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Preliminaries: VARMA(p, q) model

{Xt} is d-dimensional, weakly stationary, full rank process of 0
expectation.

Xt = α1Xt−1 + · · ·+αpXt−p + εt + β1εt−1 + . . .βqεt−q

{εt}: white noise with covariance matrix Σ > 0

α1, . . . ,αp and β1, . . . ,βq: d × d real matrices

α(z) = Id −α1z − · · · −αpzp AR polynomial that satisfies
the stability condition: |α(z)| 6= 0, ∀ |z | ≤ 1

β(z) = Id + β1z + · · ·+ βqzq MA polynomial that satisfies
the inverse stability (strict miniphase) condition:
|β(z)| 6= 0, ∀ |z | ≤ 1
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Wold representation

VARMA(p, q) model in short: α(z)Xt = β(z)εt

Xt = α−1(z)β(z)εt = k(z)εt =
∞∑
j=0

kjεt−j =
∞∑
j=0

k̃j ε̃t−j (1)

where k0 = Id , εt : innovation process,
k(z) =

∑∞
j=0 kjz

j : transfer function (z ≤ 1).
ε̃t : fundamental process, orthonormal white noise (its components
span the same innovation subspace as the components of εt).
k̃j and ε̃t are unique up to unitary transformation Q.
VARMA(p, q) is a special regular process (with rational spectral
density) this is why it has the Wold representation (1).
VAR(p): Xt = α1Xt−1 + · · ·+αpXt−p + εt , where the blue part
is the best linear prediction of Xt by its infinite past (which is a
p-lag long past now) and the red part is the orthogonal component
of the projection (innovation).
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General regular processes of rank r ≤ d

Time domain:
Wold representation: Xt =

∑∞
j=0 ajηt−j =

∑∞
j=0 bjξt−j

a0 = Id , aj : d × d
{ηt} ∼WN(Σ): innovation process
bj : d × r
{ξt} ∼WN(Ir ): fundamental process

The components of ξt span the same r -dimensional innovation
subspace as the components of ηt . ξt is unique up to r × r unitary
transformation Q, akin to the matrices bjs.

r = rank of the innovation subspaces = (constant) rank of the
spectral density matrix
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Spectral factors

Frequency domain:

f(ω) =
1

2π
φ(ω)φ∗(ω) ω ∈ [0, 2π]

where φ(ω): minimum phase spectral factor, it has the Wold
coefficients bj in its one-sided Fourier expansion (it is an analytic
function, in a Hardy-2 space): φ(ω) =

∑∞
j=0 bje

−iωj (unique up to
unitary transformation Q).
φ can be analytically extended to the unit disc:

φ(ω) = Φ(e−iω), Φ(z) =
∞∑
j=0

bjz
j , |z | < 1.

Φ(z): maximal analytic matrix (φ and Φ are d × r matrices).
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Maximal analytic matrix

f(ω) =
1

2π
φ̃(ω)φ̃∗(ω), ω ∈ [0, 2π]

may give another admissible spectral factor of f with a one-sided
Fourier series, which is not minimum phase.

φ̃(ω) =
∞∑
j=0

b̃(j)e−ijω

with the sequence of matrices {b̃(j)}∞j=0 that is (entrywise) square
summable.
A minimum phase spectral factor is not easy to find, however in
the 1D case, there are constructions for it (see Lamperti).
An admissible spectral factor can be extended to the open unit disc
as well:

Φ̃(e−iω) := φ̃(ω), Φ̃(z) :=
∞∑
j=0

b̃(j)z j . |z | < 1.
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A d-dimensional stationary time series {Xt} is regular if and only if
it possesses any of the following properties.

In the frequency domain: it has an absolutely continuous
spectral measure with spectral density matrix of a.e. constant
rank r ≤ d that has an admissible spectral factor.

In the time domain: H−t (X) = H−t (η) = H−t (ξ) for all t ∈ Z,
where {ηt} is the unnormalized and {ξt} is the normalized
innovation process of {Xt}. Further, in the representation
Xt =

∑∞
j=0 a(j)ηt−j , a(0) = Id .

Also in the time domain: Xt can be written as a causal
MA(∞) process

Xt =
∞∑
j=0

b̃(j)ξ̃t−j , t ∈ Z, (2)

where {ξ̃t} is a WN(Ir ) sequence and
∑∞

j=0 ‖b̃(j)‖2F <∞.

Budapest 2022



H−t (X) ⊂ H−t (ξ̃), t ∈ Z

and consequently, H−∞(X) = ∩tH−t (X) = {0} too. So the process
{Xt} has no remote past, and therefore, it is regular.
However, here Xt is expanded not with its own innovations, and
the MA series is not capable for forecasting.

Φ(0) Φ∗(0) ≥ Φ̃(0) Φ̃∗(0)

in the sense that the difference between the left and right sides is a
positive semidefinite matrix.
This is why the matrix Φ belonging to the minimum phase spectral
factor φ is called maximal analytic matrix.
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Inner and outer functions

Relation between Φ and Φ̃: Φ̃(z) = Φ(z)Q(z), where the r × r
Q(z) is analytic in the open unit disc D, belongs to the Hardy class
H2

r×r , it is a.e. unitary on the unit circle, and Ir −Q(0)Q∗(0) ≥ 0.
Q(z): is an inner matrix function,
Φ(z): is an outer function,
Φ̃(z): is an admissible spectral factor.

The d × r matrix Φ(z), corresponding to the minimum phase
spectral factor, has the same rank r for any z ∈ D.

