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Non-Backtracking (Hashimoto) matrix of simple
graphs

G = (V ,E ) simple graph, |V | = n, |E | = m;
the entries of the non-backtracking matrix N = (nef ) are indexed
by the directed edges (bidirected edges of E ), |E→| = 2m:

nef = δe→f δf ̸=e−1 , ni→j , s→l = δjs(1− δil),

where e = {i → j} and f = {s → l} are directed edges, and e → f
with e = (e1, e2) and f = (f1, f2) means that e2 = f1;
e−1 = {j → i}.
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Relation to line-graphs

Proposition

If N =

(
N11 N12

N21 N22

)
, where the two (row/column) blocks

correspond to the edges and their inverses (in the same order), then

N∗
11 = N22, N∗

22 = N11, N∗
12 = N12, N∗

21 = N21.

Further, N11 +N12 +N21 +N22 is equal to the m ×m adjacency
matrix of the line-graph of G.

In Lovász, Combinatorial Exercises it is proved that if the
line-graphs of two simple graphs, provided they both have
node-degrees at least 4, are isomorphic, then they are isomorphic
too. However, if the degree condition does not hold, it can happen
that two not isomorphic graphs have isomorphic line-graphs. For
example, a triangle and a star on 4 vertices.
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Transpose (∗), involution, and swapping

Though N is not a normal matrix, even not always diagonalizable
(the algebraic and geometric multiplicity of some of its eigenvalues
may not be the same), it exhibits some symmetry: n∗ef = ne−1 f −1 .

With the notation x̆e := xe−1 for the coordinates of x, x̆ ∈ R2m: if
x = (x∗1, x

∗
2)

∗, then x̆ = (x∗2, x
∗
1)

∗ (swapping).
Let V denote the following involution on R2m (V = V−1, V2 = I):

V =

(
O Im
Im O

)
. Then Vx = x̆ and Vx̆ = x;

N∗ = VNV and N∗x̆ = ˘(Nx).

Consequently: if x is a right eigenvector of N, then x̆ is a left
eigenvector of N (and right eigenvector of N∗) with the same
eigenvalue.
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Eigenvalues of N (Ihara formula)

N is a Frobenius-type matrix, its largest absolute value eigenvalue
λ(N) is positive real, and it can also have some other

”
structural”

real eigenvalues. Since the characteristic polynomial of N has real
coefficients, its complex eigenvalues occur in conjugate pairs in the
bulk of its spectrum.
Ihara formula: N has m − n eigenvalues equal to 1 and m − n
eigenvalues equal to −1, whereas its further eigenvalues are those
of the 2n × 2n matrix

K =

(
O DA − In
−In A

)
,

where A is the adjacency- and DA is the degree-matrix of the
graph (diagonal, contains the degrees=row-sums of A).

K always has at least one additional eigenvalue 1, the geometric
multiplicity of which is equal to the number of the connected
components of G and λmax(N) = λmax(K) ≤ λmax(A).
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Real eigenvalues and eigenvectors of N (beyond the
Ihara formula)

Two auxiliary matrices are introduced: the 2m × n matrix End has
entries endei = 1 if i is the end-node of the (directed) edge e and
0, otherwise; the 2m × n matrix Start has entries startei = 1 if i is
the start-node of the (directed) edge e and 0, otherwise. Then for
any vector u ∈ Rn and for any edge e = {i → j} the following
holds:

(Endu)(e) = uj and (Start u)(e) = ui .

Consequently, Endu is the 2m-dimensional inflated version of the
n-dimensional vector u, where the coordinate uj of u is repeated as
many times, as many edges have end-node j ; likewise, in the
2m-dimensional inflated vector Start u, the coordinate ui of u is
repeated as many times, as many edges have start-node i .
As each edge is considered in both possible directions, these
multiplicities are the node-degrees dj and di , respectively.
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End∗ End = Start∗ Start = diag(d1, . . . , dn) = DA

For any vector x ∈ R2m, define

xouti :=
∑
j : j∼i

xi→j and x ini :=
∑
j : j∼i

xj→i (i = 1, . . . , n).

