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We introduce a semiparametric block model for graphs, where the within- and between-cluster edge probabilities are not constants
within the blocks but are described by logistic type models, reminiscent of the 50-year-old Rasch model and the newly introduced
𝛼-𝛽 models. Our purpose is to give a partition of the vertices of an observed graph so that the induced subgraphs and bipartite
graphs obey these models, where their strongly interlaced parameters give multiscale evaluation of the vertices at the same time. In
this way, a profoundly heterogeneous version of the stochastic block model is built via mixtures of the above submodels, while the
parameters are estimated with a special EM iteration.

1. Introduction

So far many parametric and nonparametric methods have
been proposed for so-called community detection in net-
works. In the nonparametric scenario, hierarchical or spectral
methods were applied to maximize the two- or multiway
Newman-Girvan modularity [1–4]; more generally, spectral
clustering tools (SC), based on Laplacian or modularity spec-
tra, proved to be feasible to find community, anticommunity,
or regular structures in networks [5]. In the parametric
setup, certain model parameters are estimated, usually via
maximizing the likelihood function of the graph, that is, the
joint probability of our observations under the model equa-
tions. This so-called ML estimation is a promising method
of statistical inference, has solid theoretical foundations [6,
7], and also supports the common-sense goal of accepting
parameter values based on which our sample is the most
likely.

As for the parametric scenario, in the 2010s, 𝛼 and 𝛽
models [8, 9] were developed as the unique graph models
where the degree sequence is a sufficient statistic: given the
degree sequence, the distribution of the random graph does
not depend on the parameters any more (microcanonical
distribution over the model graphs). This fact makes it
possible to derive the ML estimate of the parameters in a

standardway [10]. Indeed, in the context of network data, a lot
of information is contained in the degree sequence, though,
perhaps, in a more sophisticated way. The vertices may have
clusters (groups or modules) and their memberships may
affect their affinity to make ties. We will find groups of
the vertices such that the within- and between-cluster edge
probabilities admit certain parametric graph models, the
parameters of which are highly interlaced. Here the degree
sequence is not a sufficient statistic any more, only if it is
restricted to the subgraphs. When making inference, we are
partly inspired by the stochastic block model, partly by the
Rasch model, and by the rectangular analogue of the 𝛼-𝛽
models.

The generalized random graph model, sometimes called
stochastic block model (SBM), was first introduced in [11]
and discussed later in [12–18]. This model is the general-
ization of the classical Erdős-Renyi random graph 𝐺

𝑛
(𝑝),

the first random graph of the history introduced in [19]
which corresponds to the one-cluster case: between any pair
of the 𝑛 vertices edges come into existence independently,
with the same probability 𝑝. The graph 𝐺

𝑛
(P,P

𝑘
) on 𝑛

vertices is a generalized random graph with 𝑘 × 𝑘 symmetric
probability matrix P = (𝑝

𝑢V) and proper 𝑘-partition P
𝑘
=

(𝐶
1
, . . . , 𝐶

𝑘
) of the vertices if vertices of 𝐶

𝑢
and 𝐶V are

connected independently, with probability 𝑝
𝑢V, 1 ≤ 𝑢 < V ≤
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𝑘; further, any pair of the vertices within 𝐶
𝑢
is connected

with probability 𝑝
𝑢𝑢
(𝑢 = 1, . . . , 𝑘). Therefore, the subgraph

of 𝐺
𝑛
(P,P

𝑘
) confined to the vertex set 𝐶

𝑢
is an Erdős-Renyi

type random graph, while the bipartite subgraphs connecting
vertices of 𝐶

𝑢
and 𝐶V (𝑢 ̸= V) are random bipartite graphs of

edge probability 𝑝
𝑢V. Sometimes we refer toP

𝑘
as clustering,

where𝐶
1
, . . . , 𝐶

𝑘
are the clusters. In fact, seminal Szemeredi’s

regularity lemma [20] guarantees the existence of such a
structure in any huge graph, albeit with an enormously large
number of clusters; therefore, it is not applicable for practical
purposes.

Though in [18] the SBM is called heterogeneous, it is,
in fact, a homogeneous one: the probability to make ties is
the same within the clusters or between the cluster pairs.
Nonetheless, this probability depends on the actual cluster
memberships; given the memberships of the vertices, the
probability that they are connected is a given constant, for the
estimation of which an algorithm (maximizing the likelihood
modularity) is proposed in [12] and the the EM algorithm is
described in [5]. Here we want to model more complicated
within- and between-cluster relations.

As for the nonparametric scenario, the role of the degree
sequence is the best enhanced in the normalized Laplacian
or normalized modularity based SC. In [4] we extended
the notion of the modularity matrix to weighted graphs as
follows. Let 𝐺 = (𝑉,W) be an edge-weighted graph on the 𝑛-
element vertex-set𝑉 with the 𝑛 × 𝑛 symmetric weight matrix
W; the entries satisfy 𝑤

𝑖𝑗
= 𝑤
𝑗𝑖
≥ 0, 𝑤

𝑖𝑖
= 0, and they are

similarities between the vertex pairs. The modularity matrix
of 𝐺 is defined as M = W − dd𝑇, where the entries of d are
the generalized vertex degrees 𝑑

𝑖
= ∑
𝑛

𝑗=1
𝑤
𝑖𝑗
(𝑖 = 1, . . . , 𝑛).

Here W is normalized in such a way that ∑𝑛
𝑖=1
∑
𝑛

𝑗=1
𝑤
𝑖𝑗
=

1, an assumption that does not hurt the generality, since
the forthcoming normalized modularity matrix, to be mostly
used, is not affected by the scaling of the entries ofW:

MD = D
−1/2MD−1/2, (1)

whereD = diag(𝑑
1
, . . . , 𝑑

𝑛
) is the diagonal degree matrix.