Processes with a rational spectral density are of the following kind:

VARMA (with rational spectral density and minimum phase
spectral factor is also rational),

Obey a state space model.

Obey a matrix fractional description.
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Causal VAR Models

Bolla, M., Ye, D., Wang, H., Ma, R., Frappier, V., Thompson, D.,
Donner, C., Baranyi, M., Abdelkhalek, F., Causal Vector
Autoregression Enhanced with Covariance and Order Selection
(arXiv: 2211.14203).
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VAR(p) models (p ≥ 1 is fixed integer)

Reduced form VAR(p) model:

Xt + M1Xt−1 + · · ·+ MpXt−p = Vt , t = p + 1, p + 2, . . . ,

where Vt is white noise, it is uncorrelated with
Xt−1, . . . ,Xt−p, it has zero expectation and covariance matrix
Σ (not necessarily diagonal, but positive definite), and the
matrices Mj satisfy the stability conditions. Vt : innovation.

Structural form SVAR(p) model:

AXt + B1Xt−1 + · · ·+ BpXt−p = Ut , t = p + 1, p + 2, . . . ,

where the structural shock Ut is uncorrelated with
Xt−1, . . . ,Xt−p, it has zero expectation with uncorrelated
components, i.e. with positive definite, diagonal covariance
matrix ∆. A is d × d upper triangular matrix with 1s along
its main diagonal; B1, . . . ,Bp are d × d matrices (Kilian,
Lütkepohl). One-to-one correspondence between them.
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VAR(p) models (continued)

Causal CVAR(p) unrestricted model: same equation as the
Structural, but here the ordering of the components follows a
causal ordering, given e.g. by an expert’s knowledge. This is a
recursive ordering along a

”
complete” DAG.

The causal effects are meant contemporaneously, and
reflected in the upper triangular structure of the matrix A.

Causal CVAR(p) restricted model: here an incomplete DAG
is built, based on partial correlations.
First we build an undirected graph: not connect i and j if the
partial correlation coefficient of Xi and Xj , eliminating the
effect of the other variables is 0 (theoretically), or less than a
threshold (practically). Then we use covariance selection to
ensure 0s in A in the no-edge positions.
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The unrestricted causal VAR(0) model

Recursive linear equations (Wermuth):
X ∼ Nd(0,Σ) is d-dimensional Gaussian random vector.

AX = U with U = (U1, . . . ,Ud)T ∼ Nd(0,∆),

where A is a d × d upper triangular matrix with 1s along its main
diagonal, otherwise it contains the negatives of the partial
regression coefficients aji ’s, when Xj is the target of a multivariate
linear regression with predictors {Xi : i > j}.
aji : path coefficient, statistical tests for its significance.
∆ = diag(δ1, . . . , δd): diagonal matrix with positive diagonal
entries, covariance matrix of the error term U (residual variances).
Taking the covariance matrix, we get

E[(AX)(AX)T ] = AΣAT = ∆.
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By the standard LDL (variant of the simple Cholesky)
decomposition of Σ−1 (Bolla et al., Acta Sci. Math. (Szeged) 85,
2019):

Σ−1 = L∆−1LT .

This decomposition of the positive definite matrix Σ−1 is unique,
where L = AT is lower triangular of entries 1s along its main
diagonal and ∆−1 is a diagonal matrix of entries all positive along
its main diagonal. By uniqueness, this A = LT and ∆ give the
solution to the original problem.
At this point, the ordering of the jointly Gaussian variables is not
relevant, since in any recursive ordering of them (encoded in A) a
Gaussian directed graphical model (in other words, a Gaussian
Bayesian network) can be constructed, where every variable is
regressed linearly with the higher index ones.
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Partial correlations (Gaussian case)

Let X = (X1, . . . ,Xd)T ∼ Nd(0,Σ) be a random vector, and let
V := {1, . . . , d} denote the index set of the variables, d ≥ 3.
Assume that Σ is positive definite, Σ−1 := (σij). Then

rXiXj |XV\{i,j} =
−σij

√
σiiσjj

i 6= j ,

where rXiXj |XV\{i,j} denotes the partial correlation coefficient
between Xi and Xj after eliminating the effect of the remaining
variables XV \{i ,j}. Further,

σii = 1/(Var(Xi |XV \{i}), i = 1, . . . , d

is the reciprocal of the conditional (residual) variance of Xi , given
the other variables XV \{i}.
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Partial regression coefficients (Gaussian case)

Consider the regression plane

E(Xi |XV \{i} = xV \{i}) =
∑

j∈V \{i}

βji ·V \{i}xj , j ∈ V \ {i},

where xj ’s are the coordinates of xV \{i}. Then we call the
coefficient βji ·V \{i} the partial regression coefficient of Xj when
regressing Xi with XV \{i}, j ∈ V \ {i}.

βji ·V \{i} = −σ
ij

σii
, j ∈ V \ {i} =⇒

βji ·V \{i} = rXiXj |XV\{i,j}

√
σjj

σii
= rXiXj |XV\{i,j}

√
Var(Xi |XV \{i})

Var(Xj |XV \{j})
.
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Undirected (Gaussian) graphical model

i ∼ j ⇔ σij 6= 0, i 6= j .

In practice: draw an edge if we can reject

H0 : rXiXj |XV\{i,j} = 0.