These become the coordinates of the n-dimensional (column)
vectors xin and xout . Trivially,

xout = Start∗x and xin = End∗x (i = 1, . . . , n).
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Calculation

(N∗x)outi =
∑

e: e1=i

(N∗x)e =
∑

e: e1=i

∑
f→e, f ̸=e−1

xf

=
∑

e: e1=i

[
∑
f→e

xf − xe−1 ]

=
∑

f : f2=i

xf
∑

e: e1=i

1−
∑

e: e1=i

xe−1

= x ini di −
∑

e: e−1
2 =i

xe−1 = dix
in
i − x ini = (di − 1)x ini
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Calculation

(N∗x)ini =
∑

e: e2=i

(N∗x)e =
∑

e: e2=i

∑
f→e, f ̸=e−1

xf

=
n∑

j=1

aji
∑

f : f2=j , f1 ̸=i

xf

=
n∑

j=1

aji
∑

f : f2=j

xf −
n∑

j=1

ajixi→j

=
n∑

j=1

aijx
in
j −

∑
j : j∼i

xi→j = (Axin)i − xouti ,

where we used that the (0-1) adjacency matrix A of the graph is
symmetric with entries aij = aji = δi∼j .
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Summarizing, if x is a (right) eigenvector of N∗ with (real)
eigenvalue µ, i.e., N∗x = µx, then (N∗x)out = (µx)out = µxout and
(N∗x)in = (µx)in = µxin. Therefore,

µ

(
xout

xin

)
=

(
(N∗x)out

(N∗x)in

)
=

(
O DA − In
−In A

)(
xout

xin

)
,

so

µ

(
xout

xin

)
=

(
(DA − In)xin

Axin − xout

)
= K

(
xout

xin

)
.
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In particular, if x is a right eigenvector of N∗ with a real eigenvalue
µ ̸= 0, then the 2n-dimensional vector comprised of parts xout and
xin is a right eigenvector of K with the same eigenvalue. Indeed,

µ

(
xout

xin

)
=

(
(N∗x)out

(N∗x)in

)
= K

(
xout

xin

)
.

According to the previous remarks, the vector x is a left
eigenvector, and x̆ is a right eigenvector of N with the same
eigenvalue. To both of them the two segments, xout and xin of the
right eigenvector of K are responsible.
In view of the relation xout = 1

µ(DA − In)xin, it suffices to consider

only xin ∈ Rn for further clustering purposes.
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Bond percolation

The bond percolation threshold for the giant component to appear
in a sparse simple graph is β > 1

λmax (N) , where β is the edge
retention probability, see Newman, M. E. J., Message passing
methods on complex networks, Proc. R. Soc. London A (2023).
The proof uses the method of Belief Propagation (BP) (when the
so-called message passing system of equations has a non-trivial
solution).
In the dense case, it happens at 1

λmax (A)
, see Bollobás, B., Borgs,

C., Chayes, J., and Riordan, O., Percolation on dense graph
sequences, Annals of Probability (2010).
More generally, we are looking for the number k, so that k strongly
connected clusters (communities) can be detected (within the
giant component) in a graph coming from the sparse stochastic
block model. We are also looking for the clusters themselves.
The Erdős–Rényi graph Gn(p) is a special case with k = 1, where
the edges of the complete graph on n nodes are retained with
probability β = p.
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The sparse stochastic block model SBMk

The k × k probability matrix P of the random graph Gn ∈ SBMk

has entries pab = cab
n , where the k × k symmetric affinity matrix

C = (cab) stays constant as n → ∞. An edge between i < j comes
into existence, independently of the others, with probability pab if
i ∈ Va and j ∈ Vb, where (V1, . . . ,Vk) is a partition of the
node-set V into k disjoint clusters; aji := aij . It can be extended to
the i = j case when self-loops are allowed, or else, the diagonal
entries of the adjacency matrix are zeros.
Ā: the n × n inflated matrix of the k × k P: āij = pab if i ∈ Va

and b ∈ Vb. When loops are allowed, then E(aij) = āij for all
1 ≤ i , j ≤ n. In the loopless case, the expected adjacency matrix
EA differs from Ā with respect to the the main diagonal, but the
diagonal entries are negligeable.
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Special cases

Sometimes cab = cin is the within-cluster (a = b) and cab = cout is
the between-cluster (a ̸= b) affinity. The network is called
assortative if cin > cout , and disassortative if cin < cout . Of course,
remarkable difference is needed between the two, to recognize the
clusters.
The cluster sizes are n1, . . . , nk (

∑k
i=1 ni = n), so the k × k

diagonal matrix R := diag(r1, . . . , rk), where ra =
na
n is the relative

size of cluster a (a = 1, . . . , k), is also a model parameter
(
∑k

a=1 ra = 1). It is nearly kept fixed as n → ∞.
The model SBMk is called symmetric if r1 = · · · = rk = 1

k and all
diagonal entries of the affinity matrix are equal to cin, whereas the
off-diagonal ones to cout .
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Average degrees

