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Preliminaries Examples Results

Motivation

To recover the structure of large edge-weighted graphs,
for example: metabolic, social, economic, or communication
networks.

To find a clustering (partition) of the vertices such that the
induced subgraphs on them and the bipartite subgraphs
between any pair of them exhibit regular behavior of
information flow within or between the vertex subsets.

To estimate the constants bounding the volume regularity of
the cluster pairs by means of spectral gaps and classification
properties of eigenvectors.
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Notation

G = (V ,W) edge-weighted graph, |V | = n, W: weight matrix
wij = wji ≥ 0 (i 6= j) and wii = 0 (i=1,. . . ,n).

di :=
∑n

j=1 wij (i = 1, . . . , n) generalized degrees

d := (d1, . . . , dn)T : degree vector,
√

d := (
√

d1, . . . ,
√

dn)T

D := diag (d1, . . . , dn): degree matrix

w.l.g.
∑n

i=1

∑n
j=1 wij = 1 will be supposed
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Laplacian and modularity matrices

L = D−W: Laplacian
LD = I−D−1/2WD−1/2: normalized Laplacian
Spec (LD) ∈ [0, 2]
If G is connected (W is irreducible), then 0 is a single eigenvalue
with corresponding unit-norm eigenvector

√
d.

BD = D−1/2WD−1/2 −
√

d
√

d
T

: normalized modularity matrix
Spec (BD) ∈ [−1, 1]
1 cannot be an eigenvalue if G is connected, and 0 is always an
eigenvalue with eigenvector

√
d.

The spectral gap of G : 1− ‖BD‖ (spectral norm)
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Volumes, weighted cuts, and mixing

Vol(U) =
∑

i∈U di : volume of U ⊂ V
w(X ,Y ) =

∑
i∈X

∑
j∈Y wij : weighted cut between X ,Y ⊂ V

Lemma

Expander Mixing Lemma for weighted graphs: Supposing
Vol(V ) = 1, for all X ,Y ⊂ V ,

|w(X ,Y )− Vol(X )Vol(Y )| ≤ ‖BD‖ ·
√
Vol(X )Vol(Y )

For simple graphs: Alon, Combinatorica (1986)
Hoory, Linial, Widgerson, Bulletin of AMS (2006)
For edge-weighted graphs: Chung, Graham, Random structures
and algorithms (2008), in context of quasi-random properties.
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What if the gap is not at the ends of the spectrum?

We want to partition the vertices into clusters so that a relation
formulated in the Lemma (1-cluster case) between the
edge-densities and volumes of the cluster pairs would hold.
We will use a slightly modified version of the volume regularity’s
notion introduced by Alon, Coja-Oghlan, Han, Kang, Rödl, and
Schacht, Siam J. Comput. (2010):

Definition

Let G = (V ,W) be a weighted graph with Vol(V ) = 1. The
disjoint pair (A,B) is α-volume regular if for all X ⊂ A, Y ⊂ B we
have

|w(X ,Y )− ρ(A,B)Vol(X )Vol(Y )| ≤ α
√
Vol(A)Vol(B)

where ρ(A,B) = w(A,B)
Vol(A)Vol(B) is the relative inter-cluster density of

(A,B).
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Euclidean representation

Vertex representatives r1, . . . , rn ∈ Rk−1:
row vectors of the n × (k − 1) matrix
X = (D−1/2u1, . . . ,D−1/2uk−1),
where u1, . . . ,uk−1 are unit-norm eigenvectors belonging to the
structural (well separated from 0) eigenvalues of BD

Weighted k-variance of the (k − 1)-dimensional representatives:

S2
k (X) = min

Pk=(V1,...,Vk )

k∑
a=1

∑
j∈Va

dj‖rj − ca‖2

where ca = 1
Vol(Va)

∑
j∈Va

djrj
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Generalized random graphs