The following test uses the empirical partial correlation coefficient:

B := 1− (r̂XiXj |XV\{i,j})
2 =

|SV \{i ,j}| · |SV |
|SV \{i}| · |SV \{j}|

,

where S is the sample size (n) times the empirical covariance
matrix of the variables in the subscript (product-moments). We
reject H0 for large values of |t|, where under H0, the test statistic

t =
√

n − d ·
√

1

B
− 1 =

√
n − d ·

r̂XiXj |XV\{i,j}√
1− (r̂XiXj |XV\{i,j})

2

is distributed as Student’s t with n − d degrees of freedom.
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The unrestricted causal VAR(1) model

{Xt}: d-dimensional, weakly stationary process with real valued
components and covariance matrix function C(h),
h = 0,±1,±2, . . . ; C(−h) = CT (h). EXt = 0,
C(h) = EXtXT

t+h does not depend on t.
Recursive VAR(1) model:

AXt + BXt−1 = Ut , t = 1, 2, . . . ,

where the white noise random vector Ut is uncorrelated with Xt−1,
has zero expectation and covariance matrix ∆ = diag(δ1, . . . , δd).
The covariance matrix of (XT

t ,X
T
t−1)T :

C2 =

(
C(0) CT (1)
C(1) C(0)

)
.

It is symmetric and positive definite if the process is of full rank
regular (which means that its spectral density matrix is of full
rank) that is assumed in the sequel.
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It is well known that the inverse of C2, the so-called concentration
matrix K, has the block-matrix form(

C−1(1|0) −C−1(1|0)CT (1)C−1(0)

−C−1(0)C(1)C−1(1|0) C−1(0) + C−1(0)C(1)C−1(1|0)CT (1)C−1(0)

)
,

where C(1|0) = C(0)− CT (1)C−1(0)C(1) is the conditional
covariance matrix C(t|t − 1) of the distribution of Xt conditioned
on Xt−1; by weak stationarity, it does not depend on t either,
therefore it is denoted by C(1|0). Also, C2 is positive definite if
and only if both C(0) and C(1|0) are positive definite.
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Theorem

The parameter matrices A, B, and ∆ of the model equation can
be obtained by the block LDL decomposition of the (positive
definite) concentration matrix K (inverse of the covariance matrix
C2 of the 2d-dimensional Gaussian system (XT

t ,X
T
t−1)T ). If

K = LDLT is this (unique) decomposition with block-triangular
matrix L and block-diagonal matrix D, then they have the form

L =

(
AT Od×d

BT Id×d

)
, D =

(
∆−1 Od×d

Od×d C−1(0)

)
,

where the d × d upper triangular matrix A with 1s along its main
diagonal, the d × d matrix B, and the diagonal matrix ∆ of the
model equation can be retrieved from them.
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Algorithm (recursion)

Outer cycle (column-wise). For j = 1, . . . , d :
δ−1
j = kjj −

∑j−1
h=1 ljhδ

−1
h ljh

(with the reservation that δ−1
1 = k11);

Inner cycle (row-wise). For i = j + 1, . . . , d :

lij =

(
kij −

j−1∑
h=1

lihδ
−1
h ljh

)
δj (3)

and

ld+1,j =

(
kd+1,j −

j−1∑
h=1

ld+1,hδ
−1
h ljh

)
δj

(with the reservation that in the j = 1 case the summand is
zero), where kd+1,j for j = 1, . . . , d is d × 1 vector in the
bottom left block of K.

BT := (ld+1,1, . . . , ld+1,d) is d × d as ld+1,j is d × 1.
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Remark: nested structure

It is obvious that the above decomposition has a nested structure,
so for the first d rows of L, only its previous rows or preceding
entries in the same row enter into the calculation, as if we
performed the standard LDL decomposition of K.
Therefore, lij = aji for j = 1, . . . , d − 1, i = j + 1, . . . , d that are
the partial regression coefficients akin to those offered by the

standard LDL decomposition K = L̃D̃L̃
T

;

Consequently, the first d rows of L̃ and L are the same, and the
first d rows of D̃ and D are the same too.
When the process terminates after finding the first d rows of L, we
consider the blocks

”
en block” and get the matrix

BT = (ld+1,1, . . . , ld+1,d).

Budapest 2022



The restricted causal VAR(1) model

Assume that we have a causal ordering of the coordinates
X1, . . . ,Xd of X such that Xi can be the cause of Xj whenever
j < i . We can think of Xi s as the nodes of a graph in a directed
graphical model (Bayesian network) and their labeling corresponds
to a topological ordering of the nodes of the underlying directed
acyclic graph (DAG).
For example, when asset prices or log-returns of different assets or
currencies (on the same day) influence each other in a certain
(recursive) order, contemporaneously.
In the restricted cases, only certain asset prices influence some
others on a DAG, but not all possible directed edges are present. In
this case, a covariance selection technique can be initiated to
re-estimate the covariance matrix so that the partial regression
coefficients in the no-edge positions be zeros.
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Decomposable graph, triangulated (chordal),
junction tree, RZP (equivalent)

Definition

Let M be a symmetric or an upper triangular matrix of real entries.
We say that M has a reducible zero pattern (RZP) if mji = 0
(j < i) implies that for each h = 1, . . . , j − 1: either mhj = 0 or
mhi = 0 holds (or both hold).