The average degree of a real world graph on m edges and n nodes
is 2m

n . The expected average degree of the random graph
Gn ∈ SBMk is

c =
1

n

k∑
a=1

k∑
b=1

nanbpab =
1

n2

k∑
a=1

k∑
b=1

nanbcab =
k∑

a=1

raca,

where ca =
∑k

b=1 rbcab is the average degree of cluster a. It is
valid only if self-loops are allowed. Otherwise, ca and c should be
decreased with a term of order 1

n , but it will not make too much
difference in the subsequent calculations.
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Kesten–Stigum threshold

In Bordenave, C., Lelarge, M., Massoulié, L., Non-backtracking
spectrum of random graphs: Community detection and non-regular
Ramanujan graphs, Ann. Probab. (2018), the case when ca = c
for all a is considered. (This is the hardest case, as otherwise the
clusters could be distinguished by sorting the node-degrees.) In
this case 1

c Ā is a stochastic matrix, and so, the spectral radius of
Ā is c.
In the symmetric case, c = cin+(k−1)cout

k and the separation of the
clusters only depends on the cin, cout relation. If cin is

”
close” to

cout , then the groups cannot be distinguished. The detectability
Kesten–Stigum threshold in the symmetric case is

|cin − cout | > k
√
c ⇐⇒ µ2 = · · · = µk >

√
c,

where µ2 = · · · = µk is the second largest (real) eigenvalue of N.
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BP in the general sparse SBMk model

Given the observed graph on n nodes,

ψa
i ∝ P(i is in the cluster a), a = 1, . . . , k

defines the marginal membership (state) distribution of node i .
We assume that our neighbors are independent of each other,
when conditioned on our own state. This can be modeled by
having each node j send a message to i , which is an estimate of j ’s
marginal if i were not there. Therefore, the conditional probability

ψa
j→i := P(j is in cluster a when i is not present)

can be computed through neighbors of j that are different from i :

ψa
j→i = C ij

a ra
∏

l∼j , l ̸=i

k∑
b=1

ψb
l→j pab, a = 1, . . . , k,

where C ij
a is a normalizing factor.
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The above BP (message-passing) system of equations (2mk
non-linear equations with the same number of unknowns) can be
solved by initializing messages randomly, then repeatedly updating
them. This procedure usually converges quickly and the resulting
fixed point gives a good estimate of the marginals:

ψa
i ∝ ra

∏
j∼i

k∑
b=1

ψb
j→i pab,

where the constant of proportionality is chosen according to∑k
a=1 ψ

a
i = 1. However, the system of equations contains the

model parameters, so it can be solved only if the model parameters
are known. For a given graph (n and k fixed), the parameters ra’s
and cab’s can be estimated by the EM algorithm, see
Bolla, M., Spectral clustering and biclustering, Wiley (2013).
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Calculations

In Moore, C., The computer science and physics of community
detection: Landscapes, phase transitions, and hardness, Bull.
EATCS (2017), the symmetric case is treated, when BP has a
trivial fixed point ψa

j→i =
1
k , for a = 1, . . . , k. If it gets stuck there,

then BP does no better than chance. It happens when this trivial
fixed point of this discrete dynamical system is asymptotically
stable.
In the generic case, we have an unstable fixed point via
linearization:

ψa
j→i := ra + εaj→i .

We substitute it in the original BP system and expand it to first
order in ε (vector of 2mk coordinates εaj→i ’s):
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εaj→i = ψa
j→i − ra = ra

C ij
a

∏
l∼j , l ̸=i

[
k∑

b=1

ψb
l→j pab

]
− 1


= ra

C ij
a

∏
l∼j , l ̸=i

[
k∑

b=1

(rb + εbl→j) pab

]
− 1


= ra

C ij
a

∏
l∼j , l ̸=i

[
k∑

b=1

rbpab +
k∑

b=1

εbl→j pab

]
− 1


= ra

C ij
a

∏
l∼j , l ̸=i

[
ca
n

+
k∑

b=1

εbl→j

cab
n

]
− 1


= ra

C ij
a (

1

n
)sj−1

 k∑
b=1

∑
l∼j , l ̸=i

εbl→j cab c
sj−2
a + c

sj−1
a

− 1

+ O(ε2).
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Here sj denotes the number of neighbors of j and sj − 1 is the
number of its neighbors that are different from i (this number is
frequently 0 or 1, as we have a sparse graph). If sj < 2 happens,
then the corresponding entry of the non-backtracking matrix is 0.
To specify the normalizing factor C ij

a , we substitute zeros for ε’s
that provide the trivial solution. This approximately yields

