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Abstract:We discuss spectral clustering from a variety of perspectives that include extending techniques to
rectangular arrays, considering the problem of discrepancy minimization, and applying the methods to
directed graphs. Near-optimal clusters can be obtained by singular value decomposition together with the
weighted k-means algorithm. In the case of rectangular arrays, this means enhancing the method of
correspondence analysis with clustering, while in the case of edge-weighted graphs, a normalized
Laplacian-based clustering. In the latter case, it is proved that a spectral gap between the k 1( )− st and
kth smallest positive eigenvalues of the normalized Laplacian matrix gives rise to a sudden decrease of the
inner cluster variances when the number of clusters of the vertex representatives is 2k 1− , but only the first
k 1− eigenvectors are used in the representation. The ensemble of these eigenvectors constitute the
so-called Fiedler-carpet.

Keywords: multiway discrepancy, correspondence analysis, normalized Laplacian, multiway cuts, Fiedler-
vector, weighted k-means algorithm
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1 Introduction

The spectral graph theory started developing about 50 years ago (see, e.g., Hoffman [1], Fiedler [2], Cvetković
et al. [3], and Chung [4]), with the goal of characterizing certain structural properties of a graph by means of
the eigenvalues of its adjacency or Laplacianmatrix. In the last decades of the 20th century, the eigenvectors
corresponding to the smallest few eigenvalues of the Laplacian matrix were used to obtain clusterings of the
vertices into disjoint parts so that the inter-cluster relations are negligible compared to the intra-cluster ones.
The motivation for finding such clusterings comes from machine learning, where the classification of data
into a small number of highly similar clusters is a common task. In this setup, the famous Fiedler-vector, the
eigenvector, corresponding to the smallest positive Laplacian eigenvaluewasused to classify thevertices into
two parts. To find a clustering with k 2≥ parts, one can instead use the k 1− eigenvectors corresponding to
the k 1− smallest positive eigenvalues. It was also noted in [5] that it is better to have the more eigenvectors
but no exact estimates between the spectral gap and the quality of the clustering were available, except the
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k 1= and k 2= cases; the former case is related to the isoperimetric number and expander graphs (see, e.g.,
[4,6,7]), while the latter one is related to the sum of the inner variances of 2-clusterings (see [8]).

Since then, the problem has been generalized in several ways: to edge-weighted graphs and rectan-
gular arrays of nonnegative entries (e.g., microarrays in biological genetics and forensic science [9–12]),
and to degree-corrected adjacency and Laplacian matrices [13,14]. Starting in the 21st century, physicists
and social scientists introduced modularity matrices and investigated the so-called anticommunity struc-
tures (where intracluster relations are negligible compared to the intercluster ones) in contrast to the former
community structures [15]. By uniting these two approaches, so-called regular cluster pairs with small
discrepancy can be defined, where one looks for homogeneous clusters (e.g., in microarrays, one looks for
groups of genes that similarly influence the same groups of conditions), see [10]. The existence of such a
regular structure is theoretically guaranteed by the Abel-prize winner Szemeredi’s regularity lemma [16],
which, for any small positive ε, guarantees a number k k ε( )= of clusters (independent of the numbers of
vertices) such that by partitioning the vertices into k parts (sometimes requiring possibly a small excep-
tional part), the pairs of clusters have discrepancy less than ε. However, this k guaranteed by the regularity
lemma can be enormously large and not applicable for practical purposes. Our goal is to give a moderate k,
where the sum of the inner variances of 2k 1− clusters is estimated as mentioned earlier by the spectral gap
between the k 1( )− st and kth smallest positive normalized Laplacian eigenvalues, even in the worst-case
scenario. This is the generalization of a theorem of [8] that was applicable only to the k 2= situation. In that
situation, k2k 1 =− , and so the Fiedler vector was used for clustering into k 2= parts. If k 2> , then we use
k 1− nontrivial eigenvectors, the ensemble of which form what we call Fiedler-carpet. In special cases, e.g.,
in the case of generalized multiclass random or quasirandom graphs, both the objective function of the
k-means algorithm and the k-way discrepancy dramatically decrease compared to the values for k 1− [17],
where the number of clusters is one more than the number of eigenvectors used in the representation.
However, in the generic case, the number of eigenvectors used for the classification is much smaller than
the number of clusters, which is promising from the point of view of computational complexity.

The organization of this article is as follows. In Section 2, we define the most important notions and
facts concerning normalized Laplacian spectra and multiway discrepancy of rectangular arrays with non-
negative entries [10,11,13,17,18]. In Section 3, the main theorem is stated and proved. The proof is based on
the energy minimizing representation, and we analyze the structure of the vertex representatives and the
underlying spectral subspaces that are mapped in a convenient way. In Appendix A, a few technical details,
simulation results, and plots of the so-obtained Fiedler-carpet are presented. In Section 4, an application to
the directed graph of a migration dataset is discussed. This discussion is supplemented with more figures in
Appendix C. Appendix B contains pseudocode for the algorithms, which are discussed. In Section 5, the
main contributions are summarized and conclusions are drawn.

2 Minimal and regular cuts versus spectra

Let W be the n n× edge-weight matrix of a graph G on n vertices. It is symmetric and has 0 diagonal and
nonnegative entries. In the case of a simple graph,W wij( )= is the usual adjacency matrix. The generalized

degrees are d wi j
n

ij1= ∑ = , for i n1, ,= … . Assume that dis are all positive and the diagonal degree-matrix D
contains them in its main diagonal. The Laplacian of G is L D W= − , while its normalized Laplacian is

L D LD I D WD .D
1 2 1 2 1 2 1 2= = −− / − / − / − /

Because of the normalization, LD is not affected by the scaling of the edge-weights. Therefore, we can
assume that d 1i

n
i1∑ == . LD is positive semidefinite, and if W is irreducible (G is connected), then its eigen-

values are

λ λ λ0 2n0 1 1= < ≤⋯≤ ≤−

with unit-norm pairwise orthogonal eigenvectors u u u, , , n0 1 1… − . In particular, d du d, , n
T T

0 1( )= … ≕ .
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For d n1 < < , the row vectors of the n d× matrix X D Du u, , d
1 2

1
1 2( )= …∗ − / − / are optimal d-dimensional

representatives r r, , n1 …∗ ∗ of the vertices. More precisely, X∗ minimizes the energy function:

X X LXQ w r r tr ,d
i

n

j i

n

ij i j
T

1

1

1

2( ) ( )∑ ∑= ‖ − ‖ =
=

−

= +

(1)

where the general vertex representatives r r, , n
d

1 �… ∈ are row vectors of the n d× matrix X , and they are
required to satisfy the constraints X DX IT

d= and d r 0i
n

i i1∑ == . Intuitively, minimizing the energy XQd( )
forces representatives of vertices connected with large edge-weights to be close to each other. The minimum
of XQd( ), attained at X∗, is the sum of the d smallest positive eigenvalues of LD.