In [4], we also introduced the following spectral relax-
ation technique to approximate the 𝑘-partition of the vertices
minimizing the within- and between-cluster discrepancies in
the spirit of Szemeredi’s regularity lemma. (This discrepancy
measures the homogeneity of the clusters; we will not use
this notion here; see [21] for more information.) Let the
eigenvalues ofMD, enumerated in decreasing absolute values,
be 1 > |𝜇

1
| ≥ |𝜇
2
| ≥ ⋅ ⋅ ⋅ ≥ |𝜇

𝑛
| = 0. Assume that |𝜇

𝑘−1
| > |𝜇
𝑘
|,

and denote by u
1
, . . . , u

𝑘−1
the corresponding unit-norm,

pairwise orthogonal eigenvectors. Let r
1
, . . . , r

𝑛
∈ R𝑘−1 be

the row vectors of the 𝑛 × (𝑘 − 1) matrix of column vectors
D−1/2u

1
, . . . ,D−1/2u

𝑘−1
; they are called (𝑘 − 1)-dimensional

representatives of the vertices. The weighted 𝑘-variance of
these representatives is defined as

𝑆
2

𝑘
= min
(𝐶
1
,...,𝐶
𝑘
)

𝑘

∑

𝑢=1

∑

𝑗∈𝐶
𝑢

𝑑
𝑗






r
𝑗
− c
𝑢







2

, (2)

where c
𝑢
= (1/Vol(𝐶

𝑢
)) ∑
𝑗∈𝐶
𝑢

𝑑
𝑗
r
𝑗
is the weighted center of

cluster𝐶
𝑢
. It is theweighted 𝑘-means algorithm that gives this

minimum, and the point is that the optimum 𝑆
𝑘
is just the

minimum distance between the eigensubspace correspond-
ing to 𝜇

0
, . . . , 𝜇

𝑘−1
and the one of the suitably transformed

step-vectors over the 𝑘-partitions of 𝑉. In Chapter 2 of [5]
we also discussed that, in view of subspace perturbation
theorems, the larger the gap between |𝜇

𝑘−1
| and |𝜇

𝑘
|, the

smaller 𝑆
𝑘
.

Note that the normalized modularity based spectral
clustering is the same as the normalized Laplacian based one
(see [5]) with the exception that here not only the bottom, but
the large absolute value eigenvalues are considered; further,
the heterogeneity of the vertex degrees is encoded into the
diagonal degree matrix D. With the above technique we
embed the vertices into a low dimensional space (spectral
relaxation via eigenvectors) and hence perform metric clus-
tering. However, above the spacial location, SC does not
assign any parameters to the vertices. Our method to be
introduced finds parameters and classifies the vertices at the
same time.

Here we propose a profoundly heterogeneous block
model by carrying on the Rasch model developed more than
50 years ago for evaluating psychological tests [22, 23]. We
will call it Logistic Block Model (LBM). Given the number
of clusters and a classification of the vertices, we will use the
Rasch model for the bipartite subgraphs but the 𝛼-𝛽 models
for the subgraphs themselves and process an iteration (inner
cycle) to find the ML estimate of their parameters. Then,
based on their contributions to the overall likelihood, we
find a new classification of the vertices via taking conditional
expectation and using the Bayes rule. Eventually, the two
steps are alternated, giving the outer cycle of the iteration.

Our algorithm fits into the framework of the EM algo-
rithm [7, 24], in the context of exponential families. The
method was originally developed for missing data, and
the name comes from the alternating expectation (E) and
maximization (M) steps, where in the E-step (assignment
phase) we complete the data by substituting for the missing
data via taking conditional expectation, while in the M-
step (estimation phase) we find the usual ML estimate of
the parameters based on the so completed data. The EM
algorithm naturally extends to situations, when not the data
itself is missing, but it comes from a finite mixture, and
the grouping memberships are the missing parameters. This
special type of the EM algorithm developed for mixtures is
often called collaborative filtering [25, 26] or Gibbs sampling
[27], the roots of which method can be traced back to [28].

After proving the convergence of the inner cycle to the
unique solution of the likelihood equation in each block
separately, the convergence of the outer cycle to a local
maximum of the likelihood function is easily seen. The
advantage of the LBM is that, unlike SC, above clustering the
vertices, it also assigns parameters to them, where parameters
depend on their cluster memberships. Therefore we call is
semiparametric. In the context of social networks, the clusters
can be identified with social strata and the parameters with
attitudes of people of one group towards people of the other,
where attitude is the same for people in the second group but
depends on the individual in the first group. The number of
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clusters is fixed during the iteration, but an initial number
of clusters are obtained by SC, via inspecting the normalized
modularity spectrum of the graph. We apply the algorithm
to randomly generated and real-world data, where the initial
clustering was the one obtained by SC. Then we compare
the results of SC, SBM, and LBM by the Rand index, and
our LBM shows a better agreement with the SC clusters than
the SBM. It seems that SC gives a solution close to a local
maximum of LBM, which can be regarded as fine tuning of
SC. In fact, without good starting clustering, LBM can run
into a local maximum (there are many) far from the global
one. Therefore, it needs SC starting; however, its advantage is
that, in addition, it is able to estimate parameters too.

Thepaper is organized as follows. In Section 2we describe
the building blocks of our model. In the context of the
𝛼-𝛽 models we refer to already proved facts about the
existence of the ML estimate, and if it exists, we discuss
the algorithm proposed by [9] together with convergence
facts; meanwhilewhile, in the context of the 𝛽-𝛾 model, we
introduce a novel algorithm and prove the convergence of
it in the appendix. In Section 3 we use both of the above
algorithms for the subgraphs and bipartite subgraphs of
our sample graph, and we connect them together in the
framework of the EM algorithm. In Section 4, the algorithm
is applied to randomly generated and real-world data, while
Section 5 is devoted to a brief discussion.

2. The Building Blocks of the LBM

Log-linear and logistic type models to describe contingency
tables in a combinatorial fashion were proposed, for example,
by [11, 29] and widely used in statistics. Together with the
Rasch model, they give the foundation of the unweighted
graph and bipartite graph models which are the building
blocks of our EM iteration.

2.1. 𝛼-𝛽Models for Undirected Random Graphs. With differ-
ent parameterization, [8, 9] introduced the following random
graph model, where the degree sequence is a sufficient
statistic. We have an unweighted, undirected random graph
on 𝑛 vertices without loops, such that edges between distinct
vertices come into existence independently, but not with
the same probability as in the classical Erdős-Renyi model
[19]. This random graph can uniquely be characterized by
its 𝑛 × 𝑛 symmetric adjacency matrix A = (𝐴

𝑖𝑗
) which has

zero diagonal and the entries above the main diagonal are
independent Bernoulli random variables whose parameters
𝑝
𝑖𝑗
= P(𝐴

𝑖𝑗
= 1) obey the following rule. Actually, we

formulate this rule for the 𝑝
𝑖𝑗
/(1 − 𝑝

𝑖𝑗
) ratios, the so-called

odds:

𝑝
𝑖𝑗

1 − 𝑝
𝑖𝑗

= 𝛼
𝑖
𝛼
𝑗
(1 ≤ 𝑖 < 𝑗 ≤ 𝑛) , (3)

where the parameters 𝛼
1
, . . . , 𝛼

𝑛
are positive reals.Thismodel

is called 𝛼 model in [9]. With the parameter transformation

𝛽
𝑖
= ln𝛼

𝑖
(𝑖 = 1, . . . , 𝑛), it is equivalent to the 𝛽 model of [8]

which applies to the logits:

ln
𝑝
𝑖𝑗

1 − 𝑝
𝑖𝑗

= 𝛽
𝑖
+ 𝛽
𝑗
(1 ≤ 𝑖 < 𝑗 ≤ 𝑛) (4)

with real parameters 𝛽
1
, . . . , 𝛽

𝑛
.