C ij
a

(
1

n

)sj−1

c
sj−1
a − 1 = 0,

so

C ij
a =

(
n

ca

)sj−1

.
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Substituting this into the original equation, we get

εaj→i = ra


(

n

ca

)sj−1(1

n

)sj−1

c
sj−2
a

 k∑
b=1

∑
l∼j ,l ̸=i

εbl→j cab + ca

− 1


+ O(ε2) = ra

 1

ca

 k∑
b=1

∑
l∼j ,l ̸=i

εbl→j cab + ca

− 1

+ O(ε2).
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The linear dynamical system approximating the above system of
difference equations is

ε = (N⊗ T)ε,

where T = GRC is the transmission matrix with
G = diag( 1

c1
, . . . , 1

ck
).

The fixed point 0 of

ε(t+1) = (N⊗ T)ε(t)

is unstable, if the spectral radius of the big block matrix N⊗ T is
grater than 1.

Note that T is a stochastic matrix, so its largest eigenvalue is 1,
and the others are less than 1 and positive in the assortative case.
In this way, we have proved the following.
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Theorem

With arbitrary, but fixed positive integer k and k × k parameter
matrices R = diag(r1, . . . , rk) (cluster proportions) and C
(symmetric affinity matrix), the linear approximation of the BP
system is ε = (N⊗ T)ε, where ε is a 2mk-dimensional vector and
the 2mk × 2mk matrix of the linear system is N⊗ T. Here N is
the non-backtracking matrix of the graph and T = GRC is the
transmission matrix with G = diag( 1

c1
, . . . , 1

ck
), where

ca =
∑k

b=1 rbcab is the average degree of cluster a, for
a = 1, . . . , k. The trivial 0 solution of the BP equation is unstable
if there are eigenvalues of N⊗T (products of eigenvalues of N and
T) that are greater than 1.
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Sufficient condition for the percolation threshold

If c1 = · · · = ck = c, then for

λ(N⊗ (cT)) = λ(N)λ(RC) > c

it suffices that λ(N) >
√
c, as the eigenvalues of N and RC are

aligned, see
Bordenave, C., Lelarge, M., Massoulié, L., Non-backtracking
spectrum of random graphs: Community detection and non-regular
Ramanujan graphs, Ann. Prob. (2018).
They allow

”
small”fluctuations of the cluster membership

proportions that causes the same order of fluctuations in the
average degrees of the clusters. For the membership proportion of

cluster a, denoted by r
(n)
a , the assumption

max
a∈{1,...,k}

|r (n)a − ra| = O(n−γ)

is made with some γ ∈ (0, 1].
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This assumption implies that in the c1 = · · · = ck = c case,

maxa∈{1,...,k} |c
(n)
a − c| = O(n−γ).

They prove that if maxa c
(n)
a = c + O(n−γ) with some γ ∈ (0, 1],

and the relative proportions of the clusters converge, then w.h.p.

µi = νi + o(1) (i = 1, . . . k0) and µi <
√
c + o(1) (i > k0),

where µi ’s and νi ’s (i = 1, . . . , k0) are the structural eigenvalues of
N and RC, respectively, whereas k0 ≤ k is the positive integer for
which ν2i ≥ ν1 (i = 1, . . . k0) and ν

2
k0+1 < ν1 holds.

In particular, in the SBM1 (Erdős–Rényi) model, µ1 = c + o(1)
and µ2 ≤

√
c + o(1).
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Even if the average degrees of the clusters are not the same, in the
next (Inflation–Deflation) slide we will show that the non-zero
eigenvalues of Ā are the same as those of RC, so they are in the
neighborhood of the leading eigenvalues of N within a factor
between u and v , where

u = min
a

c

c
(n)
a

and v = max
a

c

c
(n)
a

.

However, the leading eigenvalues of Ā and A are farther apart,
seemingly contradicting to the laws of large numbers.
Also see the theory of deformed Wigner matrices: Capitaine, M.,
Donati-Martin, C., Féral, D., The largest eigenvalues of finite rank
deformation of large Wigner matrices,. . . , Ann. Prob. (2009).
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Inflation–deflation

Proposition

The matrix Ā has rank k and its non-zero eigenvalues (ν’s) with
unit norm eigenvectors (u’s) satisfy Āu = νu, where u is the
inflated vector of ũ = (u(1), . . . , u(k))∗ with block-sizes n1, . . . , nk .
With the notation R = 1

ndiag(n1, . . . , nk) = diag(r1, . . . , rk), the
deflated equation is equivalent to