The weighted k-variance of these representatives is defined as follows:

XS d r cmin ,k
V V i

k

j V
j j i

2
, , 1

2

k k
i

1
( )

( )
∑ ∑= ‖ − ‖

… ∈
= ∈

�

(2)

where U dVol j U j( ) = ∑ ∈ , dc ri V j V j j
1

Vol i i( )
= ∑ ∈ is the weighted center of the cluster Vi, and the minimization is

over the set k� of proper k-partitions P V V, ,k k1( )= … of the vertex set.
We will use the weighted k-means algorithm to approach this minimum. In [19], it is stated that if the

data satisfy the k-clusterable criterion (S ε Sk k
2 2

1
2≤ − with a small enough ε), then there is a PTAS (polynomial

time approximation scheme) for the k-means problem. This is the situation we usually encounter.
It is well known that the sum of the k bottom eigenvalues of the normalized Laplacian matrix estimates

from below the k-way normalized cut of G, which is f G f P Gmin ,k P kk k( ) ( )= ∈� , where

f P G
V V

w V V w V V
V

k w V V
V

, 1
Vol

1
Vol

, ,
Vol

,
Vol

.k
a

k

b a

k

a b
a b

a

k
a a

a a

k
a a

a1

1

1 1 1
⎜ ⎟( ) ⎛
⎝ ( ) ( )

⎞
⎠

( ) ( )
( )

( )
( )

∑ ∑ ∑ ∑= + = = −
=

−

= + = =

Here, w V V w,a b i V j V ija b
( ) = ∑ ∑∈ ∈ is the weighted cut between the cluster pairs. Since λi

k
i1

1
∑ =

− is the overall
minimum of Qk (on the orthogonality constraints) and f Gk ( ) is the minimum over partition vectors (having
stepwise constant coordinates over the parts of Pk), the relation

λ f G
i

k

i k
1

1
( )∑ ≤

=

−

(3)

is easy to prove. This estimate is sharper if the eigensubspace spanned by the corresponding eigenvectors is
closer to that of the partition vectors in the convenient k-partition of the vertices, the one produced by the
weighted k-means algorithm. Therefore, XSk k

2
1( )−

∗ indicates the quality of the k-clustering based on the k 1−

bottom eigenvectors (excluding the trivial one). Later, it will be used that neitherQk nor XSk k
2

1( )−
∗ is affected

by the orientation of the orthonormal eigenvectors.

In [8], it is proved that XS λ
λ2

2
1

1

2
( ) ≤∗ , so the larger the gap after the first positive eigenvalue of LD, the

sharper the estimate in (3) is. Here, this statement is generalized to the gap between λk 1− and λk, but instead
of k clusters, we must consider 2k 1− ones, which are based on k 1( )− -dimensional vertex representatives.
This contrasts with the typical situation in the literature (see, e.g., [20–22]), where the number of clusters is
the same as the number of eigenvectors used for the classification. The message of Theorem 1 of Section 3 is
that the number of clusters is much higher in the generic case than the dimension of the representatives, at
least in the minimum multiway cut problems. With the discrepancy objective, the famous Szemerédi’s
regularity lemma [16] also suggests this phenomenon.

Now we consider the discrepancy view. The theory can be better illustrated by considering rectangular
arrays of nonnegative entries; adjacency matrices of simple, edge-weighted, and directed graphs are special
cases of such matrices.

In many applications, for example, when microarrays are analyzed, the data are collected in the form of
an m n× rectangular matrix C cij( )= of nonnegative real entries. (If the entries are integer frequency
counts, then the array is called contingency table in statistics.) We assume that C is nondegenerate, i.e.,
CCT (when m n≤ ) or C CT (when m n> ) is irreducible. Consequently, the row-sums d ci j

n
ijrow, 1= ∑ = and
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column-sumsd cj i
m

ijcol, 1= ∑ = ofC are strictly positive, and the diagonal matrices D d ddiag , , mrow row,1 row,( )= …

andD d ddiag , , ncol col,1 col,( )= … are regular.Without the loss of generality,we also assume that c 1i
n

j
m

ij1 1∑ ∑ == = ,

since neither our main object, the normalized contingency table

C D CD ,D row
1 2

col
1 2= − / − / (4)

nor the multiway discrepancies to be introduced are affected by any uniform scaling of the entries of C. It is
known that the singular values of CD are in the 0, 1[ ] interval. The positive singular values, enumerated in
nonincreasing order, are the real numbers denoted by

s s s1 0,r0 1 1= > ≥⋯≥ >−

where C Cr rank rankD( ) ( )= = . Provided C is nondegenerate, 1 is a single singular value; it is called the
trivial singular value and is denoted by s0 since it corresponds to the trivial pair of singular vectors, which
are disregarded in clustering problems. This is a well-known fact of correspondence analysis; for further
explanation, see [13,23] and the subsequent paragraph.

For a given integer k m n1 min ,{ }≤ ≤ , we are looking for k-dimensional representatives r r, , m
k

1 �… ∈ of
the rows and q q, , n

k
1 �… ∈ of the columns of C such that they minimize the energy function:

Q c r qk
i

m

j

n

ij i j
1 1

2∑∑= ‖ − ‖
= =

(5)

subject to

I Id drr q qand .
i

m

i i i
T

k
j

n

j j j
T

k
1

row,
1

col,∑ ∑= =
= =

(6)

When minimized, the objective function Qk favors k-dimensional placement of the rows and columns
such that representatives of columns and rows with large association cij( ) are close to each other. It is easy
to prove that the minimum is obtained by the singular value decomposition (SVD):

C s v u ,D
k

r

k k k
T

0

1

∑=
=

−

(7)

where r n mmin ,{ }≤ is the rank of CD. The constrained minimum of Qk is k s2 i
k

i0
1

− ∑ =
− , and it is attained

with row- and column-representatives that are row vectors of the matrices D v v v, , , krow
1 2

0 1 1( )…− /
− and

D u u u, , , kcol
1 2

0 1 1( )…− /
− , respectively.

Note that if the entries of C are frequency counts and their sum (N ) is the sample size, then the χ2

statistic, which measures the deviation from independence, is

χ N s .
i

r

i
2

1

1
2∑=

=

−

(8)

If the χ2 test based on this statistic indicates significant deviance from independence (i.e., from the rank 1
approximation of C), then one may look for the optimal rank k approximation Ck r1 rank( ( ))< < = , which
is constructed using the first k singular vector pairs.

When bi-clustering the rows and columns of C one may also look for subtables close to independent
ones. This is measured by the discrepancy. In [10], the multiway discrepancy of the rectangular matrix C of
nonnegative entries in the proper k-partition R R, , k1 … of its rows and C C, , k1 … of its columns is defined as
follows:

C R R C C c X Y ρ R C X Y
X Y

ρ X Y ρ R C X Y

md ; , , , , , max , , Vol Vol
Vol Vol

max , , Vol Vol ,

k k
a b k

X R Y C

a b

a b k
X R Y C

a b

1 1
1 ,

,

1 ,
,

a b

a b

( )
∣ ( ) ( ) ( ) ( )∣

( ) ( )

∣ ( ) ( )∣ ( ) ( )

… … =
−

= −

≤ ≤

⊂ ⊂

≤ ≤

⊂ ⊂

(9)
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where c X Y c, i X j Y ij( ) = ∑ ∑∈ ∈ is the cut between X Ra⊂ and Y Cb⊂ , X dVol i X irow,( ) = ∑ ∈ is the volume of the

row-subset X , and Y dVol j Y jcol,( ) = ∑ ∈ is the volume of the column-subsetY , whereas ρ R C,a b
c R C

R C
,

Vol Vol
a b

a b
( ) ( )

( ) ( )
=

denotes the relative density between Ra and Cb. The minimum k-way discrepancy of C itself is expressed as
follows:

C C R R C Cmd min md ; , , , , , .k R R
C C

k k, ,
, ,

1 1
k

k

1

1

( ) ( )= … …
…

…

In [10], the following is proved:

C Cs k k9md 2 9 lnmd ,k k k( )( ( ))≤ + −

provided C0 md 1k( )< < . In the forward direction, the following is established in [13]. Given the m n×

contingency table C, consider the spectral clusters R R, , k1 … of its rows and C C, , k1 … of its columns,
obtained by applying the weighted k-means algorithm to the k 1( )− -dimensional row- and column-repre-
sentatives. Let Sk,row

2 and Sk,col
2 denote the minima of the weighted k-means algorithm, applied to the rows

and columns, respectively. Then, under some balancing conditions for the margins and for the cluster sizes,
C B k S S smd 2k k k k,row ,col( ) ( ( ) )≤ + + , where B is some constant that depends only on the balancing con-

ditions, and does not depend on m and n. Roughly speaking, the two directions together imply that if sk is
“small” and “much smaller” than sk 1− , then one may expect a simultaneous k-clustering of the rows and
columns of C with small k-way discrepancy. This is the case for generalized random and quasirandom
graphs [17].

This notion can be extended to an edge-weighted graph G and denoted by Gmdk( ). In that setup, C
plays the role of the weighted adjacency matrix. Here, the singular values of the normalized adjacency
matrix are the absolute values of the eigenvalues, which are encountered in the decreasing order.