Conversely, the probabilities 𝑝
𝑖𝑗

and 1 − 𝑝
𝑖𝑗

can be
expressed in terms of the parameters, like

𝑝
𝑖𝑗
=

𝛼
𝑖
𝛼
𝑗

1 + 𝛼
𝑖
𝛼
𝑗

,

1 − 𝑝
𝑖𝑗
=

1

1 + 𝛼
𝑖
𝛼
𝑗

(5)

whose formulas will be intensively used in the subsequent
calculations.

We are looking for the ML estimate of the parameter
vector 𝛼 = (𝛼

1
, . . . , 𝛼

𝑛
) or 𝛽 = (𝛽

1
, . . . , 𝛽

𝑛
) based on

the observed unweighted, undirected graph as a statistical
sample. (Itmay seem that we have a one-element sample here;
however, there are ( 𝑛

2
) independent random variables, the

adjacencies, in the background.)
Let D = (𝐷

1
, . . . , 𝐷

𝑛
) denote the degree vector of the

above random graph, where𝐷
𝑖
= ∑
𝑛

𝑗=1
𝐴
𝑖𝑗
(𝑖 = 1, . . . , 𝑛). The

random vector D, as a function of the sample entries 𝐴
𝑖𝑗
’s,

is a sufficient statistic for the parameter 𝛼, or, equivalently,
for 𝛽. Roughly speaking, a sufficient statistic itself contains
all the information—which can be retrieved from the data—
for the parameter. More precisely, a statistic is sufficient when
the conditional distribution of the sample, given the statistic,
does not depend on the parameter anymore. By theNeyman-
Fisher factorization theorem [6], a statistic is sufficient if and
only if the likelihood function of the sample can be factorized
into two parts: one which does not contain the parameter
and the other, which includes the parameter, contains the
sample entriesmerely compressed into this sufficient statistic.
Consider this factorization of the likelihood function (joint
probability of 𝐴

𝑖𝑗
’s) in our case. Because of the symmetry of

A, this is

𝐿
𝛼
(A) =

𝑛−1

∏

𝑖=1

𝑛

∏

𝑗=𝑖+1

𝑝

𝐴
𝑖𝑗

𝑖𝑗
(1 − 𝑝

𝑖𝑗
)

1−𝐴
𝑖𝑗

=

{

{

{

𝑛

∏

𝑖=1

𝑛

∏

𝑗=1

𝑝

𝐴
𝑖𝑗

𝑖𝑗
(1 − 𝑝

𝑖𝑗
)

1−𝐴
𝑖𝑗
}

}

}

1/2

=

{

{

{

𝑛

∏

𝑖=1

𝑛

∏

𝑗=1

(

𝑝
𝑖𝑗

1 − 𝑝
𝑖𝑗

)

𝐴
𝑖𝑗 𝑛

∏

𝑖=1

𝑛

∏

𝑗=1

(1 − 𝑝
𝑖𝑗
)

}

}

}

1/2

=

{

{

{

𝑛

∏

𝑖=1

𝛼

∑
𝑛

𝑗=1
𝐴
𝑖𝑗

𝑖

𝑛

∏

𝑗=1

𝛼

∑
𝑛

𝑖=1
𝐴
𝑖𝑗

𝑗
∏

𝑖 ̸=𝑗

(1 − 𝑝
𝑖𝑗
)

}

}

}

1/2
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=

{

{

{

∏

𝑖 ̸=𝑗

1

1 + 𝛼
𝑖
𝛼
𝑗

}

}

}

1/2

{

{

{

𝑛

∏

𝑖=1

𝛼
𝐷
𝑖

𝑖

𝑛

∏

𝑗=1

𝛼

𝐷
𝑗

𝑗

}

}

}

1/2

=

{

{

{

∏

𝑖<𝑗

1

1 + 𝛼
𝑖
𝛼
𝑗

}

}

}

{

𝑛

∏

𝑖=1

𝛼
𝐷
𝑖

𝑖
} = 𝐶

𝛼
×

𝑛

∏

𝑖=1

𝛼
𝐷
𝑖

𝑖
,

(6)

where we used (5) and the facts that 𝐴
𝑖𝑗
= 𝐴
𝑗𝑖
, 𝑝
𝑖𝑗
= 𝑝
𝑗𝑖
(𝑖 <

𝑗) and 𝐴
𝑖𝑖
= 0, 𝑝

𝑖𝑖
= 0 (𝑖 = 1, . . . , 𝑛). Here the partition

function 𝐶
𝛼
= ∏
𝑖<𝑗
(1/(1 + 𝛼

𝑖
𝛼
𝑗
)) only depends on 𝛼, and the

whole likelihood function depends on 𝐴
𝑖𝑗
’s merely through

𝐷
𝑖
’s. Therefore, D is a sufficient statistic. The other factor is

constantly 1, indicating that the conditional joint distribution
of the entries—givenD—is uniform, but wewill notmake use
of this fact. The whole model comes from the so-called log-
linear way of model building; see [29]. In [8, 10], the converse
statement is also proved: the above 𝛼model (reparametrized
as 𝛽 model) is the unique one, where the degree sequence is
a sufficient statistic.