R
1
2CR

1
2 v = νv,

where v =
√
nR

1
2 ũ. Further, if u1, . . .uk is the set of orthonormal

eigenvectors of Ā, then vi =
√
nR

1
2 ũi (i = 1, . . . , k) is the set of

orthonormal eigenvectors of R
1
2CR

1
2 . Also, R

1
2 vi =

√
nRũi are

right eigenvectors of RC and R− 1
2 vi =

√
nũi are left eigenvectors

of RC with the same eigenvalues νi , for i = 1, . . . , k.
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Deformed Wigner matrices

The (random) adjacency matrix A of (the random graph) Gn

coming from the SBMk model is A = Ā+ E, where E is an
appropriate (random) error matrix and all the matrices are n × n
symmetric. We can achieve that the matrix A contains 1’s in the
(a, b)-th block with probability pab, and 0’s otherwise. Indeed, for
indices 1 ≤ a ≤ b ≤ k and i ∈ Va, j ∈ Vb let

eji = eij :=

{
1− pab with probability pab
−pab with probability 1− pab

where eji (entries of E) be independent random variables. This E is
not a Wigner noise as it does not have a nested structure.
However, it is approximately 1√

n
×Wigner noise, and a

”
semicircle

law” is also valid with radious of constant order:
2σ = 2maxa,b

√
pab(1− pab) ≤ 1.

Now Ā is the finite rank (k) perturbation, and if
λmax(Ā) ∼ λmax(N) > 1, then the spectrum of A is out of the
semicircle.
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Finding the clusters

Proposition(Based on Theorem 1 of Stephan, L., Massoulié,
Non-backtracking spectra of inhomogeneous random graphs,
Mathematical Statistics and Learning (2022). )
Let EA be the expected adjacency matrix of a random simple
graph. Assume that k = rank (EA) = no(1), the graph is sparse
enough, and the eigenvectors corresponding to the non-zero
eigenvalues of the matrix EA are sufficiently delocalized. Let k0
denote the number of eigenvalues of EA whose absolute value is
larger than

√
ρ, where ρ is the spectral radius of EA: these are

ν1 ≥ · · · ≥ νk0 with corresponding eigenvectors u1, . . . ,uk0 (they
form an orthonormal system as EA is a real symmetric matrix).
Then for i ≤ k0 ≤ k, the ith largest eigenvalue µi of N is
asymptotically (as n → ∞) equals to νi and all the other
eigenvalues of N are constrained to the circle (in the complex
plane) of center 0 and radius

√
ρ.
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Proposition continued (eigenvectors of N)

Further, if i ≤ k0 is such that νi is a sufficiently isolated eigenvalue
of EA, then the standardized eigenvector of N corresponding to µi
has inner product close to 1 with the standardized inflated version
of ui , namely, with End ui

∥End ui∥ .
Let x be a unit-norm eigenvector of N, corresponding to the
eigenvalue µ that is close to the eigenvalue ν of the expected
adjacency matrix, with corresponding eigenvector u ∈ Rn. If our
graph is from the SBMk model, then (without knowing its
parameters) we know that u is a step-vector with at most k
different coordinates. Then by the above Proposition,〈

x,
Endu

∥Endu∥

〉
≥

√
1− ε ≥ 1− 1

2
ε,

where ε can be arbitrarily
”
small”with increasing n.
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Continued

∥∥∥∥x− Endu

∥Endu∥

∥∥∥∥2 ≤ 2− 2(1− 1

2
ε) = ε

and by xin = End∗x and End∗End = DA,∥∥∥∥End∗x− End∗
Endu

∥Endu∥

∥∥∥∥2 = ∥∥∥∥xin −DA
u

∥Endu∥

∥∥∥∥2 .
Consequently,∥∥∥∥D−1

A xin − u

∥Endu∥

∥∥∥∥2 ≤ ∥D−1
A End∗∥2ε ≤ ε

as ∥D−1
A End∗∥2 ≤ maxi

1
di

= 1
mini di

≤ 1.
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Summarizing

Theorem

Assume that the expected adjacency matrix of the underlying
random graph on n nodes and m edges has rank k with k single
eigenvalues and corresponding unit-norm eigenvectors
u1, . . . ,uk ∈ Rn. Assume that the non-backtracking matrix N of
the random graph has k structural eigenvalues (aligned with those
of the expected adjacency matrix) with eigenvectors
x1, . . . , xk ∈ R2m such that〈

xj ,
Enduj
∥Enduj∥

〉
≥

√
1− ε, j = 1, . . . , k.