At this point, we introduce some new matrices, originally defined by physicists (see [15]). The mod-
ularity matrix of an edge-weighted graph G is defined as M W ddT= − , where the entries of W sum to 1.
The normalized modularity matrix of G (see [24]) is expressed as follows:

M D MD D WD Wd d d d .D D
T T1 2 1 2 1 2 1 2= = − = −− / − / − / − /

The normalized modularity matrix is the normalized edge-weight matrix deprived of the trivial dyad.
Obviously, L I W I M d dD D D

T
= − = − − , see [13].

Therefore, the k 1− largest singular values of MD are the absolute values of the k 1− largest absolute
value eigenvalues of WD (except the trivial 1). These, in turn, are 1 minus the k 1− positive eigenvalues of
LD, which are farthest from 1. If those are all less than 1, then these are λ λ1 , , 1 k1 1− … − − . In this case, the
regularity-based spectral clustering boils down to the minimum cut objective.

Otherwise, for a k n1 < < integer fixed, in the modularity-based spectral clustering, we look for the
proper k-partition V V, , k1 … of the vertices such that the within- and between-cluster discrepancies are
minimized. To motivate the introduction of the exact discrepancy measure, observe that the ij entry of
M is w d dij i j− , which is the difference between the actual edge-weight between the vertices i and j and the
edge-weight that is expected under independent attachment of them with probabilities di and dj, respec-
tively. Consequently, the difference between the actual and the expected total edge-weight between the
subsets X Y V, ⊂ is expressed as follows:

w d d w X Y X Y, Vol Vol .
i X j Y

ij i j( ) ( ) ( ) ( )∑ ∑ − = −
∈ ∈

A directed edge-weighted graph WG V ,( )= is described by its quadratic, but usually not symmetric
weighted adjacency matrixW wij( )= of zero diagonal, where wij is the nonnegative weight of the j i→ edge

i j( )≠ . The row-sums d wi j
n

ijin, 1= ∑ = and column-sums d wj i
n

ijout, 1= ∑ = ofW are the in- and out-degrees, while
D d ddiag , , nin in,1 in,( )= … and D d ddiag , , nout out,1 out,( )= … are the diagonal in- and out-degree matrices.
The multiway discrepancy of the directed, edge-weighted graph WG V ,( )= in the in-clustering V V, , kin,1 in,…

and out-clusteringV V, , kout,1 out,… of its vertices is expressed as follows:
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G V V V V
w X Y ρ V V X Y

X Y
md ; , , , , , max

, , Vol Vol
Vol Vol

,k k
a b k

X V Y V

b a

n
in,1 in, out,1 out,

1 ,
,

out, in, in out

out
a bout, in,

( )
∣ ( ) ( ) ( ) ( )∣

( ) ( )
… … =

−

≤ ≤

⊂ ⊂

where w X Y,( ) is the sum of the weights of the X Y→ edges, whereas X dVol i X iin in,( ) = ∑ ∈ and YVolout( ) =

dj Y jout,∑ ∈ are the out- and in-volumes, respectively. The minimum k-way discrepancy of the directed edge-
weighted graph WG V ,( )= is expressed as follows:

G G V V V Vmd min md ; , , , , , .k V V
V V

k k, ,
, ,

in,1 in, out,1 out,
k

k

in,1 in,

out,1 out,

( ) ( )= … …
…

…

In [10], it is proved that

s G k k G9md 2 9 lnmd ,k k k( )( ( ))≤ + −

where sk is the kth largest nontrivial singular value of the normalized weighted adjacency matrix
W D WDD in

1 2
out

1 2= − / − / . In Section 4, we apply the SVD of WD to find migration patterns, i.e., emigration and
immigration trait clusters.

3 Mapping the Fiedler-carpet: more clusters than eigenvectors

Theorem 1. Let WG V ,( )= be connected edge-weighted graph with generalized degrees d d, , n1 … and
assume that d 1i

n
i1∑ == . Let λ λ λ0 2n0 1 1= < ≤⋯≤ ≤− denote the eigenvalues of the normalized Laplacian

matrix LD ofG. Then, for the weighted 2k 1− -variance of the optimal k 1( )− -dimensional vertex representatives,
comprising row vectors of the matrix Xk 1−

∗ , the following upper estimate holds:

XS
λ

λ
,k

j
k

j

k2
2

1
1
1

k 1( ) ≤
∑

−
∗ =

−

−

provided λ λk k1 <− .

Proof. Recall that, with the notation of Section 2, X D Du u, ,k k1
1 2

1
1 2

1( )= …−
∗ − / − /

− , where the trivial D u 11 2
0 =− /

vector is disregarded, and u u u, , k0 1 1… − are unit-norm, pairwise orthogonal eigenvectors corresponding to
the eigenvalues λ λ λ0 k0 1 1= < ≤ ⋯≤ − of LD, respectively. As the trivial eigenvector is disregarded, we only
use the coordinates of the vectors D x xx u , ,j j j jn

T1 2
1( )≔ = …− / for j k1, , 1= … − .

Since u u, k1 1… − form an orthonormal system and they are orthogonal to the u d0 = vector, for the
coordinates of xj, the following relations hold:

d x d x j k d x x j l0, 1 1, , 1 , 0 .
i

n

i ji
i

n

i ji
i

n

i ji li
1 1

2

1
( ) ( )∑ ∑ ∑= = = … − = ≠

= = =

(10)

Now we will find a “witness,” i.e., a vector y yy , , n
T

1( )= … such that for it, the conditions

d y 0
i

n

i i
1

∑ =
=

(11)

and

d x y j k0, 1, , 1
i

n

i ji i
1

∑ = = … −
=

(12)

hold. Moreover, we will find y with coordinates in the following form:

y x a b i n, 1, , ,i
j

k

ji j
1

1
∣ ∣∑≔ − − = …

=

−

(13)

Fiedler–carpet  399



where a a, , k1 1… − and b are appropriate real numbers. We will show that there exist such real numbers so
that yi’s defined by them satisfy conditions (11) and (12).

Indeed, when we already have a a, , k1 1… − , the aforementioned conditions together with d 1i
n

i1∑ == yield

b b b d x a j k, where , 1, , 1.
j

k

j j
i

n

i ji j
1

1

1
∣ ∣∑ ∑= = − = … −

=

−

=

(14)

With this choice of b, the fulfillment of (12) means that for j k1, , 1= … − :

d x y d x x a b 0.
i

n

i ji i
i

n

i ji
l

k

li l l
1 1 1

1
⎛

⎝
⎜ ∣ ∣ ⎞

⎠
⎟∑ ∑ ∑= − − =

= = =

−

But (10) implies that

d x b 0
i

n

i ji l
1

∑ =
=

for l k1, , 1= … − . This provides the following system of equations for a a, , k1 1… − :

f d x x a j k0, 1, , 1.j
i

n

i ji
l

k

li l
1 1

1
∣ ∣∑ ∑= − = = … −

= =

−

(15)

We are looking for the root of the f f f, , :k
k k

1 1
1 1� �( )= … →−

− − function of stepwise linear coordinate
functions. To prove that f has a root, we will use the multi-dimensional generalization of the Bolzano
theorem: a continuous map between two normed metric spaces of the same dimensions takes a connected
set into a connected one. Because of symmetry considerations, the range contains the origin, see Appendix A
for further details.

