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Outline

Motivation:

to find relatively small number of groups of objects, belonging
to rows and columns of a contingency table which exhibit
homogeneous behavior with respect to each other and do not
differ significantly in size;
to make inferences on the separation that can be achieved for
a given number of clusters, minimum normalized bicuts are
investigated and related to the SVD of the correspondence
matrix.

Topics:

singular value decomposition (SVD) of a correspondence
matrix;
SVD and normalized bicuts of the contingency table;
volume-regular row–column clusters pairs;
application and possible extension to directed graphs.
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We partly extend the result of
Butler, S., Using discrepancy to control singular values for
nonnegative matrices, Lin. Alg. Appl. (2006)
for estimating the discrepancy of a contingency table by the
second largest singular value of the normalized table
(one-cluster, rectangular case),

and the result of
B, M., Modularity spectra, eigen-subspaces, and structure of
weighted graphs, European Journal of Combinatorics (2013)
for estimating the constant of volume-regularity by the
structural eigenvalues and the distances of the corresponding
eigen-subspaces of the normalized modularity matrix of an
edge-weighted graph.
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SVD of contingency tables and correspondence
matrices

C = (cij): n ×m contingency table, cij ≥ 0.
Row set: Row = {1, . . . , n}
Column set: Col = {1, . . . ,m}

drow ,i =
m∑

j=1

cij (i = 1, . . . , n)

dcol ,j =
n∑

i=1

cij (j = 1, . . . ,m)

Drow = diag (drow ,1, . . . , drow ,n) Dcol = diag (dcol ,1, . . . , dcol ,m).



Outline SVD of contingency tables and correspondence matrices Normalized two-way cuts of contingency tables Regular row-column cluster pairs Application and further directions

Representation

For a given integer 1 ≤ k ≤ min{n,m}, we are looking for
k-dimensional representatives r1, . . . , rn of the rows and c1, . . . , cm

of the columns such that they minimize the objective function

Qk =
n∑

i=1

m∑
j=1

cij‖ri − cj‖2 (1)

subject to

n∑
i=1

drow ,i ri r
T
i = Ik ,

m∑
j=1

dcol ,jcjc
T
j = Ik . (2)

When minimized, the objective function Qk favors k-dimensional
placement of the rows and columns such that representatives of
highly associated rows and columns are forced to be close to each
other. As we will see, this is equivalent to the problem of
correspondence analysis.
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Solution

X := (x1, . . . , xk) = (rT1 , . . . , r
T
n )T n × k

Y := (y1, . . . , yk) = (cT
1 , . . . , c

T
m)T m × k

Qk = 2k − tr (D
1/2
rowX)T Ccorr (D

1/2
col Y)→ min

subject to
XT DrowX = Ik , YT DcolY = Ik ,

where Ccorr = D
−1/2
row CD

−1/2
col : correspondence matrix (normalized

contingency table) belonging to the table C.
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Representation theorem

Let Ccorr =
∑r

i=1 siviu
T
i be SVD, where r ≤ min{n,m} is the rank

of Ccorr , or equivalently (since there are not identically zero rows or
columns), the rank of C and 1 = s1 ≥ s2 ≥ · · · ≥ sr > 0.
v1 = (

√
drow ,1, . . . ,

√
drow ,n)T and u1 = (

√
dcol ,1, . . . ,

√
dcol ,m)T .

Let k ≤ r be a positive integer such that sk > sk+1. Then

min Qk = 2k −
k∑

i=1

si

and it is attained with X∗ = D
−1/2
row (v1, . . . , vk) and

Y∗ = D
−1/2
col (u1, . . . ,uk).
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Normalized bicuts of contingency tables

Given an integer k (0 < k ≤ r), we want to simultaneously
partition the rows and columns into disjoint, nonempty subsets