Let (𝑎
𝑖𝑗
) be the matrix of the sample realizations (the

adjacency entries of the observed graph), let 𝑑
𝑖
= ∑
𝑛

𝑗=1
𝑎
𝑖𝑗

be the actual degree of vertex 𝑖 (𝑖 = 1, . . . , 𝑛), and let
d = (𝑑

1
, . . . , 𝑑

𝑛
) be the observed degree vector. The above

factorization also indicates that the joint distribution of
the entries belongs to the exponential family, and hence,
with natural parameterization [24], the maximum likelihood
estimate �̂� (or equivalently, ̂𝛽) is derived from the fact that,
with it, the observed degree𝑑

𝑖
equals the expected one; that is,

E(𝐷
𝑖
) = ∑
𝑛

𝑖=1
𝑝
𝑖𝑗
. Therefore, �̂� is the solution of the following

maximum likelihood equation:

𝑑
𝑖
=

𝑛

∑

𝑗 ̸=𝑖

𝛼
𝑖
𝛼
𝑗

1 + 𝛼
𝑖
𝛼
𝑗

(𝑖 = 1, . . . , 𝑛) . (7)

The ML estimate ̂𝛽 is easily obtained from �̂� via taking the
logarithms of its coordinates.

Before discussing the solution of the system of (7), let
us see what conditions a sequence of nonnegative integers
should satisfy so that it could be realized as the degree
sequence of a graph. The sequence 𝑑

1
, . . . , 𝑑

𝑛
of nonnegative

integers is called graphic if there is an unweighted, undirected
graph on 𝑛 vertices such that its vertex degrees are the num-
bers 𝑑

1
, . . . , 𝑑

𝑛
in some order. Without loss of generality, 𝑑

𝑖
’s

can be enumerated in nonincreasing order.The Erdősi-Gallai
theorem [30] gives the following necessary and sufficient
condition for a sequence to be graphic. The sequence 𝑑

1
≥

⋅ ⋅ ⋅ ≥ 𝑑
𝑛
≥ 0 of integers is graphic if and only if it satisfies the

following two conditions:∑𝑛
𝑖=1
𝑑
𝑖
is even and

𝑘

∑

𝑖=1

𝑑
𝑖
≤ 𝑘 (𝑘 − 1) +

𝑛

∑

𝑖=𝑘+1

min {𝑘, 𝑑
𝑖
} , 𝑘 = 1, . . . , 𝑛 − 1. (8)

Note that for nonnegative (not necessarily integer) real
sequences, a continuous analogue of (8) is derived in [8].
For given 𝑛, the convex hull of all possible graphic degree

sequences is a polytope, to be denoted by D
𝑛
. Its extreme

points are the so-called threshold graphs [31]. It is interesting
that for 𝑛 = 3 all undirected graphs are threshold, since there
are 8 possible graphs on 3 nodes, and there are also 8 vertices
ofD
3
; the 𝑛 = 2 case is also not of much interest; therefore we

will treat the 𝑛 > 3 cases only. The number of vertices of D
𝑛

superexponentially grows with 𝑛 [32]; therefore the problem
of characterizing threshold graphs has a high computational
complexity. Its facial and cofacial sets are fully described in
[10]. Apart from the trivial cases (when there is at least one
degree equal to 0 or 𝑛 − 1), in [33], the authors give the
following equivalent characterization of a threshold graph for
𝑛 ≥ 4: it has no four different vertices, 𝑎, 𝑏, 𝑐, 𝑑, such that 𝑎, 𝑏
and 𝑐, 𝑑 are connected by an edge, but 𝑎, 𝑐 and 𝑏, 𝑑 are not;
that is, it has no two disjoint copies of the complete graph𝐾

2
.

The authors of [8, 9] prove that D
𝑛
is the topological

closure of the set of expected degree sequences, and, for given
𝑛 > 3, if d ∈ int(D

𝑛
) is an interior point, then maximum

likelihood equation (7) has a unique solution. Later, it turned
out that the converse is also true: in [10] the authors prove
that the ML estimate exists if and only if the observed degree
vector is an inner point of D

𝑛
. On the contrary, when the

observed degree vector is a boundary point of D
𝑛
, there is

at least one 0 or 1 probability 𝑝
𝑖𝑗
which can be obtained only

by a parameter vector such that at least one of 𝛽
𝑖
’s is not finite.

In this case, the likelihood function cannot be maximized
with a finite parameter set; its supremum is approached with
a parameter vector 𝛽 with at least one coordinate tending to
+∞ or −∞.

The authors in [9] recommend the following algorithm
and prove that, provided d ∈ int(D

𝑛
), its iteration converges

to the unique solution of system (7). Tomotivate the iteration,
we rewrite (7) as

𝑑
𝑖
= 𝛼
𝑖
∑

𝑗 ̸=𝑖

1

1/𝛼
𝑗
+ 𝛼
𝑖

(𝑖 = 1, . . . , 𝑛) . (9)

Then starting with initial parameter values 𝛼(0)
1
, . . . , 𝛼

(0)

𝑛
and

using the observed degree sequence 𝑑
1
, . . . , 𝑑

𝑛
, which is an

inner point ofD
𝑛
, the iteration is as follows:

𝛼
(𝑡)

𝑖
=

𝑑
𝑖

∑
𝑗 ̸=𝑖
(1/ (1/𝛼

(𝑡−1)

𝑗
+ 𝛼
(𝑡−1)

𝑖
))

(𝑖 = 1, . . . , 𝑛) (10)

for 𝑡 = 1, 2, . . ., until convergence.

2.2. 𝛽-𝛾 Model for Bipartite Graphs. This bipartite graph
model, since there is a one-to-one correspondence between
bipartite graphs and 0-1 rectangular arrays, traces back to
Haberman [34], Lauritzen [29], and Rasch [22, 23] who
applied it for psychological and educational measurements,
later market research. According to the Rasch model, the
entries of an𝑚 × 𝑛 binary table A are independent Bernoulli
randomvariables, where for the parameter𝑝

𝑖𝑗
of the entry𝐴

𝑖𝑗

the following holds:

ln
𝑝
𝑖𝑗

1 − 𝑝
𝑖𝑗

= 𝛽
𝑖
− 𝛿
𝑗
(𝑖 = 1, . . . , 𝑚; 𝑗 = 1, . . . , 𝑛) (11)
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with real parameters𝛽
1
, . . . , 𝛽

𝑚
and𝛿
1
, . . . , 𝛿

𝑛
. As an example,

Rasch in [22] investigated binary tables where the rows
corresponded to persons and the columns to items of some
psychological test, whereas the 𝑗th entry of the 𝑖th row was 1
if person 𝑖 answered test item 𝑗 correctly and 0 otherwise. He
also gave a description of the parameters: 𝛽

𝑖
was the ability of

person 𝑖, while 𝛿
𝑗
was the difficulty of test item 𝑗.Therefore, in

view of model equation (11), the more intelligent the person
is and the less difficult the test is, the larger the success/failure
ratio was on a logarithmic scale.