In the adjacency matrix of a DAG, an RZP is present if and only if
there is no sink V configuration in the topological ordering of the
DAG. Under sink V configuration a triplet j → h← i is
understood, where i is not connected to j (h < j < i).
Indeed, in this case the DAG has a triplet h < j < i with mhi 6= 0,
mhj 6= 0, but mij = 0, in contrast to the Definition.
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If we also require that the so constructed DAG be Markov
equivalent to its undirected skeleton, then the DAG must not
contain sink V configuration. In this case, the positions of the zero
entries of Σ−1 are identical to the positions of the zero entries of
A in the VAR(0) model.
If such an ordering exists, it gives a special DAG which defines a
decomposable graph, the skeleton also triangulated, labeling
compatible with the so-called maximal cardinality search (MCS)
ordering, defines a possible (not necessarily unique) causal ordering
of the variables, and junction tree (JT) structure of the cliques
(maximal complete subgraphs).
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Junction Tree

The cliques C1, . . . ,Ck can be numbered so that Cj is the disjoint
union of Rj (residual) and of Sj (separator) with the following
property: there is an i∗ ∈ {1, . . . , j − 1} such that

Sj = Cj ∩ (∪j−1
i=1Ci ) = Cj ∩ Ci∗ .

This (not necessarily unique) Ci∗ is called parent clique of Cj ,
where S1 = ∅ and R1 = C1. Furthermore, if such an ordering is
possible, a version can be found in which any prescribed clique is
the first one. Also equivalently, any path between Ci and Cj

(i 6= j) contains Ci ∩ Cj . Note that the junction tree is indeed a
tree with nodes C1, . . . ,Ck and one less edges, that are the
separators S2, . . . ,Sk .
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Also note, that if an undirected graph is triangulated, then in a
convenient labeling of its nodes, its adjacency matrix has an RZP.
This so-called perfect ordering is obtainable, e.g. by the maximal
cardinality search (MCS) algorithm. In this ordering of the nodes,
a DAG can be constructed, the adjacency matrix of which has the
same RZP. In this way, a decomposable undirected graph can be
made directed.
At the beginning, no restrictions for the upper-diagonal entries of
A are made. In practice, we have a sample and all the
autocovariance matrices are estimated, consequently the resulting
A,B matrices are also estimated. Usually a statistical hypothesis
testing advances this procedure, during which it can be found that
certain partial correlations (closely related to the entries of K) do
not significantly differ from zero.
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Covariance Selection

Then we naturally want to introduce zeros for the corresponding
entries of A. The covariance selection (Dempster) is improved:

Proposition

The upper triangular matrix A of the VAR(1) model has an RZP if
and only if the upper left d × d block of K = C−1

2 has an RZP.
Moreover, the zero entries of A are exactly in the same positions as
the zero entries of the upper diagonal part of the upper left block
of K.

The proof follows from Equation (3).
Fixing the zero entries in the left upper block of K, we re-estimate
the matrix C2 that means a product-moment estimate (MLE in the
RZP model).
Product moments are calculated only for the cliques and separators
(subsets) that decreases computational complexity.
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Higher order causal VAR models

The above model is further generalized to the VAR(p) model
(p ≥ 1):

AXt + B1Xt−1 + · · ·+ BpXt−p = Ut , t = p + 1, p + 2, . . . ,

where the white noise term Ut is uncorrelated with
Xt−1, . . . ,Xt−p, it has zero expectation and covariance matrix
∆ = diag(δ1, . . . , δd). A is d × d upper triangular matrix with 1s
along its main diagonal; whereas, B1, . . . ,Bp are d × d matrices.
Here we have to perform the block Cholesky decomposition of the
inverse covariance matrix (concentration matrix) K of Cp+1,
covariance matrix of the stacked vector (XT

t ,X
T
t−1, . . . ,X

T
t−p)T .
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Estimation of the parameter matrices

Theorem

The parameter matrices A, B1, . . . ,Bp and ∆ of the model
equation can be obtained by the block LDL decomposition of the
(positive definite) concentration matrix K. If K = LDLT is this
(unique) decomposition with block-triangular matrix L and
block-diagonal matrix D, then they have the form

L =

(
AT Od×pd

BT Ipd×pd

)
, D =

(
∆−1 Od×pd

Opd×d C−1
p

)
,

where the d × d upper triangular matrix A with 1s along its main
diagonal, the d × pd matrix B = (B1 . . .Bp) (transpose of BT ,
partitioned into blocks) and the diagonal matrix ∆ of the model
equation can be retrieved from them.
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Restricted causal VAR(p) models

Restricted cases can be treated similarly as in the p = 1 case. Here
too, the existence of an RZP in the DAG on p nodes is equivalent
to the existence of an RZP in the left upper d × d corner of the
concentration matrix K = C−1

p+1. The selection of p is an issue in
the usual (not causal) VAR models too. However, this problem
needs statistical hypothesis testing, akin to the test of the partial
correlations.
Since the conditioning set changes from equation to equation, it is
easier to use the block LDL decompositions here, without the
exact meaning of the coefficients.
Covariance selection can be done similarly, but here zero entries of
the left upper d × d block of C−1

p+1 provide the zero entries of A.
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Application to financial data (Akbilgic, O. et al.)

Daily relative returns of 8 different asset prices, spanning 534
trading days (nearly stationary and Gaussian).
A DAG was constructed by making the undirected graph on 8
nodes directed. The undirected graph was made by testing
statistical hypotheses for the partial correlations of the pairs of the
variables conditioned on all the others. As the test statistic is
increasing in the absolute value of the partial correlation in
question, a threshold 0.04 for the latter one was used.
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RZP

Since the graph was triangulated, with the MCS algorithm, we
were able to label the nodes so that the adjacency matrix of this
undirected graph had an RZP:

1 : NIK (stock market return index of Japan),
2 : EU (MSCI European index),
3 : ISE (Istanbul stock exchange national 100 index)
4 : EM (MSCI emerging markets index),
5 : BVSP (stock market return index of Brazil),
6 : DAX (stock market return index of Germany),
7 : FTSE (stock market return index of UK),
8 : SP (Standard & poor’s 500 return index).
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Relative returns