Now let us define the two cluster centers for the jth coordinates by

c a b c a band .j j j j j j1 2= − = +

Observe that

x a b
c x x a
x c x a

if
if ;ji j j

j ji ji j

ji j ji j

1

2
∣ ∣ ⎧

⎨⎩
− − =

− <

− ≥

therefore,

x a b x c x cmin ,ji j j ji j ji j1 2∣ ∣ {∣ ∣ ∣ ∣}− − = − − (16)

holds for i n1, ,= … ; j k1, , 1= … − . For j k1, , 1= … − , they form 2k 1− centers in k 1− dimensions.
Let

σ d yy
i

n

i i
2

1

2( ) ∑=
=

be the variance of the coordinates of y with respect to the discrete measure d d, , n1 … . Due to (16),
Xσ Sy k

2
2
2

1k 1( ) ( )≥ −
∗

− . Define the normalized vector y, i.e., the vector z n�∈ of the following coordinates:

z
y

σ
i n

y
, 1, , ;i

i

( )
= = …

obviously, d z 1i
n

i i1
2∑ == . Then,

z z
x x σ y

max 1 ,
i m

i m

j
k

ji jm1
1

∣ ∣
∣ ∣ ( )

−

∑ −
≤

≠
=
−

since, by the definition of yi, the relation
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y y x x i mi m
j

k

ji jm
1

1
∣ ∣ ∣ ∣ ( )∑− ≤ − ≠

=

−

holds.
Let X X z x x z, , ,k k k1 1 1( ) ( )= = …−

∗
− be n k× matrix, containing valid k-dimensional representatives

r r, , n1 … of the vertices in its rows; recall that the n k× matrix X Dx x u, ,k k k1 1
1 2( )= …∗

−
− / contains the optimal

k-dimensional representatives in its rows. Observe that Xk and Xk
∗ differ only in their last columns. Let ri

∗

denote the vector comprised of the first k 1− coordinates of ri, i n1, ,= … . These are optimal k 1( )− -dimen-
sional representatives of the vertices. By the optimality of the k-dimensional representation and using
equation (1),
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which, by subtracting 1 from both the left- and right-hand sides and taking the reciprocals, finishes the
proof. □

Note that only if λ λk k1 <− , uk and xk are not in the subspace spanned by u u, , k1 1… − . Theorem 1 indicates the
following clustering property of the k 1( )− st and kth smallest normalized Laplacian eigenvalues: the
greater the gap between them, the better the optimal k-dimensional representatives of the vertices can
be classified into 2k 1− clusters.

Figure 1 shows a graph with three well-separated clusters, as well as the image of the corresponding
map f : 2 2� �→ of the Fiedler-carpet as used in the proof of Theorem 1.

The image of f contains the origin, and we can find by inspection a pair a a,1 2( ) for which f a a,1 2( ) is
approximately zero; namely, choosing a 0.190991 = − and a 0.356882 = − gives f a a, 0.000002,1 2( ) (≈ −

0.00000001). The two-dimensional representative of vertex i is the point x x,i i1 2( ) for i n1,= … ; these are

Figure 1: A graph with three well-separated clusters, and the image of its Fiedler-carpet.
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plotted in Figure 2, where the colors indicate the cluster memberships and the black point denotes the
approximate root of f .

Some remarks are in order:
– Theorem 1 is the generalization of Theorem 2.2.3 of [8]. In the k 2= case, k2k 1 =− , but in general, the

number of clusters is much larger than that of the relevant eigenvectors.

– The statement of the theorem has relevance, since for any k 0> , the relation λ k λ1j
k

j k1
1 ( )∑ < −=

− holds; but

with analysis of variance considerations, S k 1
2
2
k 1 ≤ −− also holds. In particular, when k 2= , only one

eigenvector is used for the representation. The total inertia of the coordinates is 1, and it can be divided
into the sum of nonnegative within- and between-cluster inertias. The within-cluster inertia is the sum of
the inner variances of the two clusters, which is S2

2, and it is at most 1. (Here, the variances are calculated
with respect to the discrete distribution d d, , n1 … .) When k 1( )− -dimensional representatives are used,

then the total inertia is X DX I ktr tr 1k
T

k k1 1 1( ) ( )= = −− − − , and the sum of the inner variances is again at

most k 1− , but it is further bounded with
λ

λ
j
k

j

k

1
1∑ =

−

by Theorem 1.

– The vector u1 is called Fiedler-vector of the (nonnormalized) Laplacian. Here, we use the ensemble of the
first k 1− transformed eigenvectors of the normalized Laplacian together, the so-called Fiedler-carpet.

4 Applications

We investigated the international migrant stock by the country of origin and destination in the years 2015
and 2019. The focus is on 41 European countries plus the United States of America and Canada. The data¹
are based on the official registered migrants numbers, where columns and rows correspond to the country
of origin and the country of destination, respectively.

Here, the quadratic, but not symmetric edge-weight matrix contains weights of bidirected edges
(the diagonal is zero): the i j, entry is the number of persons going j i→ . Via SVD of the normalized table,

Figure 2: Two-dimensional vertex representatives of the graph of Figure 1. The black point denotes the approximate root of f .



1 United Nations, Department of Economic and Social Affairs, Population Division, International Migrant Stock 2019 (https://
www.un.org/en/development/desa/population/migration/data/estimates2/estimates19.asp).
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we can find emigration (column) and immigration (row) clusters, between which the migration is the best
homogeneous (in terms of discrepancy).

Both for the 2015 and 2019 data, there was a gap after four nontrivial singular values, and therefore, the
corresponding four singular vector pairs were used to find five emigration and immigration trait clusters.
• Singular values, 2015:

1, 0.79098, 0.71857, 0.67213, 0.56862, 0.45293, 0.40896, 0.38178, 0.36325, 0.34785, 0.32648, 0.31769,
0.2996, 0.27927, 0.26566, 0.24718, 0.22638, 0.20632, 0.18349, 0.1651, 0.14384, 0.1359, 0.12721, 0.12092,
0.11816, 0.10374, 0.09545, 0.08278, 0.0738, 0.06371, 0.05673, 0.04553, 0.03488, 0.03107, 0.02967,
0.02693, 0.01557, 0.00788, 0.00584, 0.00519, 0.00191, 0.0017, 0.00099.

• Singular values, 2019:
1, 0.77844, 0.70989, 0.65059, 0.55122, 0.43612, 0.39512, 0.36194, 0.3558, 0.33882, 0.32174, 0.30719,

0.29601, 0.28181, 0.26865, 0.259, 0.22421, 0.1917, 0.17988, 0.1516, 0.13671, 0.13243, 0.12397, 0.11542,
0.10598, 0.09216, 0.08889, 0.07958, 0.06835, 0.06154, 0.05377, 0.04412, 0.03436, 0.03124, 0.02899,
0.02745, 0.01507, 0.00814, 0.00619, 0.0051, 0.00216, 0.00129, 0.00089.

In the discrepancy-based spectral clustering, the number of clusters is one more than the number of
structural singular values (excluding the trivial 1). In our case, the number of clusters was five. The five
emigration and immigration trait clusters for 2015 are shown in Tables 1 and 2, whereas those for 2019 are
shown in Tables 3 and 4. Figure 3(a) and (b) illustrate the immigration–emigration cluster-pairs with the
countries rearranged by their cluster memberships. The frequency counts are represented with light to dark
squares.

In 2015, by χ2 test, we found the smallest discrepancy between the emigration trait cluster number 2
and immigration trait cluster number 4, i.e., the subtable formed by them was close to an independent table
of rank 1. The clusters were similar in the 2 years; in 2019, the smallest discrepancy was found between the
emigration trait cluster number 2 and immigration trait cluster number 5, i.e., between the Balcanian and

Table 1: Country memberships of emigration trait clusters, 2015

Cluster # Emigration countries

1 Austria, Belgium, Bulgaria, Canada, Czechia, Denmark, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, Monaco, Netherlands, North Macedonia,
Norway, Poland, Portugal, Romania, Serbia, Slovakia, Spain, Sweden, Switzerland, United Kingdom, United
States of America

2 Bosnia and Herzegovina, Croatia, Montenegro, Slovenia
3 Albania
4 Belarus, Estonia, Republic of Moldova, Ukraine
5 Russian Federation

Table 2: Country memberships of immigration trait clusters, 2015

Cluster # Immigration countries

1 Albania, Austria, Belgium, Bulgaria, Canada, Czechia, Denmark, Finland, France, Germany, Hungary, Iceland,
Ireland, Liechtenstein, Luxembourg, Malta, Monaco, Netherlands, Norway, Portugal, Romania, Slovakia, Spain,
Sweden, Switzerland, United Kingdom, United States of America

2 Greece, Italy, North Macedonia
3 Bosnia and Herzegovina, Croatia, Montenegro, Serbia, Slovenia
4 Belarus, Estonia, Latvia, Lithuania, Ukraine
5 Poland, Republic of Moldova, Russian Federation
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Baltic countries in both years. Correspondence analysis results with cluster memberships are found in
Appendix C.

