10.36 35




constructed so that the average degrees of the clusters be the
same, i.e., ca =

∑3
b=1 rbcab is the same for a = 1, 2, 3.

In the symmetric case, β2 = · · · = βk , so all these phase transitions
occur at the same time from the giant cluster to the k-cluster
scenario.
Multiple transitions are spectacular if the eigenvalues of B greater
than

√
c are separated from each other and from

√
c .
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β1 = c/µ2
1 < β = 0.183 < β2 = c/µ2

2

(a) Adjacency matrix. (b) Spectrum of matrix K.
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β = β2 = c/µ2
2 = 0.305

(c) Adjacency matrix. (d) Spectrum of matrix K.
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β2 = c/µ2
2 < β = 0.563 < β3 = c/µ2

3

(e) Adjacency matrix. (f) Spectrum of matrix K.
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β = 1 ≈ c/µ2
3

(g) Adjacency matrix. (h) Spectrum of matrix K.
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Quantum chemistry application: Real eigenvalues of
the B matrix of the water molecule, n = 133,

m = 2210

Nodes: wave functions (electronic networks).
Edge-weights: wij = h2ij (i 6= j), where H = (hij) Hamiltonian.

0.0

0.1

0.2

0.3

0.4

0.5

2024



7 clusters obtained by the k-means algorithm
applied to the out-vectors corresponding to the 7

leading B-eigenvectors
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4 clusters obtained by the k-means algorithm
applied to the out-vectors corresponding to the 7

leading B-eigenvectors
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3 clusters obtained by the k-means algorithm
applied to the out-vectors corresponding to the 7

leading B-eigenvectors
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