Then for the transformed vectors D−1
A xinj ∈ Rn, the relation∑k

j=1

∥∥∥D−1
A xinj − uj

∥End uj∥

∥∥∥2 ≤ kε holds.
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Consequences

Corollary: If uj ’s are step-vectors on k steps (e.g., if our graph
comes from the SBMk model), then the k-variance of the node
representatives (objective function of the k-means algorithm)

(
1

di
x in1i , . . . ,

1

di
x inki ), i = 1, . . . , n

is estimated from above with kε too.

Remark: In case of a simple graph, the n-dimensional vectors xinj
(j = 1, . . . , k) are the first segments of the right eigenvectors of
the matrix K. So, we have to perform the spectral decomposition
of a 2n× 2n matrix only instead of a 2m× 2m one, which fact has
further computational benefit (except for trees, n ≤ m, but usually
n is much smaller than m).
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Non-Backtracking matrix of edge-weighted graphs

Let G = (V ,E ) be the skeleton of an edge-weighted graph,
|V | = n, |E | = m; the weight of edge e = {i , j} is
We = wij = wji > 0, where the remaining entries of the the n × n
symmetric edge weight matrix W are zeros (including the
diagonal).
Let the 2m × 2m diagonal matrix D contain the positive
edge-weights in its main diagonal (the first m diagonal entries are
the same as the second m ones as We = We−1). With them,

B = ND and B∗ = DN∗.

The general entry of the 2m × 2m non-backtracking matrix B is

bef = Wf δe→f δf ̸=e−1 .
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Notation

We assume that there are constants C1 and C2 (independent of n):

C1 ≤ wij ≤ C2, for wij ̸= 0.

Further, we assume that the skeleton’s node degrees

di = |{i : wij > 0, j = 1, . . . , n}| , i = 1, . . . , n

are of constant order (it is the case in the k-cluster stochastic
block model (SBMk)).
Let DW denote the n × n diagonal matrix of diagonal entries

dW
i =

n∑
j=1

wij , i = 1, . . . , n,

that are the so-called generalized degrees. In the unweighted case
(0-1 weights), dW

i = di and C1 = C2 = 1; in general,

C1di ≤ dW
i ≤ C2di , i = 1, . . . , n.
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Start- and End-matrices, in- and out-vectors

The End and Start matrices are defined as in the unweighted case:

End∗DEnd = Start∗DStart = DW and Start∗DEnd = W.

For any vector x ∈ R2m, the following n-dimensional vectors are
introduced:

xout := Start∗Dx and xin := End∗Dx.

Coordinatewise, for i = 1, . . . , n,

xouti =
∑
j : j∼i

wijxi→j =
∑

e: e1=i

Wexe , x ini =
∑
j : j∼i

wijxj→i =
∑

e: e2=i

Wexe .
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Tracing back the problem to lower order matrices

No counterpart of matrix K works here, but if we know a real
eigenvalue µ of B, we are able to find a linear system of equations
for the out-transform of the corresponding eigenvector that is
necessary for spectral clustering. With a Lapacian type equation,
µ can also be concluded.
Proposition Let x be a (right) eigenvector of B corresponding to a
single positive real eigenvalue µ such that µ ̸= wij ,
∀i , j ∈ {1, . . . , n}. Then y = xout satisfies the homogeneous
system of linear equations

[In − Ã(µ) + D̃(µ)]y = 0

with a Laplacian type coefficient matrix, where

Ã(µ)ij =
µwij

µ2 − w2
ij

and D̃(µ)ii =
n∑

j=1

w2
ij

µ2 − w2
ij

,

with the understanding that wij = 0 whenever i ̸∼ j .
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Proof of the Proposition

If x is a (right) eigenvector of B with corresponding (real)
eigenvalue µ, then

µxe =
∑

e→f , f ̸=e−1

Wf xf =
∑

f :f1=e2

Wf xf −We−1xe−1 = ye2 −Wexe−1 .

Likewise,

µxe−1 =
∑

e−1→f , f ̸=e

Wf xf =
∑

f :f1=e1

Wf xf −Wexe = ye1 −Wexe .

From here,

µ2xe = µye2 − µWexe−1 = µye2 −Weye1 +W 2
e xe ,

and so,

xe =
µye2 −Weye1
µ2 −W 2

e

which shows that y ̸= 0 as x ̸= 0.
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Proof continued

Substituting this formula for xe in the original equation, we get
that for any edge e = {j → i},

µ2yi − µwijyj
µ2 − w2

ij

=
∑

l :l∼i , l ̸=j

wli
µyl − wliyi
µ2 − w2

li

.