Here, we wanted to find as homogeneous cluster pairs as possible, as for migration patterns vis-a-vis
the emigration–immigration. Our graph was a relatively small and sparse one, so Figure 3(a) and (b) show a
large and some small clusters for both emigration and immigration. However, the emigration–immigration
cluster pair with the smallest discrepancy is spotted by the χ2 test. In larger and more dense networks, e.g.,
in metabolic networks with bidirected edges between the vertices (enzymes), the weights representing the
intensity of chemical reactions, so-called autocatalytic subnetworks could be found with our method, based
on discrepancies.

Table 3: Country memberships of emigration trait clusters, 2019

Cluster # Emigration countries

1 Austria, Belgium, Bulgaria, Canada, Czechia, Denmark, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, Monaco, Netherlands, North Macedonia,
Norway, Poland, Portugal, Romania, Serbia, Slovakia, Spain, Sweden, Switzerland, United Kingdom, United
States of America

2 Bosnia and Herzegovina, Croatia, Montenegro, Slovenia
3 Albania
4 Belarus, Estonia, Republic of Moldova, Ukraine
5 Russian Federation

Table 4: Country memberships of immigration trait clusters, 2019

Cluster # Immigration countries

1 Albania, Austria, Belgium, Bulgaria, Canada, Czechia, Denmark, Finland, France, Germany, Hungary, Iceland,
Ireland, Liechtenstein, Luxembourg, Malta, Monaco, Netherlands, Norway, Portugal, Romania, Slovakia, Spain,
Sweden, Switzerland, United Kingdom, United States of America

2 Bosnia and Herzegovina, Croatia, Montenegro, Serbia, Slovenia
3 Greece, Italy, North Macedonia
4 Poland, Republic of Moldova, Russian Federation
5 Belarus, Estonia, Latvia, Lithuania, Ukraine

Figure 3: Immigration–emigration cluster-pairs with the countries rearranged by their cluster memberships. The frequency
counts are represented with light to dark squares. (a) 2015 and (b) 2019.
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5 Summary and author contributions

Spectral clustering is a collection of methods for clustering data points or vertices of a graph based on
combinatorial criteria with spectral relaxation. Here, we generalize spectral clustering in several ways:
– Instead of simple or edge-weighed graphs, we consider directed graphs and rectangular arrays of non-

negative entries. For these, the method of correspondence analysis gives low-dimensional representation
of the row and column items by means of SVD of the normalized table. This is applied to real-life data.

– Instead of the usual multiway minimum cut objective, we consider discrepancy minimization, for which
a near optimal solution is given by the k-means algorithm applied to the row and column representa-
tives, where the number of clusters k( ) is concluded from the gap in the singular spectrum. There are
theoretical results supporting this. Eventually, the near optimal clusters can be refined to decrease
discrepancy.

– The number of clusters can be larger than the number of eigenvectors entered in the classification. The
two are the same only in case of generalized random or quasirandom graphs, see [17]. In Theorem 1, an
exact estimate for the sum of the inner variances of 2k 1− clusters is given by means of the spectral gap
between the k 1( )− st and kth smallest normalized Laplacian eigenvalues by using the Fiedler-carpet of
the corresponding eigenvectors.

– When the number of clusters is the same as the number of eigenvectors entered in the classification,
Davis-Kahan type subspace perturbation theorems are applicable, as in this case, the k-partition vectors
span a k-dimensional subspace. However, if the number of parts is larger than that of the eigenvectors,
then finer methods are applicable, like our construction in the proof, using a “witness.”
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Appendix A

In the f : � �→ case: f f1= , a a1= and with the notation A xmini i1= , B xmaxi i1= for

f a d x x a
i

n

i i i
1

1 1( ) ∣ ∣∑= −
=

we have that f A 1( ) = and f B 1( ) = − . As f is continuous, it must have a root in A B,( ), by the Bolzano
theorem. Also note that this root of f is around the median of the coordinates of x1 with respect to the
discrete measure d d, , n1 … .

Then consider the f f f, :1 2
2 2� �( )= → case. The coordinate functions are stepwise linear, continuous

functions. The system of equations is expressed as follows:

f a a d x x a d x x a

f a a d x x a d x x a

, 0,

, 0.

i

n

i i i
i

n

i i i
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1 1 2
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1 1 1
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1 2 2

2 1 2
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2 1 1
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2 2 2

( ) ∣ ∣ ∣ ∣

( ) ∣ ∣ ∣ ∣

∑ ∑

∑ ∑

= − + − =

= − + − =

= =

= =

(A1)

With the notation A xmini i1= , B xmaxi i1= , C xmini i2= , D xmaxi i2= , where A B C D0, 0, 0, 0< > < > ,

f A C f B D f A D f B C, 1, 1 , , 1, 1 , , 1, 1 , , 1, 1 .( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= = − − = − = −

Furthermore, f x y, 1, 1( ) ( )= if x A y C,≤ ≤ ; f x y, 1, 1( ) ( )= − − if x B y D,≥ ≥ ; f x y, 1, 1( ) ( )= − if x A y D,≤ ≥ ;
and f B C, 1, 1( ) ( )= − if x B y C,≥ ≤ .

We want to show that f has a root within the rectangle A B C D, ,[ ] [ ]× . By the multivariate version of the
Bolzano theorem, the f -map of this rectangle is a connected region in 2� that contains the points
1, 1 , 1, 1 , 1, 1 , 1, 1( ) ( ) ( ) ( )− − − − as “corners.” We will show that it contains 0, 0( ) too.

Note that together with uj, the vector uj− is also a unit-norm eigenvector, so instead of xj, we can as well
use xj− for j 1, 2= , which gives four possible domains of f : next to the rectangle A B C D, ,[ ] [ ]× , the
rectangles B A C D, ,[ ] [ ]− − × , A B D C, ,[ ] [ ]× − − , and B A D C, ,[ ] [ ]− − × − − are also closed, bounded regions,
and the f -images of them show symmetry with respect to the coordinate axes. Therefore, it suffices to prove
that the map of the union of them contains the origin. In Section 2, we saw that neither the objective
function (Qk), nor the clustering is affected by the orientation of the eigenvectors, so the orientation is not
denoted in the sequel. Also notice that with counter-orienting u1 or/and u2: if a a,1 2( ) is a root of f , then a1−

instead of a1 and/or a2− instead of a2 will result in a root of f too.
The images are closed, bounded regions (usually not rectangles), but we will show that the opposite

sides of them are parallel curves and sandwich the f1 and f2 axes, respectively. As the f -values sweep the
region between these boundaries, the total range should contain the origin. Now the above, below, right,
and left boundaries are investigated.

– Above: Consider the boundary curve between ( 1, 1− ) and (1, 1). Along that, a C2 = and A a B1< < .
Let H i x a: i1 1{ }≔ > . Then, H ≠ ∅ and H̄ ≠ ∅; further,

f a C d x x a d x x C

d x x a d x x a

d x x a

d x a x
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(A2)

where we intensively used conditions (10).
– Below: Consider the boundary curve between ( 1, 1− − ) and (1, 1− ). Along that, a D2 = and A a B1< < .