Given an 𝑚 × 𝑛 random binary table A = (𝐴
𝑖𝑗
), or,

equivalently, a bipartite graph, our model is

ln
𝑝
𝑖𝑗

1 − 𝑝
𝑖𝑗

= 𝛽
𝑖
+ 𝛾
𝑗
(𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛) (12)

with real parameters 𝛽
1
, . . . , 𝛽

𝑚
and 𝛾
1
, . . . , 𝛾

𝑛
; further, 𝑝

𝑖𝑗
=

P(𝐴
𝑖𝑗
= 1).

In terms of the transformed parameters 𝑏
𝑖
= 𝑒
𝛽
𝑖 and 𝑔

𝑗
=

𝑒
𝛾
𝑗 , model (12) is equivalent to

𝑝
𝑖𝑗

1 − 𝑝
𝑖𝑗

= 𝑏
𝑖
𝑔
𝑗
(𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛) , (13)

where 𝑏
1
, . . . , 𝑏

𝑚
and 𝑔

1
, . . . , 𝑔

𝑛
are positive reals.

Conversely, the probabilities can be expressed in terms of
the parameters:

𝑝
𝑖𝑗
=

𝑏
𝑖
𝑔
𝑗

1 + 𝑏
𝑖
𝑔
𝑗

,

1 − 𝑝
𝑖𝑗
=

1

1 + 𝑏
𝑖
𝑔
𝑗

.

(14)

Observe that if (12) holdswith the parameters𝛽
𝑖
’s and 𝛾

𝑗
’s,

then it also holds with the transformed parameters 𝛽
𝑖
= 𝛽
𝑖
+

𝑐 (𝑖 = 1, . . . , 𝑚) and 𝛾
𝑗
= 𝛾
𝑗
−𝑐 (𝑗 = 1, . . . , 𝑛)with some 𝑐 ∈ R.

Equivalently, if (13) holdswith the positive parameters 𝑏
𝑖
’s and

𝑔
𝑗
’s, then it also holds with the transformed parameters

𝑏


𝑖
= 𝑏
𝑖
𝜅,

𝑔


𝑗
=

𝑔
𝑗

𝜅

(15)

with some 𝜅 > 0. Therefore, the parameters 𝑏
𝑖
and 𝑔

𝑗
are

arbitrary to within a multiplicative constant.
Here the row-sums 𝑅

𝑖
= ∑
𝑛

𝑗=1
𝐴
𝑖𝑗
and the column-sums

𝐶
𝑗
= ∑
𝑚

𝑖=1
𝐴
𝑖𝑗
are the sufficient statistics for the parameters

collected in b = (𝑏
1
, . . . , 𝑏

𝑚
) and g = (𝑔

1
, . . . , 𝑔

𝑛
). Indeed, the

likelihood function is factorized as

𝐿b,g (A) =
𝑚

∏

𝑖=1

𝑛

∏

𝑗=1

𝑝

𝐴
𝑖𝑗

𝑖𝑗
(1 − 𝑝

𝑖𝑗
)

1−𝐴
𝑖𝑗

=

{

{

{

𝑚

∏

𝑖=1

𝑛

∏

𝑗=1

(

𝑝
𝑖𝑗

1 − 𝑝
𝑖𝑗

)

𝐴
𝑖𝑗
}

}

}

𝑚

∏

𝑖=1

𝑛

∏

𝑗=1

(1 − 𝑝
𝑖𝑗
)

= {

𝑚

∏

𝑖=1

𝑏

∑
𝑛

𝑗=1
𝐴
𝑖𝑗

𝑖
}

{

{

{

𝑛

∏

𝑗=1

𝑔

∑
𝑚

𝑖=1
𝐴
𝑖𝑗

𝑗

}

}

}

𝑚

∏

𝑖=1

𝑛

∏

𝑗=1

(1 − 𝑝
𝑖𝑗
)

=

{

{

{

𝑚

∏

𝑖=1

𝑛

∏

𝑗=1

1

1 + 𝑏
𝑖
𝑔
𝑗

}

}

}

{

𝑚

∏

𝑖=1

𝑏
𝑅
𝑖

𝑖
}

{

{

{

𝑛

∏

𝑗=1

𝑔

𝐶
𝑗

𝑗

}

}

}

.

(16)

Since the likelihood function depends on A only through its
row- and column-sums, by the Neyman-Fisher factorization
theorem, 𝑅

1
, . . . , 𝑅

𝑚
, 𝐶
1
, . . . , 𝐶

𝑛
are a sufficient statistic for

the parameters. The first factor (including the partition
function) depends only on the parameters and the row- and
column-sums, whereas the seemingly not present factor—
which would dependmerely onA—is constantly 1, indicating
that the conditional joint distribution of the entries, given the
row- and column-sums, is uniform (microcanonical) in this
model. Note that, in [35], the author characterizes random
tables sampled uniformly from the set of 0-1 matrices with
fixed margins. Given the margins, the contingency tables
coming from the above model are uniformly distributed, and
a typical table of this distribution is produced by the 𝛽-𝛾
model with parameters estimated via the row- and column-
sums as sufficient statistics. In this way, here we obtain
another view of the typical table of [35].

Based on an observed binary table (𝑎
𝑖𝑗
), since we are

in exponential family and 𝛽
1
, . . . , 𝛽

𝑚
, 𝛾
1
, . . . , 𝛾

𝑛
are natural

parameters, the likelihood equation is obtained by making
the expectation of the sufficient statistic equal to its sample
value. Therefore, with the notations 𝑟

𝑖
= ∑

𝑛

𝑗=1
𝑎
𝑖𝑗
(𝑖 =

1, . . . , 𝑚) and 𝑐
𝑗
= ∑
𝑚

𝑖=1
𝑎
𝑖𝑗
(𝑗 = 1, . . . , 𝑛), the following system

of likelihood equations is yielded:

𝑟
𝑖
=

𝑛

∑

𝑗=1

𝑏
𝑖
𝑔
𝑗

1 + 𝑏
𝑖
𝑔
𝑗

= 𝑏
𝑖

𝑛

∑

𝑗=1

1

1/𝑔
𝑗
+ 𝑏
𝑖

, 𝑖 = 1, . . . , 𝑚;

𝑐
𝑗
=

𝑚

∑

𝑖=1

𝑏
𝑖
𝑔
𝑗

1 + 𝑏
𝑖
𝑔
𝑗

= 𝑔
𝑗

𝑚

∑

𝑖=1

1

1/𝑏
𝑖
+ 𝑔
𝑗

, 𝑗 = 1, . . . , 𝑛.