Log asset price Xt = log Pt .
Differenced log asset price:

Zt = Xt − Xt−1 = log
Pt

Pt−1
= log

(
1 +

Pt − Pt−1

Pt−1

)
≈ Pt − Pt−1

Pt−1

which is called log return (or simply return) for day t. This is close

to the relative return Pt−Pt−1

Pt−1
if the price does not change much

from one day to the next one, relatively to the previous price.
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Undirected and directed graphs (path coefficients)

NIK

EU

ISE

EM

BVSP

DAX

FTSE

SP

-0.819

0.208

-0.042

-0.027

-0.378

-0
.5

3

-0.939

0.165

-0
.1

67

-0.316-0.148

-0
.3

42

-0.118

-0.246

0.1

-0.013

-0.273
-0.642

-0.81

-0.234
-0.61

NIK

EU

ISE

EM

BVSP

DAX

FTSE

SP
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The unrestricted VAR(p) model, p = 1, 2, 3, 4, 5

First we run the unrestricted VAR(p) algorithm with
p = 1, 2, 3, 4, 5 and found that the A matrices do not change much
with increasing p, akin to B1. The B2, ..,B5 matrices have
relatively

”
small” entries.

Consequently, contemporaneous effects and one-day lags are the
most important.
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The restricted causal VAR(1) model

We want to introduce structural zeros into the matrix A. Now the
matrix C−1(1|0), the left upper 8× 8 corner of C−1

2 is used for
covariance selection.
The JT structure has the following cliques and separators:

C1 = {BVSP,DAX,EM,FTSE,ISE,SP}
C2 = {BVSP,DAX,EU,FTSE,ISE}
C3 = {BVSP,EM,NIK}
S2 = {BVSP,DAX,FTSE,ISE}
S3 = {BVSP,EM},

where the parent clique of both C2 and C3 is C1.
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Covariance selection with lag 1

The lag 1 variables Xt−1,1, . . . ,Xt−1,d are included too. The new
cliques and separators are

C ′j := Cj ∪ {Xt−1,1, . . . ,Xt−1,d}, j = 1, . . . , k

S ′j := Sj ∪ {Xt−1,1, . . . ,Xt−1,d}, j = 2, . . . , k.

The estimate of the 2d × 2d K, inverse of C2 is:

K̂ = (n − 1)


k∑

j=1

[S−1
C ′j

]2d −
k∑

j=2

[S−1
S ′j

]2d

 ,

where the matrix SC ′ is the product-moment estimate based on
the n − 1 element serially correlated sample and [MC ′ ]

2d denotes
the 2d × 2d matrix comprising the entries of the larger 2d × 2d
matrix M in the |C ′| × |C ′| block corresponding to C ′, and
otherwise zeros. By the properties of the LDL decomposition,
these zeros go into zeros of A.
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A matrix of the restricted causal VAR(1) model

NIK EU ISE EM BVSP DAX FTSE SP
NIK 1 0 0 -0.819 0.208 0 0 0
EU 0 1 -0.042 0 -0.027 -0.378 -0.529 0
ISE 0 0 1 -0.939 0.165 -0.168 -0.316 -0.148
EM 0 0 0 1 -0.342 -0.118 -0.246 0.099

BVSP 0 0 0 0 1 -0.013 -0.273 -0.642
DAX 0 0 0 0 0 1 -0.810 -0.234

FTSE 0 0 0 0 0 0 1 -0.610
SP 0 0 0 0 0 0 0 1

Budapest 2022



B matrix of the restricted causal VAR(1) model

NIK−1 EU−1 ISE−1 EM−1 BVSP−1 DAX−1 FTSE−1 SP−1

NIK 0.181 -0.179 -0.086 0.084 0.074 -0.006 -0.115 -0.266
EU -0.013 0.121 -0.005 0.0304 -0.013 -0.042 -0.097 0.000
ISE 0.068 0.281 -0.066 0.248 -0.294 -0.057 0.012 -0.147
EM -0.002 -0.057 -0.017 0.107 -0.091 -0.095 0.089 -0.109

BVSP -0.014 0.070 0.014 -0.104 0.139 -0.149 0.119 -0.083
DAX -0.003 0.202 -0.034 -0.005 -0.035 -0.047 -0.067 -0.067

FTSE 0.029 -0.017 -0.011 0.042 -0.113 0.214 0.081 -0.264
SP 0.042 0.261 -0.026 0.012 -0.003 -0.071 -0.285 0.124
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Time domain

{Xt}: d-dimensional, weakly stationary time series with real
components and autocovariance matrices C(h), C(−h) = CT (h),
h ∈ Z.
Cn: covariance matrix of [XT

1 , . . . ,X
T
n ]T ∈ Rnd :

Cn :=


C(0) C(1) C(2) · · · C(n − 1)

CT (1) C(0) C(1) · · · C(n − 2)

CT (2) CT (1) C(0) · · · C(n − 3)
...

...
...

. . .
...

CT (n − 1) CT (n − 2) CT (n − 3) · · · C(0)

 .

This is a symmetric, positive semidefinite block Toeplitz matrix,
the (i , j) block of which is C(j − i).
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Frequency domain

Denoting by C(h) = [cij(h)] the d × d autocovariance matrices
(C(−h) = CT (h), h ∈ Z) in the time domain, assume that their
entries are absolutely summable, i.e.,

∑∞
h=0 |cpq(h)| <∞ for

p, q = 1, . . . , d .
Then, the self-adjoint, positive semidefinite spectral density matrix
f(ω) exists in the frequency domain, and it is defined by

f(ω) =
1

2π

∞∑
h=−∞

C(h)e−ihω, ω ∈ [0, 2π].