Then,
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f a D d x x a d x x D

d x x a d x x a
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,
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– Between (horizontally): Consider the case when a u C D,2 ( )= ∈ fixed and A a B1< < . Then

f a u d x x a d x x u

d x x a d x x a d x x u d x u x

d x x a d x u d x
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So the f a u,2 1( ) arcs are all parallel to the boundary curves f a C,2 1( ) and f a D,2 1( ) and to each other.
In particular,

f a d x x a d x, 0 2 1 2 .
i H

i i i
i x

i i2 1 2 1 1
: 0

2
2

i2

( ) ( )∑ ∑= − − +
∈ >

This arc is either closer to the above or the below curve (which are in distance 2 from each other),
depending on whether d xi x i i: 0 2

2
i2

∑ > is less or greater than 1
2
, but is strictly positive by condition (10). Hence, if

u and u′ are “close” to 0, then the f a u,2 1( ) and f a u,2 1( )′ arcs are not identical, otherwise it can happen that
for some u u≠ ′:

d x u d x d x u d x .
i x u
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The same is true vertically.
– Right: Consider the boundary curve between (1, 1− ) and (1, 1). Along that, a A1 = andC a D2< < . Let

F i x a: i2 2{ }≔ > . Then, F ≠ ∅ and F̄ ≠ ∅; further,

f A a d x x A d x x a

d x x a d x x a

d x x a
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– Left: As from the left, consider the boundary curve between ( 1, 1− − ) and ( 1, 1− ). Along that, a B1 =

and C a D2< < . Then,

f B a d x x a d x a x, 1 2 1 2 .
i F

i i i
i F

i i i1 2 1 2 2
¯

1 2 2( ) ( ) ( )∑ ∑= − + − = − + −
∈ ∈

(A6)

– Between (vertically): Consider the case when a v A B,1 ( )= ∈ fixed and C a D2< < . Then,

f v a d x x a d x v d x, 1 2 1 2 2 .
i F

i i i
i x v

i i
i x v

i i1 2 1 2 2
:

1
2

:
1

i i1 1

( ) ( )∑ ∑ ∑= + − − + −
∈ > >
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So the f v a,1 2( ) arcs are all parallel to the boundary curves f A a,1 2( ) and f B a,1 2( ) and to each other. In
particular,

f a d x x a d x0, 2 1 2 .
i F

i i i
i x

i i1 2 1 2 2
: 0

1
2

i1

( ) ( )∑ ∑= − − +
∈ >

This arc is either closer to the right or the left curve (which are in distance 2 from each other), depending
on whether d xi x i i: 0 1

2
i1

∑ > is less or greater than 1
2
, but is strictly positive by condition (10). For this reason, if v

and v′ are “close” to 0, then the f v a,1 2( ) and f v a,1 2( )′ arcs are not identical, otherwise it can happen that for
some v v≠ ′:

d x v d x d x v d x .
i x v

i i
i x v

i i
i x v

i i
i x v

i i
:

1
2

:
1

:
1
2

:
1

i i i i1 1 1 1

∑ ∑ ∑ ∑− = − ′
> > > ′ > ′

(A7)

Therefore, any grid on the rectangle of the domain (its horizontal and vertical lines parallel to the a1 and
a2 axes) is mapped by f onto a lattice with horizontal and vertical, parallel arcs. This proves that f is one-to-
one whenever these arcs are not identical. The possible inconvenient phenomenon, when both equations
(A4) and (A7) hold for some u u≠ ′ and v v≠ ′ pairs, is experienced at the dark parts of Figure A1 near the
boundaries. However, f is injective in the neighborhood of the origin that does not contain any of the
finitely many eigenvector coordinates (because there it has purely linear coordinate functions). This also
depends on the underlying graph: if it shows symmetries, then its weighted Laplacian has multiple eigen-
values and/or multiple coordinates of the eigenvectors that may cause complications.

Figure A1: Images of the four possible orientations of the three-dimensional Fiedler-carpet of the graph in Figure A2.
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To prove that the above–below boundaries sandwich the f1 axis and the right–left boundaries sandwich
the f2 axis, the following investigations are made. Because the investigations are of similar vein, only the
first of them will be discussed in details. We distinguish between eight cases (denoted by an acronym),
depending on, where half of boundary is considered. The estimates are supported by specific orientations of
the unit norm eigenvectors. If u1 is oriented so that for the coordinates of Dx u1

1 2
1= − /

d x 1
2i x

i i
: 0

1
2

i1

∑ <
>

holds, then it is called positive orientation, whereas the opposite is negative. Likewise, the orientation of
u2 is positive if for the coordinates of of Dx u2

1 2
2= − /

d x 1
2i x

i i
: 0

2
2

i2

∑ <
>

(A8)

holds, otherwise it is negative.
AL (Above boundary, left half), when a 01 > : using the last but one line of equation (A2),

f a C d x x a

d x x a d x x a

d x x a

, 2 1

2 2 1

2 1.

i H
i i i

i H x
i i i

i H x
i i i

i H x
i i i

2 1 2 1 1

, 0
2 1 1

, 0
2 1 1

, 0
2 1 1

i i

i

2 2

2

( ) ( )

( ) ( )

( )

∑

∑ ∑

∑

= − +

= − + − +

≥ − +

∈

∈ > ∈ ≤

∈ ≤

To prove that f a C, 02 1( ) ≥ , it suffices to prove that

d x x a 1
2

,
i H x

i i i
, 0

2 1 1
i2

( )∑ − ≥ −
∈ ≤

which is equivalent to

d x x a 1
2

.
i H x

i i i
, 0

2 1 1
i2

( )( )∑ − − ≤
∈ ≤

We use the Cauchy-Schwarz inequality by keeping in mind that x a 0i1 1− > (i H∈ ) and because of
a 01 > , x a xi i1 1 1− < . Therefore,

d x d x a d x d x 1
2

1
2i Hx

i i i i
i H x

i i
i H x

i i
0

2 1 1

2

0
2
2

0
1
2

i i i2 2 2

⎡

⎣
⎢ ( ( ))( ( ))⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥∑ ∑ ∑− − ≤ ≤

∈ ≤ ∈ ≤ ∈ ≤

holds true if u1 is positively and u2 is negatively oriented.
AR (Above boundary, right half), when a 01 ≤ : using the last line of equation (A2), to prove that
f a C, 02 1( ) ≥ it suffices to prove that

d x a x 1
2

,
i H x

i i i
¯ , 0

2 1 1
i2

( )∑ − ≥ −
∈ ≤

which is equivalent to

d x a x 1
2

.
i H x

i i i
¯ , 0

2 1 1
i2

( )( )∑ − − ≤
∈ ≤

We again use the Cauchy-Schwarz inequality by keeping in mind that a x 0i1 1− ≥ (i H̄∈ ) and
a x x a xi i i1 1 1 1 1( )− = − − − ≤ − as now a 01− ≥ and x ai1 1− > − . Therefore,

d x d a x d x d x 1
2

1
2i H x

i i i i
i H x

i i
i H x

i i
¯ , 0

2 1 1

2

¯ , 0
2
2

¯ , 0
1

2

i i i2 2 2

⎡

⎣
⎢ ( ( ))( ( ))⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢ ( ) ⎤

⎦
⎥∑ ∑ ∑− − ≤ − ≤

∈ ≤ ∈ ≤ ∈ ≤
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holds true with negatively orienting u1 and negatively u2.
BL (Below boundary, left half), when a 01 > : using the last but one line of equation (A3),

f a D d x x a

d x x a d x x a

d x x a

, 2 1

2 2 1

2 1.

i H
i i i

i H x
i i i

i H x
i i i

i H x
i i i

2 1 2 1 1

, 0
2 1 1

, 0
2 1 1

, 0
2 1 1

i i

i

2 2

2

( ) ( )

( ) ( )

( )