Further developing,

µ2yi
µ2 − w2

ij

−
µwijyj
µ2 − w2

ij

=
∑
l :l∼i

µwli

µ2 − w2
li

yl−
∑
l :l∼i

w2
li

µ2 − w2
li

yi−wji
µyj − wjiyi
µ2 − w2

ji

,

which provides

yi =
µ2yi

µ2 − w2
ij

−
w2
ij yi

µ2 − w2
ij

=
∑
l :l∼i

µwli

µ2 − w2
li

yl −
∑
l :l∼i

w2
li

µ2 − w2
li

yi .
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Consequences

The above homogeneous system of linear equations for the
coordinates of y must have a non-trivial solution, so

|In − Ã(µ) + D̃(µ)| = 0.

This is not a polynomial (characteristic) equation, but it is a
rational function of µ. By the assumptions of the Proposition, the
denominators are not zeros, so we can multiply the determinant
equations with them, and we obtain an high-degree (higher than n)
polynomial of µ.
The leading positive real solutions µ1 ≥ · · · ≥ µk are the same as
the structural eigenvalues of B. Their number will be denoted by
k. The corresponding y1, . . . , yk can be obtained by solving the
system of the above homogeneous linear equations (with only an
n × n coefficient matrix).
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More general setup of Stephan and Massoulié

The weighted adjacency matrix is biult up as follows:
aji = aij ∼ Bernoulli(pij) for 1 ≤ i ≤ j independently of each other,
where the n × n symmetric probability matrix P is a parameter
(this forms the skeleton of the graph). Independently of aijs, W is
an n × n symmetric weight matrix of independent random entries.
Then an inhomogeneous undirected random graph G = (V ,E ) is
associated with the couple (P,W) such that each edge ij in the
skeleton (randomized according to P) holds weight Wij .

In the SBMk model the weights were constantly 1, and in the
edge-weighted case we used a deterministic W, where the ij entry
of the weighted adjacency matrix was wij × Bernoulli(pij) for
1 ≤ i ≤ j ≤ n; otherwise it was symmetric.
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General setup with the couple (P,W)

Define
Q := P ◦ EW and K := P ◦ E(W ◦W).

Then Q ≈ EA (diagonal negligible) and K ≈ VarA.
Proposition(Based on Theorem 1 of Stephan, L., Massoulié,
Non-backtracking spectra of inhomogeneous random graphs,
Mathematical Statistics and Learning (2022). )
Assume that maxWij ≤ 1 and k = rank (Q) = no(1), the graph is
sparse enough, and the eigenvectors corresponding to the non-zero
eigenvalues of the matrix Q are sufficiently delocalized. Let k0
denote the number of eigenvalues of Q whose absolute value is
larger than

√
ρ, where ρ ≥ 1 is the spectral radius of K: these are

ν1 ≥ · · · ≥ νk0 with corresponding eigenvectors u1, . . . ,uk0 (they
form an orthonormal system as Q is a real symmetric matrix).
Then for i ≤ k0 ≤ k, the ith largest eigenvalue µi of B is
asymptotically (as n → ∞) equals to νi and all the other
eigenvalues of B are constrained to the circle (in the complex
plane) of center 0 and radius

√
ρ.
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Proposition continued (eigenvectors of B)

Further, if i ≤ k0 is such that νi is a sufficiently isolated eigenvalue
of Q, then the standardized eigenvector of B corresponding to µi
has inner product close to 1 with the standardized inflated version
of ui , namely, with End ui

∥End ui∥ .

Application: Let x be a unit-norm eigenvector of B, corresponding
to the eigenvalue µ that is close to the eigenvalue ν of the matrix
Q, with corresponding eigenvector u ∈ Rn. If our graph is from the
SBMk model, then (without knowing its parameters) we know that
u is a step-vector with at most k different coordinates. Then by
the above Proposition,〈

x,
Endu

∥Endu∥

〉
≥

√
1− ε ≥ 1− 1

2
ε,

where ε can be arbitrarily
”
small”with increasing n.
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Continued

∥∥∥∥x− Endu

∥Endu∥

∥∥∥∥2 ≤ 2− 2(1− 1

2
ε) = ε

and∥∥∥xout −W
u

Endu

∥∥∥2 = ∥∥∥∥Start∗D(
x− Endu

∥Endu∥

)∥∥∥∥2 ≤ ∥Start∗D∥2ε.