(17)

Note that, for any sample realization of A,
𝑚

∑

𝑖=1

𝑟
𝑖
=

𝑛

∑

𝑗=1

𝑐
𝑗 (18)

holds automatically. Therefore, there is dependence between
the equations of system (17), indicating that the solution is
not unique, in accord with our previous remark about the
arbitrary scaling factor 𝜅 > 0 of (15). We will prove that,
apart from this scaling, the solution is unique if it exists at all.
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For our convenience, let (̃b, g̃) denote the equivalence class
of the parameter vector (b, g), which consists of parameter
vectors (b, g) satisfying (15)with some 𝜅 > 0. So to avoid this
indeterminacy, wemay impose conditions on the parameters;
for example,

𝑚

∑

𝑖=1

𝛽
𝑖
+

𝑛

∑

𝑗=1

𝛾
𝑗
= 0. (19)

Like the graphic sequences, here the following sufficient
conditions can be given for the sequences 𝑟

1
≥ ⋅ ⋅ ⋅ ≥ 𝑟

𝑚
> 0

and 𝑐
1
≥ ⋅ ⋅ ⋅ ≥ 𝑐

𝑛
> 0 of integers to be row- and column-sums

of an𝑚 × 𝑛matrix of 0-1 entry (see, e.g., [36]):

𝑘

∑

𝑖=1

𝑟
𝑖
≤

𝑛

∑

𝑗=1

min {𝑐
𝑗
, 𝑘} , 𝑘 = 1, . . . , 𝑚;

𝑘

∑

𝑗=1

𝑐
𝑗
≤

𝑚

∑

𝑖=1

min {𝑟
𝑖
, 𝑘} , 𝑘 = 1, . . . , 𝑛.

(20)

Observe that the 𝑘 = 1 cases imply 𝑟
1
≤ 𝑛 and 𝑐

1
≤

𝑚, whereas the 𝑘 = 𝑚 and 𝑘 = 𝑛 cases together imply
∑
𝑚

𝑖=1
𝑟
𝑖
= ∑
𝑛

𝑗=1
𝑐
𝑗
. This statement is the counterpart of the

Erdős-Gallai conditions for bipartite graphs, where—due to
(18)—the sum of the degrees is automatically even. In fact,
the conditions in (20) are redundant: one of the conditions—
either the one for the rows or the one for the columns—
suffices together with (18) and 𝑐

1
≤ 𝑚 or 𝑟

1
≤ 𝑛. The so

obtained necessary and sufficient conditions define bipartite
realizable sequenceswith the wording of [33]. Already, in 1957,
the author of [37] determined arithmetic conditions for the
construction of a 0-1 matrix having given row- and column-
sums. The construction was given via swaps. More generally,
[38] referred to the transportation problem and the Ford-
Fulkerson max flow–min cut theorem [39].

The convex hull of the bipartite realizable sequences r =
(𝑟
1
, . . . , 𝑟

𝑚
) and c = (𝑐

1
, . . . , 𝑐

𝑛
) forms a polytope in R𝑚+𝑛,

actually, because of (18), in its (𝑚 + 𝑛 − 1)-dimensional
hyperplane. It is called polytope of bipartite degree sequences
and denoted by P

𝑚,𝑛
in [33]. It is the special case of the

transportation polytope describing margins of contingency
tables with nonnegative integer entries.There is an expanding
literature on the number of such matrices, for example, [40],
and on the number of 0-1 matrices with prescribed row- and
column-sums, for example, [41].

Analogously to the considerations of the 𝛼-𝛽 models,
and applying the thoughts of the proofs in [8–10], P

𝑚,𝑛
is

the closure of the set of the expected row- and column-sum
sequences in the above model. In [33], it is proved that an
𝑚 × 𝑛 binary table, or equivalently a bipartite graph on the
independent sets of 𝑚 and 𝑛 vertices, is on the boundary
of P
𝑚,𝑛

if it does not contain two vertex-disjoint edges.
In this case, the likelihood function cannot be maximized
with a finite parameter set; its supremum is approached with
a parameter vector with at least one coordinate, 𝛽

𝑖
or 𝛾
𝑗
,

tending to +∞ or −∞, or, equivalently, with at least one
coordinate, 𝑏

𝑖
or 𝑔
𝑗
, tending to +∞ or 0. Based on the proofs

of [10], and stated as Theorem 6.3 in the supplementary

material of [10], the maximum likelihood estimate of the
parameters of model (13) exists if and only if the observed
row- and column-sum sequence (r, c) ∈ ri(P

𝑚,𝑛
), the

relative interior of P
𝑚,𝑛

, satisfying (18). In this case for
the probabilities, calculated by formula (14) through the
estimated positive parameter values ̂𝑏

𝑖
’s and 𝑔

𝑗
’s (solutions of

(17)), 0 < 𝑝
𝑖𝑗
< 1 holds ∀𝑖, 𝑗.

Under these conditions, we define an algorithm that
converges to the unique (up to the above equivalence)
solution of maximum likelihood equations (17).

Theorem 1. If (r, c) ∈ ri(P
𝑚,𝑛
), then the following algorithm

gives a unique equivalence class of the parameter vectors as the
fixed point of the iteration, which therefore provides the ML
estimate of the parameters.

Starting with positive parameter values 𝑏(0)
𝑖
(𝑖 = 1, . . . , 𝑚)

and 𝑔(0)
𝑗
(𝑗 = 1, . . . , 𝑛) and using the observed row- and

column-sums, the iteration is as follows:

(𝐼) 𝑏
(𝑡)

𝑖
=

𝑟
𝑖

∑
𝑛

𝑗=1
(1/ (1/𝑔

(𝑡−1)

𝑗
+ 𝑏
(𝑡−1)

𝑖
))

,

𝑖 = 1, . . . , 𝑚

(𝐼𝐼) 𝑔
(𝑡)

𝑗
=

𝑐
𝑗

∑
𝑚

𝑖=1
(1/ (1/𝑏

(𝑡)

𝑖
+ 𝑔
(𝑡−1)

𝑗
))

, 𝑗 = 1, . . . , 𝑛

(21)

for 𝑡 = 1, 2, . . ., until convergence.