∑

∑ ∑

∑

= − −

= − + − −

≤ − −

∈

∈ < ∈ ≥

∈ ≥

To prove that f a D, 02 1( ) ≤ , it suffices to prove that

d x x a 1
2

.
i H x

i i i
, 0

2 1 1
i2

( )∑ − ≤
∈ ≥

We use the Cauchy-Schwarz inequality by keeping in mind that x a 0i1 1− > (i H∈ ) and because of
a 01 > , x a xi i1 1 1− < . Therefore,

d x d x a d x d x 1
2

1
2i H x

i i i i
i H x

i i
i H x

i i
0

2 1 1

2

0
2
2

0
1
2

i i i2 2 2

⎡

⎣
⎢ ( )( ( ))⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥∑ ∑ ∑− ≤ ≤

∈ ≥ ∈ ≥ ∈ ≥

holds true if u1 is positively and u2 is positively oriented.
BR (Below boundary, right half), when a 01 ≤ : using the last line of equation (A3), to prove that
f a D, 02 1( ) ≤ , it suffices to prove that

d x a x 1
2

.
i H x

i i i
¯ , 0

2 1 1
i2

( )∑ − ≤
∈ ≥

We again use the Cauchy-Schwarz inequality by keeping in mind that a x 0i1 1− ≥ i H̄( )∈ and
a x x a xi i i1 1 1 1 1( )− = − − − ≤ − as now a 01− ≥ and x ai1 1− > − . Therefore,

d x d a x d x d x 1
2

1
2i H x

i i i i
i H x

i i
i H x

i i
¯ , 0

2 1 1

2

¯ , 0
2
2

¯ , 0
1

2

i i i2 2 2

⎡

⎣
⎢ ( )( ( ))⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢ ( ) ⎤

⎦
⎥∑ ∑ ∑− ≤ − ≤

∈ ≥ ∈ ≥ ∈ ≥

holds true with negatively orienting u1 and positively u2.
RB (Right boundary, below half), when a 02 > : using the last but one line of equation (A5),

f A a d x x a, 2 1.
i F x

i i i1 2
, 0

1 2 2
i1

( ) ( )∑≥ − +
∈ ≤

To prove that f A a, 01 2( ) ≥ , it suffices to prove that

d x x a 1
2

,
i F x

i i i
, 0

1 2 2
i1

( )∑ − ≥ −
∈ ≤

which is equivalent to

d x x a 1
2

.
i F x

i i i
, 0

1 2 2
i1

( )( )∑ − − ≤
∈ ≤

By the Cauchy-Schwarz inequality,

d x d x a d x d x 1
2

1
2i F x

i i i i
i F x

i i
i F x

i i
0

1 2 2

2

0
1
2

0
2
2

i i i1 1 1

⎡

⎣
⎢ ( ( ))( ( ))⎤

⎦
⎥

⎡

⎣
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⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥∑ ∑ ∑− − ≤ ≤

∈ ≤ ∈ ≤ ∈ ≤

holds true if u1 is negatively and u2 is positively oriented.
RA (Right boundary, above half), when a 02 ≤ : using the last line of equation (A5), to prove that
f A a, 01 2( ) ≥ , it suffices to prove that
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d x a x 1
2

,
i F x

i i i
¯, 0

1 2 2
i1

( )∑ − ≥ −
∈ ≤

which is equivalent to

d x a x 1
2

.
i F x

i i i
¯, 0

1 2 2
i1

( )( )∑ − − ≤
∈ ≤

By the Cauchy-Schwarz inequality,

d x d a x d x d x 1
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1
2i F x
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i i i1 1 1
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⎡

⎣
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holds true with negatively orienting u1 and negatively u2.
LB (Left boundary, below half), when a 02 > : using the last but one line of equation (A6),

f B a d x x a d x x a, 2 1 2 1.
i F

i i i
i F x

i i i1 2 1 2 2
, 0

1 2 2
i1

( ) ( ) ( )∑ ∑= − − ≤ − −
∈ ∈ ≥

To prove that f B a, 01 2( ) ≤ it suffices to prove that

d x x a 1
2

,
i F x

i i i
, 0

1 2 2
i1

( )∑ − ≤
∈ ≥

By the Cauchy-Schwarz inequality,

d x d x a d x d x 1
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∈ ≥ ∈ ≥ ∈ ≥

holds true if u1 is positively and u2 is positively oriented.
LA (Left boundary, above half), when a 02 ≤ : using the last line of equation (A6), to prove that
f B a, 01 2( ) ≤ it suffices to prove that

d x a x 1
2

.
i F x

i i i
¯, 0

1 2 2
i1

( )∑ − ≤
∈ ≥

By the Cauchy-Schwarz inequality,

d x d a x d x d x 1
2

1
2i F x

i i i i
i F x

i i
i F x

i i
¯, 0

1 2 2

2
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2
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2

i i i1 1 1

⎡

⎣
⎢ ( )( ( ))⎤

⎦
⎥

⎡

⎣
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⎤

⎦
⎥

⎡

⎣
⎢ ( ) ⎤

⎦
⎥∑ ∑ ∑− ≤ − ≤

∈ ≥ ∈ ≥ ∈ ≥

holds true with positively orienting u1 and negatively u2.

Consequently, the convenient orientation of the AL scenario matches that of the LA one. Similarly, the
AR-RA, BL-LB, and BR-RB scenarios can be realized with the same orientation of u u,1 2. So the ranges
under the four different orientations are connected regions (by the multivariate analogue of the Bolzano
theorem) and all contain the “corners” 1, 1 , 1, 1 , 1, 1 , 1, 1( ) ( ) ( ) ( )− − − − . Therefore, the union is also a con-
nected region in 2� . As it is bounded from above, from below, from the right, and from the left with curves
that enclose the origin, it should contain the origin too. Moreover, in each orientation, there should be a
quadrant that contains the origin.

Indeed, in the AL case, f a C,2 1( ) is greater than or less than 1, depending on whether the absolute value
of d x x ai H x i i i, 0 2 1 1i2

( )∑ −∈ > or that of d x x ai H x i i i, 0 2 1 1i2
( )∑ −∈ ≤ is larger. By the Cauchy-Schwarz inequality, this

happens with the positive orientation of u1 and either with the positive or negative orientation of u2.
Simultaneously, in the BL case, f a D,2 1( ) greater than or less than 1− , depending on whether the absolute
value of d x x ai H x i i i, 0 2 1 1i2

( )∑ −∈ > or that of d x x ai H x i i i, 0 2 1 1i2
( )∑ −∈ ≤ is larger. So with the positive orientation of u1

and either with the positive or negative orientation of u2, f a C,2 1( ), and f a D,2 1( ) are between 2− and 2, they
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are parallel, in distance 2 from each other and sandwich the f1 axis. Moreover, depending on the orientation
of u2, the f1 axis is either between the arcs f a C,2 1( ) and f a , 02 1( ) or between the arcs f a D,2 1( ) and f a , 02 1( ).

Likewise, theAR, BR estimates imply that with the negative orientation ofu1 and either with the positive
or negative orientation ofu2, f a C,2 1( ), and f a D,2 1( ) are between 2− and 2, they are parallel, in distance 2 from
each other and sandwich the f1 axis. However, changing the orientation ofu1 just means that a1− instead ofa1
can be the first coordinate of the root of f . Consequently, with the negative orientation of u1 and with the
positive orientation of u2, the f2 axis is sandwiched by the f a D,2 1( ) and f a , 02 1( ) arcs, whereas the f1 axis is
sandwiched by the f a0,1 2( ) and f A a,1 2( ) arcs. This complies with the vertical RB situation.

In summary, depending on the orientation of u1 and u2, the root is in a definite quadrant of the domain
(with coordinate axes a a,1 2), and its f -map is in a definite quadrant of the range (separated by curves with
a 01 = or a 02 = ). For example, if u1 is negatively and u2 is positively oriented, then a root with a 01 < and
a 02 > is expected in the intersection of the BR and RB regions; if both u1 and u2 are negatively oriented,
then a root with a 01 < and a 02 < is expected in the intersection of the AR and RA regions. Moreover, the
signs of the coordinates of the root are compatible with the orientations of the two eigenvectors.

More simply, the orientation of u1 can be chosen arbitrarily. If it is negative, then a 01 < can be expected
for the sign of the first coordinate of the root; otherwise, with a1− another root is expected with the positive
orientation of u1. The same holds vertically, depending on the orientation of u2. From equation (A1), it is
obvious that counterorienting u1 and/or u2 will result in the same equations multiplied by 1− , with a1− and/
or a2− instead of a1 and/or a2 in the equations.

In Figure A1, we show the images of four different possible orientations of the Fiedler-carpet associated
with the graph in Figure A2. For example, in the ,( )+ + orientation, we equidistantly subdivided the intervals
A B,[ ] and C D,[ ] and then mapped the so-obtained grid over the A B C D, ,[ ] [ ]× rectangle by the f function.
The maps show the f -images of the grid points.