We consider it at the Fourier frequencies.

Budapest 2022



Theorem

Let {Xt} be d-dimensional weakly stationary time series of real
components. For odd n = 2k + 1, consider X1, . . . ,Xn with the
block Toeplitz matrix Cn; further, the Fourier frequencies ωj = 2πj

n
for j = 0, . . . , n − 1. Let

Dn = diag(Spec f(0), Spec f(ω1), . . . , Spec f(ωk),

Spec f(ωk), . . . , Spec f(ω1)).

Here Spec contains the eigenvalues of the affected matrix in
non-increasing order if not otherwise stated. (The duplication is
due to the fact that f(ωj) = f(ωn−j), j = 1, . . . , k, for real time
series). Then, with the modal matrix U of the

”
close” block

circulant matrix,

UTCnU− 2πDn → O, n→∞,

i.e., the entries of the matrix UTCnU− 2πDn tend to 0 uniformly
as n→∞.
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Consequence: Complex PCA

W: nd × nd matrix containing the orthonormal eigenvectors wj (of

complex coordinates) of the block circulant matrix C
(s)
n in its

columns.
Let Z = (ZT

1 , . . . ,Z
T
n )T denote the random vector obtained by

Z = W∗X.

Its (complex) components are also uncorrelated and EZZ∗ ∼ 2πDn

again. Instead, we consider the blocks Zjs of it, and perform a

”
partial principal component transformation” (in d-dimension) of

them. Let w1j , . . . ,wdj be the columns of W corresponding to the
coordinates of Zj . Then by the block nature of the eigenvectors:

Zj =
1√
n

(V∗j ⊗ r∗)X,

where r∗ = (1, ρ−1
j , ρ−2

j , . . . , ρ
−(n−1)
j ) and Vj is the d × d unitary

matrix in the spectral decomposition Mj = VjΛjV
∗
j .
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Inverse Discrete Fourier Transform

The main Theorem implies that

E(VjZj)(VjZj)
∗ = VjΛjV

∗
j = Mj .

At the same time,

VjZj =
1√
n

Vj(V∗j ⊗ r∗)X =
1√
n

(Id ⊗ r∗)X

=
1√
n

n∑
t=1

Xte−itωj , j = 1, . . . , n.

This is the finite DFT of X1, . . . ,Xn. It is also in accord with the
definition of the orthogonal increment process {Zω} of which
VjZj ∼ Zωj is the discrete analogue. Also, Z1, . . . ,Zn are
asymptotically pairwise orthogonal akin to V1Z1, . . . ,VnZn.
Further,

E(VjZj)(VjZj)
∗ ∼ 2πf(ωj),

and it is in accord with the fact that

EZjZ
∗
j ∼ 2π diag Spec f(ωj), j = 1, . . . , n.
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Low rank approximation of the process

To find the best k-rank approximation of the weakly stationary,
regular d-dimensional process, the d-dimensional vectors VjZjs,
obtained by DFT, should be projected onto the subspace spanned

by the k leading eigenvectors of Vj , k ≤ d , denoted by V
(k)
j .

Assume that the eigenvalues in Λj are in non-increasing order. Let
us denote the k leading eigenvectors by vj1, . . . , vjk . Then the best
rank k approximation of VjZj :

(VjZj)
(k) = ProjSpan {vj1,...,vjk}VjZj =

[
V

(k)
j (V

(k)
j )∗

]
VjZj

=
k∑
`=1

(v∗j`VjZj)vj` =
k∑
`=1

Zj`vj`,

where Zj` denotes the `th coordinate of Zj .
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Frequency domain to time domain

This transformation gives rise to rank reduction in the frequency
domain, then via DFT (due to X = WZ), in the time domain too.
The best rank k approximation of Xt via IDFT:

(Xt)(k) =
1√
n

n∑
j=1

(VjZj)
(k)e itωj

=
1√
n

n∑
j=1

(
k∑
`=1

Zj`vj`

)
e itωj ,

for t = 1, . . . , n.
We can show that is is also a d-dimensional real time series, but its
spectral density matrix is of rank k ≤ d .
We can start the DFA with it.
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Application to stock returns (Akbilgic, O. et al.)

The raw data were used.
The spectra shows 3 leading eigenvalues, the size of the gap after
the leading eigenvalues depends on the spectral density estimation
method.
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Singular Autoregression

In a d-dimensional, weakly stationary time series with zero
expectation, we linearly predict Xn based on past values
X1, . . . ,Xn−1. Let X̂1 := 0, and denote by X̂n the best one-step
ahead linear prediction (based on (n− 1)-long past) that minimizes
the mean square error

E(Xn − X̂n)2 = ‖Xn − X̂n‖2, n = 1, 2, . . .

which is the instance of simultaneous linear regressions.
Xt can be expanded in terms of the now d-dimensional
innovations, i.e. the prediction error terms

ηn := Xn − X̂n,

with error covariance matrix En = Eηnη
T
n .