Consequently,∥∥∥∥W−1xout − u

∥Endu∥

∥∥∥∥2 ≤ ∥W−1Start∗D∥2ε ≤
(
C2

C1

)2

ε.
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Consequences

Assume that the non-backtracking matrix B has k structural (real)
eigenvalues with eigenvectors x1, . . . , xk ∈ R2m. Then for the
transformed vectors W−1xoutj ∈ Rn, the relation

k∑
j=1

∥∥∥∥W−1xoutj −
uj

∥Enduj∥

∥∥∥∥2 ≤ kε
C 2
2

C 2
1

holds.
If uj ’s are step-vectors on k steps (e.g., if our graph comes from
the SBMk model), then the left-hand side estimates from above
the k-variance of the node representatives that are row vectors of

(W−1xout1 , . . . ,W−1xoutk ).

To get the xoutj ∈ Rn vectors we do not need the 2m-dimensional
eigenvectors xj ’s of N, but the previous calculations can be used.
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Special unweighted cases and β-percolation

In the most special
”
symmetric case”, the transition matrix is

T = GRC = 1
ckC, where C contains cin in its main diagonal and

cout , otherwise; see the BP method. T is a stochastic matrix, so
its largest eigenvalue is 1 with corresponding eigenvector 1 (the all
1’s vector). The other eigenvalue is

λ =
cin − cout

kc
with multiplicity k − 1. In the assortative case, λ > 0; further,
λ < 1, as in the symmetric case

c =
cin + (k − 1)cout

k
holds. Consequently, the eigenvalues of RC = cT are c and cλ,
latter one has multiplicity k − 1.
With the BP method for this special case, the eigenvalues of
N⊗ T greater than 1 are considered (giving a non-trivial solution)
that boils down to the condition cλ2 > 1, which gives the
Kesten–Stigum threshold |cin − cout | > k

√
c.
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The SBMβ
k model: edges are retained with prob. β

The k × k probability matrix is βC
n : C and c is multiplied by β, but

T = GRC remains unchanged.
So we consider βcT as for the model side, but the underlying
graph and its N is the same as before. Therefore, the eigenvalues
of N⊗ βcT = βc(N⊗ T) should be greater than c if a non-stable
solution is required:

β λ(N⊗ cT) > c.

If the eigenvalues of N and cT are aligned, then this gives that

λ(N) >
√
c√
β
is needed for detectability; equivalently,

β >
c

λ2(N)
=

( √
c

λ(N)

)2

.
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Remarks

This is in accord with the fact, that in the k = 1 case, in the
Erdős–Rényi model, when the largest eigenvalue of N is around c,
then β = c

µ2
1
= 1

µ1
is the percolation threshold, see Newman,

M. E. J., Message passing methods on complex networks, Proc. R.
Soc. London A (2023).

In the multiclass scenario, c
µ2
i
are further phase transitions, leading

to i clusters, for i = 1, . . . , k0 until µk0 ≥
√
c, but µk0+1 <

√
c.

Also note that this has relevance only if λmax(N) >
√
c, so

eigenvalues of N greater than
√
c give the phase transitions.

Since µ1 ≥ µ2 ≥ . . . , with larger β, larger number of clusters can
be detected.
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The SBM2 symmetric model

r1 = r2 =
1
2 , c1 = c2 =

cin+cout
2 = c. In the assortative case,

cin − cout = |cin − cout | > 2
√
c =

√
2
√
cin + cout .

If C and c are multiplied with β, we get
β(cin − cout) >

√
2
√
β(cin + cout). This means that

cin − cout >
√
2

√
cin + cout√

β
. (1)

Since β < 1, the right hand side gives a higher lower threshold
than β = 1. This is also equivalent to

β >
2(cin + cout)

(cin − cout)2
,

which makes sense if 2(cin+cout)
(cin−cout)2

< 1, i.e., if

cin − cout > 2
√
c =

√
2
√
cin + cout . So, until equality is attained

in (1), additional β-percolation can give detectable clusters too.
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When c1 = · · · = ck = c

Then µ1 = c, cT = RC, and its eigenvalues are closely aligned
with the eigenvalues µ2, . . . , µk of N.
But c1 = · · · = ck = c is only approximately holds when n → ∞.
Even then, the approximate bound β > c

µ2
i
has a leverage as k is

increased.
In the cin versus cout scenario, c1 = · · · = ck = c is equivalent to
r1 = · · · = rk , and so,

β|cin − cout | > k
√
βc, |cin − cout | > k

√
c√
β

which allows more detectable clusters if β is increased, see Figures.
SBMW

k is a generalization of the SBMβ
k model, where the edges

may have different edge-retention probability (wij for the connected
node-pair i , j). Then the eigenvalues of B = ND are used.
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