Ideal k-cluster case: given the partition (V1, . . . ,Vk) of V ,
vertices i ∈ Va and j ∈ Vb are connected with probability pab,
independently of each other, 1 ≤ a, b ≤ k.
Generalized random graphs are edge-weighted graphs with a
special block-structure burdened with random noise =⇒ Spectral
characterization in B, Discrete Math. (2008):

If k is fixed and n→∞ such that |Vi |
n ≥ c (i = 1, . . . , k) with

some 0 < c ≤ 1
k , then there exists a positive number 0 < θ ≤ 1,

independent of n, such that for every 0 < τ < 1/2

there are exactly k − 1 eigenvalues of BD greater than
θ− n−τ , while all the others are at most n−τ in absolute value,

the k-variance of the vertex representatives constructed by the
k − 1 transformed structural eigenvectors is O(n−2τ ),

with any “small”α > 0, the Vi ,Vj pairs are α-volume regular,

almost surely.
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10-fold blow up
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20-fold blow up
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30-fold blow up
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40-fold blow up
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50-fold blow up



Preliminaries Examples Results

60-fold blow up



Preliminaries Examples Results

70-fold blow up
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80-fold blow up
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90-fold blow up
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100-fold blow up



Preliminaries Examples Results

Before sorting and clustering the vertices
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Generalized quasirandom graphs

Generalized quasi-random graph sequences are introduced in
Lovász and T. Sós, J. Comb. Theory (2008):
given a model graph graph H on k vertices (both vertices and
edges have weights), (Gn) is H-quasirandom if Gn →WH as
n→∞ (left-convergence).
Left-convergence also implies convergence of the spectra =⇒
generalized quasirandom graphs have the same spectral properties
as generalized random graphs.

The spectrum itself does not carry enough information for the
cluster structure, but together with some classification properties
of the eigenvectors it does.
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Purpose

For general deterministic edge-weighted graphs we’ll prove that the
existence of k − 1 eigenvalues of BD separated from 0 by ε, is
indication of a k-cluster structure, while the eigenvalues
accumulating around 0 are responsible for the pairwise regularities.

The clusters themselves can be recovered by applying the k-means
algorithm for the vertex representatives obtained by the
eigenvectors corresponding to the structural eigenvalues.

Our theorem bounds the volume regularity’s constants of the
different cluster pairs by means of ε and the k-variance of the
vertex representatives (based on the structural eigenvectors).
Estimates for the intra-cluster densities are also given.
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Result

Theorem

G = (V ,W) is edge-weighted graph on n vertices, Vol(V ) = 1
and there are no dominant vertices: di = Θ(1/n), i = 1, . . . , n as
n→∞. The eigenvalues of BD in decreasing absolute values are:

(1) > |ρ2| ≥ · · · ≥ |ρk | > ε ≥ |ρi |, i ≥ k + 1.

The partition (V1, . . . ,Vk) of V is defined so that it minimizes the
weighted k-variance s2 = S2

k (X) of the vertex representatives.
Suppose that there is a constant 0 < c ≤ 1

k such that |Vi | ≥ cn,

i = 1, . . . , k. Then the (Vi ,Vj) pairs are O(
√

2ks + ε)-volume
regular (i 6= j) and for the clusters Vi (i = 1, . . . , k) the following
holds: for all X ,Y ⊂ Vi ,
|w(X ,Y )− ρ(Vi )Vol(X )Vol(Y )| = O(

√
2ks + ε)Vol(Vi ),

where ρ(Vi ) = w(Vi ,Vi )
Vol2(Vi )

is the relative intra-cluster density of Vi .
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Proof

By an easy analysis of variance argument it follows that

s2 =
k∑

i=1

dist2(ui ,F ),

where F = Span {D1/2z1, . . . ,D1/2zk} with the so-called
normalized partition vectors z1, . . . , zk of coordinates

zji = 1√
Vol(Vi )

if j ∈ Vi and 0, otherwise (i = 1, . . . , k).