Budapest 2022



Block LDL decomposition with pseudo-inverses

Consider the first n steps, i.e. the recursive equations

Xj =

j−1∑
k=1

Bjkηk + ηj , j = 1, 2, . . . , n

in the case when the observations X1, . . . ,Xn are available. If our
process is stationary, the coefficient matrices are irrespective of the
choice of the starting time, and in the regular case, they approach
the one-step ahead projection based on the infinite past. It can be
that the error covariance matrices are not zeros, but they are of
reduced rank or better and better approach a rank q innovation
covariance matrix, with decreasing ranks (q ≤ d).
Multiplying the above equations by XT

j from the right, and taking
expectation, the solution for the matrices Bjk and Ej

(j = 1, . . . , n; k = 1, . . . , j − 1) can be obtained via the block LDL
(variant of the block Cholesky) decomposition:

Cn = LnDnLT
n .
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Hhere Cn is nd × nd positive semidefinite block Toeplitz matrix of
general block entry C(i − j),

Ln =


I O . . . O O

B21 I . . . O O
...

...
...

...
...

Bn1 Bn2 . . . Bn,n−1 I

 , Dn =


E1 O . . . O O
O E2 . . . O O
...

...
...

...
...

O O . . . O En

 .
To find the block LDL (Cholesky) decomposition, the following
recursion is used: for j = 1, . . . , n

Ej := C(0)−
j−1∑
k=1

BjkEkBT
jk , j = 1, . . . , n

and for i = j + 1, . . . , n

Bij :=

(
C(i − j)−

j−1∑
k=1

BikEkBT
ik

)
E+

j ,

where we take the Moore–Penrose inverse (denoted by + in the
superscript) if necessary and we do not enter into the summation if
j = 1. Budapest 2022



Remarks

The innovation algorithm (variant of the Durbin–Levinson)
also does it, provided Cn is non-singular.

Because of

|Cn| = |Dn| =
n∏

j=1

|Ej |,

if |Cn| = 0, then |Ej | becomes 0 (at least from a certain index
j), but we can treat this situation with the pseudoinverse.

Since |Cn| is the product of the eigenvalues of Cn, which
asymptotically comprise the union of the spectra of f(ω)
(d × d spectral density matrix) at the Fourier frequencies,
singular prediction error matrices indicate reduced rank
spectral density.

E1 = C(0), rankC(0) = r , and Ejs are the one-step ahead
prediction (based on j − 1 long past) error covariance matrices
with non-increasing ranks.
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By the multi-dimensional Wold decomposition, En → Σ in
L2-norm, where Σ is the error covariance matrix of the one-step
ahead prediction based on the infinite past, rankΣ = q ≤ r .
If the prediction is based on the infinite past, then with n→∞
this procedure (which is a nested one) extends to the
multidimensional Wold decomposition.
If n→∞, the matrix Ln better and better approaches a block
Toeplitz one, and the matrices E1, . . . ,En are closer and closer to
Σ, the covariance matrix of the innovation process. Since
‖En −Σ‖2 → 0 as n→∞, Bnj → Bj as n→∞ too, as it
continuously depends on Ejs.
As Ej is Cauchy sequence and we stop at a j (j < n, n is

”
large”)

where it does not change
”
much”, then the jth block-row of Ln can

be considered that it contains the effective coefficient matrices
Bjks (k = 1, . . . , j − 1) in a finite segment of the Wold
decomposition. So a singular VAR(j) process is obtained if q < r .
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Perturbation of eigenvalues

If there is a gap in the spectrum of Σ (at k < r), like

λ1 ≥ · · · ≥ λk ≥ ∆� ε ≥ λk+1 ≥ · · · ≥ λd ,

then there is a gap in the spectrum of En too. Indeed, to any
δ > 0 there is an N such that for n ≥ N: ‖En −Σ‖ < δ. Then for
the eigenvalues of En,

λ
(n)
1 ≥ · · · ≥ λ(n)

k ≥ ∆− δ � ε+ δ ≥ λ(n)
k+1 ≥ · · · ≥ λ

(n)
d .

Consequently, for the best rank k approximations (with
Gram-decompositions):

‖Σ−Σk‖ ≤ ε and ‖En − Ek
n‖ ≤ δ + ε

holds by the Weyl perturbation theorem. Therefore,

‖Σk−Ek
n‖ ≤ ‖Σk−Σ‖+‖Σ−En‖+‖En−Ek

n‖ ≤ ε+δ+(δ+ε) = 2(δ+ε)

that can be arbitrarily close to 2ε.
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Perturbation of spectral subspaces

At the same time, the projections onto the subspaces spanned by
the eigenvectors of the k structural eigenvalues of these matrices
are close to each other, in the sense of the Davis–Kahan theorem.
Let S1 := [∆− δ, λ1 + δ] and S2 := [λd + δ, ε+ δ]. Then for n > N:

‖PΣ(S1)− PEn(S1)‖2F = ‖PΣ(S1)‖2F + ‖PEn(S1)‖2F − 2 tr[PΣ(S1)PT
En

(S1)]

= 2r − 2 tr[PΣ(S1)(Id − PT
En

(S2))]

= 2r − 2 tr[PΣ(S1)− PΣ(S1)PT
En

(S2)]

= 2r − 2r + 2 tr[PΣ(S1)PT
En

(S2)]

≤ 2d‖PΣ(S1)PT
En

(S2)‖

≤ 2d
c

∆− δ − ε
‖Σ− En‖ ≤ 2d

cδ

∆− δ − ε
that can be arbitrarily

”
small” is δ is arbitrarily

”
small”. Here PΣ(S)

denotes the projection onto the subspace spanned by the
eigenvectors of Σ corresponding to its eigenvalues in S . It is
effective is there is a

”
large”gap in the spectrum (O(n) vers. o(n)).