By equation (A1) and denoting the orientations in the superscripts, we have that

f a a f a a f a a f a a
f a a f a a f a a f a a
f a a f a a f a a f a a

, , , , , ,
, , , , , ,
, , , , , .

1 1 2 1 1 2 2 1 2 2 1 2

1 1 2 1 1 2 2 1 2 2 1 2

1 1 2 1 1 2 2 1 2 2 1 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

= − − = −

= − = − −

= − − − = − − −

−+ ++ −+ ++

+− ++ +− ++

−− ++ −− ++

Therefore, the ( )−+ panel is the reflection of the ( )++ one through the f2 axis, the ( )+− panel is the
reflection of the ( )++ one through the f1 axis, and the ( )−− panel is the reflection of the ( )++ one through the
origin. Because of this symmetry, either all of them or none of them contain the origin, i.e., (0,0) of the f f,1 2

plane. But we saw that in each orientation, the image of a definite quadrant sandwiches both the f1 and f2

axes, and the signs of the coordinates of the root are exactly the same as the orientations of the corre-
sponding eigenvectors.

Figure A2: Graph with graph6 string HFRJIOY.

Fiedler–carpet  413



We can also plot the map of the three-dimensional Fiedler-carpet of this graph. In Figure A3, different
viewpoints are shown. The blue, orange, and green lines are the coordinate axes in 3� . As can be seen from
the images, they intersect at the origin inside of the three-dimensional body. Every plot we have created
shows this intersection lying inside the map of the three-dimensional Fiedler-carpet.

If k 2> , then f : k k� �→ maps the k-dimensional hyperrectangle with vertices of jth coordinate xmini ji

or xmaxi ji into the k-dimensional region with vertices of jth coordinate 1± .
Along the one-dimensional faces of this k-dimensional range, all but one ai is fixed at its minimum/

maximum. Without loss of generality, assume that A a B1< < . Akin to the k 2= case, we are able to show

that for each A a B1< < : f a M, 0j 1 1( ) ≥− and f a M, ˜ 0j 1 1( ) ≤− j k2, ,( )= … , where M x xmin , ,minm m m km1 2( )= …−

is the k 1( )− -tuple of the values of a a, , k2 … all fixed at their minimum and M x x˜ max , ,maxm m m km1 2( )= …− is
the k 1( )− -tuple of the values of a a, , k2 … all fixed at their maximum values, respectively. Indeed, for
j k2, ,= … :

f a M d x x a d x x x

d x x a

d x x a

d x a x

, min
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2 1,
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∈

and as in the second double summation, only the term for l j= is 1, the others are zeros. Likewise,

f a M d x x a d x x x

d x x a

d x x a

d x a x

, ˜ max

1 0

2 1

2 1.
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as in the second double summation, only the term for l j= is 1− , the others are zeros. Note that counter-
orienting u1 just results in a1− instead of a1 in the root of f .

Figure A3: Image of the three-dimensional Fiedler-carpet, in two different viewpoints, of the graph in Figure A2.
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The corresponding “corners” are: f A M, 1, 1, ,11( ) ( )= …− , f B M, 1, 1, ,11( ) ( )= − …− , f A M, ˜ 1, 1,1( ) (= −−

, 1)… − , and f B M, ˜ 1, 1, , 11( ) ( )= − − … −− . These points are in one hyperplane, in which the pieces of the

parallel arcs f a M,j 1 1( )− and f a M, ˜j 1 1( )− are in distance 2 from each other and sandwich the f1 axis
j k2, ,( )= … . Depending on the orientations of the eigenvectors, one is confined to an orthant, and this
will favor the sandwiching of the fl axis, when another al moves along a one-dimensional face and the
others are fixed at their minima/maxima, for l k2, ,= … . Therefore, the connected regions between these
parallel curves sandwich the corresponding coordinate axes. Consequently, their intersection, which is
subset of the whole connected region, contains the origin too. Note that if a a a, , , ,j k1( )… … is a root of f in
some orientation of the eigenvectors, then by counter orienting only uj, a a a, , , ,j k1( )… − … will be a root of
the so-obtained f -function. Moreover, the signs of the coordinates of the root are compatible with the
orientations of the eigenvectors (2k possibilities). Also, in any combination of the orientations, the root is in
a definite orthant (one of the 2k possibilities) of the k-dimensional range (divided by surfaces, along which
one of the ajs is zero).

Appendix B

Some pseudocodes follow. First for rectangular arrays of nonnegative entries.

Algorithm: finding regular biclustering of a contingency table

Input: m n× nondegenerate contingency table C and the number of clusters k.
1. Compute the row- and column-sums, d d, , mrow,1 row,… and d d, , ncol,1 col,… ;

form the diagonal matrices D d ddiag , , mrow row,1 row,( )= … and D d ddiag , , ncol col,1 col,( )= … ;

form the normalized contingency table C D CDD row
1 2

col
1 2= − / − / .

2. Compute the k 1− largest singular values (disregarding the trivial 1)
and the corresponding left and right singular vectors of CD: v v, , k1 1… − and u u, , k1 1… − ;

3. Find representatives r r, , m1 … of the rows as row vectors of the matrix D Dv v, , krow
1 2

1 row
1 2

1( )…− / − /
− ;

Find representatives q q, , n1 … of the columns as row vectors of the matrix D Du u, , kcol
1 2

1 col
1 2

1( )…− / − /
− .

4. Cluster the points r r, , m1 … by the weighted k-means algorithm with weights d d, , mrow,1 row,… into k
clusters;
Cluster the pointsq q, , n1 … by the weighted k-means algorithmwith weights d d, , ncol,1 col,… into k clusters.

Output: Clusters R R, , k1 … of the row-set m1, ,{ }… and clusters C C, , k1 … of the column-set n1, ,{ }… .

The algorithm for edge-weighted graphs with more clusters than eigenvectors.

Algorithm: finding the minimum cut objective of an edge-weighted graph

Input: n n× edge-weight matrix W and the number k of the smallest separated normalized Laplacian
eigenvalues of the edge-weighted graph.
1. Calculate the degree-vector d, degree-matrix D, and the normalized Laplacian

matrix L I D WDD
1 2 1 2= − − / − / .

2. Compute the k 1− smallest positive eigenvalues (disregarding the trivial 0) and the corresponding
eigenvectors u u, , k1 1… − of LD.

3. Find representatives r r, , n1 … of the vertices as row vectors of the matrix D Du u, , k
1 2

1
1 2

1( )…− / − /
− .

4. Cluster the points r r, , n1 … by the weighted k-means algorithm with the components of d as weights into

2k 1− clusters.
Output: Clusters V V, ,1 2k 1… − of the vertices.
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The weighted k-means algorithm follows. If the weights are the same (all equal to 1), then this is the
usual k-means algorithm.

Algorithm: weighted k-means clustering

Input: finite dimensional points r r, , n1 … with weights d d, , n1 … and the number of clusters k.
1. Initialize: V V, , k1

0 0( ) ( )… , the clusters of n1, ,{ }… .

2. Iterate: for t 1, 2,= …

a. calculate the cluster centers dc ra
t

d j V j j
1

j Va
t j a

t
1

1
( )

( )
( )= ∑

∑ ∈
∈ −

− (a k1, ,= … );

b. relocate the points: rj is assigned to cluster Va
t( ) for which r cj a

t( )‖ − ‖ is minimum,

until convergence.
Output: Clusters V V, , k1 … of n1, ,{ }… .

Appendix C

Pairwise plots of the correspondence analysis results based on the first three coordinate axes (coordinates
of the left singular vectors for immigration and right singular vectors for emigration data) are shown in
Figure A4(a) and (b) for 2 years. The cluster memberships obtained in Section 4 are illustrated with different
colors.

Figure A4: Pairwise plots of the correspondence analysis results based on the first three singular vector pairs, enhanced with
the cluster memberships, illustrated by different colors. (a) 2015 and (b) 2019.
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