The vectors D1/2z1, . . . ,D1/2zk form an orthonormal system.
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By B, Tusnády, Discrete Math (1994), we can find another
orthonormal system v1, . . . , vk ∈ F such that

s2 ≤
k∑

i=1

‖ui − vi‖2 ≤ 2s2.

We approximate the matrix D−1/2WD−1/2 =
∑n

i=1 ρiuiu
T
i

(ρ1 = 1, u1 =
√

d)
by the rank k matrix

∑k
i=1 ρiviv

T
i with the following accuracy (in

spectral norm):∥∥∥∥∥
n∑

i=1

ρiuiu
T
i −

k∑
i=1

ρiviv
T
i

∥∥∥∥∥ ≤
k∑

i=1

|ρi |·
∥∥uiu

T
i − viv

T
i

∥∥+

∥∥∥∥∥
n∑

i=k+1

ρiuiu
T
i

∥∥∥∥∥
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This is further estimated from above with

k∑
i=1

sinαi + ε ≤
k∑

i=1

‖ui − vi‖+ ε ≤
√

2ks + ε

where αi is the angle between ui and vi , and for it,

sin
αi

2
=

1

2
‖ui − vi‖

holds, i = 1, . . . , k.
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Based on these considerations and relation between the cut norm
and the spectral norm, the densities to be estimated in the defining
formula of volume regularity can be written in terms of stepwise
constant vectors in the following way.
yi := D−1/2vi is stepwise constants on the partition (V1, . . . ,Vk),
i = 1, . . . , k

=⇒
∑k

i=1 ρiyiy
T
i is a symmetric block-matrix on k × k blocks

belonging to the above partition of the vertices.

Let w̃ab denote its entries in the (a, b) block (a, b = 1, . . . , k).
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The rank k approximation of the matrix W is performed with the
following accuracy of the perturbation E:

‖E‖ =

∥∥∥∥∥W −D(
k∑

i=1

ρiyiy
T
i )D

∥∥∥∥∥ =

=

∥∥∥∥∥D1/2(D−1/2WD−1/2 −
k∑

i=1

ρiviv
T
i )D1/2

∥∥∥∥∥
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Consequently, the entries of W – for i ∈ Va, j ∈ Vb – can be
decomposed as

wij = didj w̃ab + ηij

where the cut norm of the n × n symmetric error matrix E = (ηij)
restricted to Va × Vb (otherwise it contains entries all zeroes) and
denoted by Eab, is estimated as follows:

‖Eab‖� ≤ C
√
Vol(Va)

√
Vol(Vb)(

√
2ks + ε),

where the constant C does not depend on n (due to the balancing
conditions on the vertex degrees and cluster sizes).
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Summarizing, for a, b = 1, . . . , k and X ⊂ Va, Y ⊂ Vb:

|w(X ,Y )− ρ(Va,Vb)Vol(X )Vol(Y )| =∣∣∣∣∣∣
∑
i∈X

∑
j∈Y

(didj w̃ab + ηab
ij )− Vol(X )Vol(Y )

Vol(Va)Vol(Vb)

∑
i∈Va

∑
j∈Vb

(didj w̃ab + ηab
ij )

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i∈X

∑
j∈Y

ηab
ij −

Vol(X )Vol(Y )

Vol(Va)Vol(Vb)

∑
i∈Va

∑
j∈Vb

ηab
ij

∣∣∣∣∣∣
≤ 2C (

√
2ks + ε)

√
Vol(Va)Vol(Vb)

that gives the required statement both in the a 6= b and a = b case
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Remark

The case k = 2 was treated separately in
B, International Journal of Combinatorics, 2011:

Under the same conditions and with notations |ρ2| = θ, |ρ3| = ε,

the (V1,V2) pair is O
(√

1−θ
1−ε

)
-volume regular.

This also follows from the k ≥ 2 case, as in B, Tusnády, Discrete
Math (1994) we proved that

S2
2 (D−1/2u2) = O

(
1− θ
1− ε

)
.
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