Row = R1 ∪ · · · ∪ Rk , Col = C1 ∪ · · · ∪ Ck

such that the cuts c(Ra,Cb) =
∑

i∈Ra

∑
j∈Cb

cij (a, b = 1, . . . , k)
between the row-column cluster pairs be as homogeneous as
possible.
The normalized two-way cut of C given the above k-partitions
Prow = (R1, . . . ,Rk) and Pcol = (C1, . . . ,Ck) and the collection of
signs σ:

νk(Prow ,Pcol , σ) =

k∑
a=1

k∑
b=1

(
1

Vol(Ra)
+

1

Vol(Cb)
+

2σabδab√
Vol(Ra)Vol(Cb)

)
c(Ra,Cb),

where
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Vol(Ra) =
∑
i∈Ra

drow ,i , Vol(Cb) =
∑
j∈Cb

dcol ,j ,

δab is the Kronecker delta, σab = ±1, and σ = (σ11, . . . , σkk).
For the normalized bicut of C:

min
Prow ,Pcol ,σ

νk(Prow ,Pcol , σ) ≥ 2k −
k∑

i=1

si .
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Special case: edge-weighted graph

W: symmetric n × n edge-weigh matrix.
D = Drow = Dcol , Wcorr = D−1/2WD−1/2: normalized modularity
matrix, I−Wcorr : normalized Laplacian.

When the k − 1 largest absolute value eigenvalues of Wcorr

are all positive: ri = ci (i = 1, . . . , n = m). With the choice
σbb = 1 (b = 1, . . . , k), νk(Prow ,Pcol , σ) is twice the
normalized cut of the graph with respect to the k-partition
Prow = Pcol of the vertices. The normalized bicut favors
k-partitions with low inter-cluster edge-densities: community
structure.

When the k − 1 largest absolute value eigenvalues of the
normalized modularity matrix are all negative: ri = −ci and
the minimum of the normalized bicut is attained with the
choice σbb = −1 (b = 1, . . . , k). The normalized bicut favors
k-partitions with low intra-cluster edge-densities:
anticommunity structure.
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Regular row-column cluster pairs

The Expander Mixing Lemma for edge-weighted graphs naturally
extends to this situation (Butler): for all R ⊂ Row and C ⊂ Col

|c(R,C )− Vol(R)Vol(C )| ≤ s2
√
Vol(R)Vol(C ),

where s2 is the largest but 1 singular value of Ccorr .
Since the spectral gap of Ccorr is 1− s2, in view of the above
Expander Mixing Lemma, ’large’ spectral gap is an indication of
’small’ discrepancy: the weighted cut between any row and column
subset of the contingency table is near to what is expected in a
random table.
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Volume-regular cluster pairs

We extend the notion of discrepancy to volume-regular pairs.

Definition

The row–column cluster pair R ⊂ Row , C ⊂ Col of the
contingency table C of total volume 1 is γ-volume regular if for all
X ⊂ R and Y ⊂ C the relation

|c(X ,Y )− ρ(R,C )Vol(X )Vol(Y )| ≤ γ
√
Vol(R)Vol(C )

holds, where ρ(R,C ) = c(R,C)
Vol(R)Vol(C) is the relative inter-cluster

density of the row–column pair R,C .

We will show that for given k, if the clusters are formed via
applying the weighted k-means algorithm for the optimal row- and
column representatives, respectively, then the so obtained
row–column cluster pairs are homogeneous in the sense that they
form equally dense parts of the contingency table.
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Weighted k-variance

The weighted k-variance of the k-dimensional row representatives
is defined by

S2
k (X) = min

(R1,...,Rk)

k∑
a=1

∑
j∈Ra

drow ,j‖rj − r̄a‖2,

where r̄a = 1
Vol(Ra)

∑
j∈Ra

drow ,jrj is the weighted center of cluster

Ra (a = 1, . . . , k). Similarly, the weighted k-variance of the
k-dimensional column representatives is

S2
k (Y) = min

(C1,...,Ck)

k∑
a=1

∑
j∈Ca

dcol ,j‖cj − c̄a‖2,

where c̄a = 1
Vol(Ca)