Budapest 2022



The Dynamic Factor Model

Assume that {Xt} is weakly stationary with an absolutely
continuous spectral distribution, i.e. it has the d × d spectral
density matrix fX. With the integer 1 ≤ k < d , the dynamic
k-factor model for Xt :

Xt = µ+ B(L)Zt + et = µ+ χt + et

or with components,

X i
t = µi + bi1(L)Z 1

t + · · ·+ bik(L)Z k
t + e i

t

where the k-dimensional stochastic process Zt = (Z 1
t , . . .Z

k
t )T is

the dynamic factor, χt is called common component, the
d-dimensional stochastic process et = (e1

t , . . . , e
d
t )T is called

idiosyncratic noise, and the d × k matrix B(L) = (bij(L)),
i = 1, . . . , d , j = 1, . . . , k, is the transfer function. Here L is the
lag operator (backward shift) and bij(L) is a square-summable
one-sided filter, i.e. bij(L) = bij(0) + bij(1)L + bij(2)L2 + . . . , with∑∞

`=0 b2
ij(`) <∞.
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Componentwise conditions

E(Zt) = 0, E(et) = 0, t ∈ Z
Cov(e i

t ,Z
j
s ) = 0, i = 1, . . . , d , j = 1, . . . , k, t, s ∈ Z, s ≤ t.

Cov(e i
t , e

j
s) = 0, i , j = 1, . . . d , i 6= j , t, s ∈ Z, s < t.

If χt and et are also weakly stationary and they have rational
spectral densities fχ and fe, the model equation extends to the
spectral density matrices:

fX(ω) = fχ(ω)+fe(ω) = B(e−iω)fZ(ω)B(e−iω)
∗
+fe(ω), ω ∈ [−π, π].

Very frequently, Zt is assumed to be orthonormal WN(Ik) process.
Then the above equation simplifies to

fX(ω) =
1

2π
B(e−iω)B(e−iω)

∗
+ fe(ω).
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General Dynamic Factor Model (GDFM)

Let Xt be a weakly stationary time series (t = 1, 2, . . . ) with an
absolutely continuous spectral measure and the positive
semidefinite spectral density matrix fX.
Assume that fX(ω) has constant rank r for a.e. ω ∈ [−π, π]. If Xt

is also regular (it always holds if fX is a rational spectral density
matrix), then the multidimensional Wold decomposition is able to
make it a one-sided VMA(∞) process. It is important that the
dimension of the innovation subspaces is also r .
With the integer 1 ≤ q ≤ r , the q-factor GDFM:

Xt = χt + et , t = 1, 2, . . .

where now χt denotes the common component, et is the
idiosyncratic noise, and all the expectations are zeros, for
simplicity. Here χt is subordinated to Xt , but has spectral density
matrix of rank q ≤ r . For example, there are q uncorrelated signals
(given by q distinct sources) detected by r sensors.
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Nested sequence

Forni, Lippi, and Deistler gave necessary and sufficient conditions
for the existence of an underlying GDFM in terms of the expanding
sequence of n × n spectral density matrices fn

X(ω), n ∈ N.

Theorem

The nested sequence {Xn
t : n ∈ N, t = 1, 2, . . . } can be

represented by a sequence of q-factor GDFMs if and only if

the q largest eigenvalues, λn
X,1(ω) ≥ · · · ≥ λn

X,q(ω) of fn
X(ω)

diverge almost everywhere in [−π, π] as n→∞;

the (q + 1)-th largest eigenvalue λn
X,q+1(ω) of fn

X(ω) is
uniformly bounded for ω ∈ [−π, π] (almost everywhere) and
for all n ∈ N.

The theorem is rather theoretical; its message is that for large n
and T (T is not necessarily larger than n) we can conclude for q
from the spectral gap of the constant rank spectral density matrix.
The estimate χn

t is consistent if n,T →∞.
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Assumptions

Assumptions are imposed on the processes χt and et :

1 For all n, χn
t has a rational spectral density, so constant rank

a.e. on [−π, π].

2 We suppose that there exists n0 ≥ q s.t. rank(χn
t ) = q, that

is independent of n, n ≥ n0.

3 Weak cross-sectional dependence of en
t : the eigenvalues of

f n
e (ω) are uniformly bounded for all n and a.e. ω.

4 strong cross-sectional dependence of χn
t : the first q

eigenvalues of f n
χ (ω) diverge as n→∞ for a.e. ω.

The idiosyncratic noise is less and less important when n,T →∞,
and it may have slightly correlated components. A stationary
process with a not full rank spectral density matrix may have some
singular components. All these parts are included in the weakly
dependent idiosyncratic noise.
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Dynamic factors and Wold representation

{χt} is a VARMA process: under the stability and strict miniphase
conditions,

χt = β−1(z)α(z)vt = k(z)vt =
∞∑
j=0

kjvt−j ,

where the q-dimensional {vt} is the dynamic factor process.
Under the stability and strict miniphase conditions, by the
Smith–McMillan form, k(z) has a (not unique) left inverse
(generalized inverse) k−(z). With it,

vt = k−(z)χt .

Further assumptions, guaranteeing uniqueness can be made (in the
q < r case).
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Singular VAR

{ft}: r -dimensional static factor process of {X(k)
t }, r = rankC(0)

(of X
(k)
t ), r ≥ k.

If r > q, then the VARMA process for the static factors

α(z)r×r ft = β(z)r×qvt ,

where vt is the q-dimensional dynamic factor process, can be
substituted by a singular VAR process:

a(z)r×r ft = br×qvt ,

where a(z) is a new VAR polynomial of order p̃, and b = β(0).
Order selection for p̃.
For the singular VAR, we can use the block LDL decomposition
with possibly singular innovation covariance matrix
(Moore-Penrose inverses are used in the iteration).
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