3. Parameter Estimation in the LBM

In the several clusters’ case, we are putting the bricks together.
The above discussed 𝛼-𝛽 and 𝛽-𝛾 models will be the build-
ing blocks of the LBM to be introduced. Here the degree
sequences are not any more sufficient for the whole graph,
only for the building blocks of the subgraphs.

Given 1 ≤ 𝑘 ≤ 𝑛, we are looking for 𝑘-partition, in other
words, clusters 𝐶

1
, . . . , 𝐶

𝑘
of the vertices, such that

(i) different vertices are independently assigned to a
cluster 𝐶

𝑢
with probability 𝜋

𝑢
(𝑢 = 1, . . . , 𝑘), where

∑
𝑘

𝑢=1
𝜋
𝑢
= 1;

(ii) given the cluster memberships vertices 𝑖 ∈ 𝐶
𝑢
and 𝑗 ∈

𝐶V are connected independently, with probability 𝑝
𝑖𝑗

such that

ln
𝑝
𝑖𝑗

1 − 𝑝
𝑖𝑗

= 𝛽
𝑖V + 𝛽𝑗𝑢, (22)

for any 1 ≤ 𝑢, V ≤ 𝑘 pair. Equivalently,

𝑝
𝑖𝑗

1 − 𝑝
𝑖𝑗

= 𝑏
𝑖𝑐
𝑗

𝑏
𝑗𝑐
𝑖

, (23)

where 𝑐
𝑖
is the clustermembership of vertex 𝑖 and 𝑏

𝑖V =

𝑒
𝛽
𝑖V .
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The parameters are collected in the vector 𝜋 = (𝜋
1
, . . . ,

𝜋
𝑘
) and the 𝑛 × 𝑘matrix B of 𝑏

𝑖𝑢
’s (𝑖 ∈ 𝐶

𝑢
, 𝑢 = 1, . . . , 𝑘). The

likelihood function is the following mixture:

∑

1≤𝑢,V≤𝑘
𝜋
𝑢
𝜋V ∏
𝑖∈𝐶
𝑢
,𝑗∈𝐶V

𝑝

𝑎
𝑖𝑗

𝑖𝑗
(1 − 𝑝

𝑖𝑗
)

(1−𝑎
𝑖𝑗
)

. (24)

HereA = (𝑎
𝑖𝑗
) is the incomplete data specification as the clus-

ter memberships are missing. Therefore, it is straightforward
to use the EM algorithm, proposed by [24], also discussed
in [7, 42], for parameter estimation from incomplete data.
This special application for mixtures is sometimes called
collaborative filtering (see [25, 26]) which is rather applicable
to fuzzy clustering.

First we complete our data matrixAwith latent member-
ship vectorsm

1
, . . . ,m

𝑛
of the vertices that are 𝑘-dimensional

i.i.d.Multy(1, 𝜋) (multinomially distributed) randomvectors.
More precisely, m

𝑖
= (𝑚
𝑖1
, . . . , 𝑚

𝑖𝑘
), where 𝑚

𝑖𝑢
= 1 if 𝑖 ∈ 𝐶

𝑢

and zero otherwise. Thus, the sum of the coordinates of any
m
𝑖
is 1, and P(𝑚

𝑖𝑢
= 1) = 𝜋

𝑢
.

Note that if the cluster memberships were known, then
the complete likelihood would be

𝑘

∏

𝑢=1

𝑛

∏

𝑖=1

𝑘

∏

V=1

𝑛

∏

𝑗=1

[𝑝

𝑚
𝑗V𝑎𝑖𝑗
𝑖𝑗
⋅ (1 − 𝑝

𝑖𝑗
)

𝑚
𝑗V(1−𝑎𝑖𝑗)

]

𝑚
𝑖𝑢

(25)

that is valid only in case of known cluster memberships.
Starting with initial parameter values 𝜋(0) and B(0) and

membership vectors m(0)
1
, . . . ,m(0)

𝑛
, the 𝑡th step of the itera-

tion is the following (𝑡 = 1, 2, . . .):
(i) E-step: we calculate the conditional expectation of

eachm
𝑖
conditioned on themodel parameters and on

the other cluster assignments obtained in step 𝑡 − 1
and collectively denoted by𝑀(𝑡−1).
The responsibility of vertex 𝑖 for cluster 𝑢 in the 𝑡th
step is defined as the conditional expectation 𝜋(𝑡)

𝑖𝑢
=

E(𝑚
𝑖𝑢
| 𝑀
(𝑡−1)

), and, by the Bayes theorem, it is

𝜋
(𝑡)

𝑖𝑢
=

P (𝑀(𝑡−1) | 𝑚
𝑖𝑢
= 1) ⋅ 𝜋

(𝑡−1)

𝑢

∑
𝑘

V=1 P (𝑀
(𝑡−1)
| 𝑚
𝑖V = 1) ⋅ 𝜋

(𝑡−1)

V
(26)

(𝑢 = 1, . . . , 𝑘; 𝑖 = 1, . . . , 𝑛). For each 𝑖, 𝜋(𝑡)
𝑖𝑢

is pro-
portional to the numerator; therefore the conditional
probabilities P(𝑀(𝑡−1)|𝑚

𝑖𝑢
= 1) should be calculated

for 𝑢 = 1, . . . , 𝑘. But this is just the part of likelihood
(25) affecting vertex 𝑖 under the condition 𝑚

𝑖𝑢
= 1.

Therefore,

P (𝑀
(𝑡−1)

| 𝑚
𝑖𝑢
= 1) =

𝑘

∏

V=1
∏

𝑗∈𝐶V ,𝑗∼𝑖

𝑏
(𝑡−1)

𝑖V 𝑏
(𝑡−1)

𝑗𝑢

1 + 𝑏
(𝑡−1)

𝑖V 𝑏
(𝑡−1)

𝑗𝑢

⋅ ∏

𝑗∈𝐶V ,𝑗≁𝑖

1

1 + 𝑏
(𝑡−1)

𝑖V 𝑏
(𝑡−1)

𝑗𝑢

=

𝑘

∏

V=1

{

{

{

𝑏
(𝑡−1)

𝑖V 𝑏
(𝑡−1)

𝑗𝑢

1 + 𝑏
(𝑡−1)

𝑖V 𝑏
(𝑡−1)

𝑗𝑢

}

}

}

𝑒V𝑖

⋅

{

{

{

1

1 + 𝑏
(𝑡−1)

𝑖V 𝑏
(𝑡−1)

𝑗𝑢

}

}

}

|𝐶V|⋅(|𝐶V|−1)/2−𝑒V𝑖

,

(27)

where 𝑒V𝑖 is the number of edges within 𝐶V that are
connected to 𝑖.