∑
j∈Ca

dcol ,jcj is the weighted center of cluster

Ca (a = 1, . . . , k). Observe, that the trivial vector components can
be omitted, and the k-variance of the so obtained
(k − 1)-dimensional representatives will be the same.
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Theorem

Theorem

Let C be a contingency table of n-element row set Row and
m-element column set Col, with row- and column sums
drow ,1, . . . , drow ,n and dcol ,1, . . . , dcol ,m, respectively. Suppose that∑n

i=1

∑m
j=1 cij = 1 and there are no dominant rows and columns:

drow ,i = Θ(1/n), (i = 1, . . . , n) and dcol ,j = Θ(1/m),
(j = 1, . . . ,m) as n,m→∞. Let the singular values of Ccorr be

1 = s1 > s2 ≥ · · · ≥ sk > ε ≥ si , i ≥ k + 1.

The partition (R1, . . . ,Rk) of Row and (C1, . . . ,Ck) of Col are
defined so that they minimize the weighted k-variances S2

k (X) and
S2

k (Y) of the row and column representatives. Suppose that there
are constants 0 < K1,K2 ≤ 1

k such that |Ri | ≥ K1n and
|Ci | ≥ K2m (i = 1, . . . , k), respectively. Then the Ri ,Cj pairs are
O(
√

2k(Sk(X)Sk(Y)) + ε)-volume regular (i , j = 1, . . . , k).
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Application

We applied the biclustering algorithm to find simultaneously
clusters of stores and products based on their consumption in
TESCO stores. We found 3 clusters of the stores in which the
consumption of the products belonging to the same cluster was
homogeneous with consumption-density c(Ra,Cb)

Vol(Ra)Vol(Cb)
between

store-cluster Ra and product-cluster Cb (a, b = 1, . . . , 3). After
sorting the rows and columns according to their cluster
memberships, we plotted the entries

cij

drow,idcol,j
(there was one

exceptional store-cluster which contained only 3 stores, but the
others could be identified with groups of smaller and larger stores
associated with product groups of high consumption-density).
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Directed graphs

W: n × n (not symmetric) weight matrix of a directed graph,
where wij is the weight of the i → j edge (i , j = 1, . . . , n; i 6= j),
and wii = 0 (i = 1, . . . , n).
The generalized in- and out-degrees:

dout,i =
n∑

j=1

wij (i = 1, . . . , n)

din,j =
n∑

i=1

wij (j = 1, . . . , n).

Din = diag (din,1, . . . , din,n) and Dout = diag (dout,1, . . . , dout,n)
are the in- and out-degree matrices. Suppose that there are no
sources and sinks (i.e. no zero out- and in-degrees).

Wcorr = D
−1/2
out WD

−1/2
in ,

and its SVD is used to minimize the normalized bicut of W as a
contingency table.
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Regular in- and out-vertex cluster pairs

The Vin,Vout in- and out-vertex cluster pair of the directed graph
(with sum of the weights of directed edges 1) is γ-volume regular if
for all X ⊂ Vout and Y ⊂ Vin the relation

|w(X ,Y )−ρ(Vout ,Vin)Volout(X )Volin(Y )| ≤ γ
√
Volout(Vout)Volin(Vin)

holds, where the directed cut w(X ,Y ) is the sum the weights of
the X → Y edges,
Volout(X ) =

∑
i∈X dout,i , Volin(Y ) =

∑
j∈Y din,j , and

ρ(Vout ,Vin) = w(Vout ,Vin)
Volout(Vout)Volin(Vin)

is the relative inter-cluster density

of the out–in cluster pair Vout ,Vin. The clustering (Vin,1, . . . ,Vin,k)
and (Vout,1, . . . ,Vout,k) of the columns and rows – guaranteed by
the above theorem – corresponds to in- and out-clusters of the
same vertex set such that the directed information flow
Vout,a → Vin,b is as homogeneous as possible for all a, b = 1, . . . , k
pairs. Emigration–immigration patterns of countries.
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Thank you for your attention
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