(ii) M-step: we update 𝜋(𝑡) andm(𝑡): 𝜋(𝑡)
𝑢
fl (1/𝑛)∑𝑛

𝑖=1
𝜋
(𝑡)

𝑖𝑢

and 𝑚(𝑡)
𝑖𝑢
= 1 if 𝜋(𝑡)

𝑖𝑢
= maxV𝜋

(𝑡)

𝑖V and 0 otherwise
(in case of ambiguity, we select the smallest index for
the cluster membership of vertex 𝑖). This is an ML
estimation (discrete one, in the latter case, for the
cluster membership). In this way, new clustering of
the vertices is obtained.
Thenwe estimate the parameters in the actual cluster-
ing of the vertices. In the within-cluster scenario, we
use the parameter estimation of model (3), obtaining
estimates of 𝑏

𝑖𝑢
’s (𝑖 ∈ 𝐶

𝑢
) in each cluster separately

(𝑢 = 1, . . . , 𝑘); as for cluster 𝑢, 𝑏
𝑖𝑢
corresponds to 𝛼

𝑖

and the number of vertices is |𝐶
𝑢
|. In the between-

cluster scenario, we use bipartite graph model (13)
in the following way. For 𝑢 < V, edges connecting
vertices of 𝐶

𝑢
and 𝐶V form a bipartite graph, based

on which the parameters 𝑏
𝑖V (𝑖 ∈ 𝐶𝑢) and 𝑏𝑗𝑢 (𝑗 ∈

𝐶V) are estimated with the above algorithm; here 𝑏
𝑖V’s

correspond to 𝑏
𝑖
’s, 𝑏
𝑗𝑢
’s correspond to 𝑔

𝑗
’s, and the

number of rows and columns of the rectangular array
corresponding to this bipartite subgraph of A is |𝐶

𝑢
|

and |𝐶V|, respectively.With the estimated parameters,
collected in the 𝑛 × 𝑘matrix B(𝑡), we go back to the E-
step and so forth.

As in the M-step we increase the likelihood in all parts,
and in the E-step we relocate the vertices into the cluster
where their likelihoods are maximized, the nonnegative
likelihood function is increased in each iteration. Since the
likelihood function is bounded from above (unless in some
inner cycle we start from the boundary of a polytope of
Section 2), it must converge to a local maximum.

Note that here the parameter 𝛽
𝑖V with 𝑐𝑖 = 𝑢 embodies the

affinity of vertex 𝑖 of cluster 𝐶
𝑢
towards vertices of cluster 𝐶V;

and likewise, 𝛽
𝑗𝑢

with 𝑐
𝑗
= V embodies the affinity of vertex

𝑗 of cluster 𝐶V towards vertices of cluster 𝐶𝑢. By the model,
these affinities are added together on the level of the logits.
This so-called 𝑘-𝛽model, introduced in [43], is applicable to
social networks, where attitudes of individuals in the same
social group (say, 𝑢) are the same towardmembers of another
social group (say, V), though this attitude also depends on
the individual in group 𝑢. The model may also be applied
to biological networks, where the clusters correspond, for
example, to different functioning synopses or other units of
the brain; see [44].

After normalizing the 𝛽
𝑖V (𝑖 ∈ 𝐶𝑢) and 𝛽𝑗𝑢 (𝑗 ∈ 𝐶V) to

meet the requirement of (19), for any 𝑢 ̸= V pair, the sum
of the parameters will be zero, and their sign and magnitude
indicate the affinity of nodes of𝐶

𝑢
tomake ties with the nodes

of 𝐶V and vice versa:

∑

𝑖∈𝐶
𝑢

𝛽
𝑖V + ∑
𝑗∈𝐶V

𝛽
𝑗𝑢
= 0. (28)

This becomes important when we want to compare the
parameters corresponding to different cluster pairs. For
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Figure 1: Data were generated based on parameters 𝛽
𝑖V’s chosen uniformly in different intervals, 𝑘 = 3, |𝐶

1
| = 190, |𝐶

2
| = 193, and |𝐶

3
| = 197.

The estimated versus the original parameters 𝛽
𝑖V’s are shown for 𝑖 ∈ 𝐶

𝑢
(𝑢, V = 1, . . . , 𝑘), where 𝛽

𝑖1
∼ U[0, 1] (𝑖 ∈ 𝐶

1
), 𝛽
𝑖1
∼ U[−0.75, 0.5]

(𝑖 ∈ 𝐶
2
), 𝛽
𝑖1
∼ U[−0.25, 0.75] (𝑖 ∈ 𝐶

3
), 𝛽
𝑖2
∼ U[−1, 1] (𝑖 ∈ 𝐶

1
), 𝛽
𝑖2
∼ U[−1, 0] (𝑖 ∈ 𝐶

2
), 𝛽
𝑖2
∼ U[−0.25, 0.25] (𝑖 ∈ 𝐶

3
), 𝛽
𝑖3
∼ U[−1, 0.5]

(𝑖 ∈ 𝐶
1
), 𝛽
𝑖3
∼ U[−0.5, 1] (𝑖 ∈ 𝐶

2
), and 𝛽

𝑖3
∼ U[−0.5, 0.5] (𝑖 ∈ 𝐶

3
), respectively. MSE = 1.14634.

selecting the initial number of clusters, we can use consid-
erations of [45], while for the initial clustering, we can use
spectral clustering tools of [5].

4. Applications

Now we illustrate the performance of our algorithm via
randomly generated and real-world data. Note that while
processing the iteration, we sometimes run into threshold
subgraphs or bipartite subgraphs on the boundary of the
polytope of bipartite degree sequences. Even in this case, our
iteration converged for most coordinates of the parameter
vectors, while some 𝑏

𝑖V coordinates tended to +∞ or 0
(numerically, when stopping the iteration, they took on a very
“large” or “small” value). This means that the affinity of node
𝑖 towards nodes of the cluster 𝑗 is infinitely “large” or “small”;
that is, this node is liable to always or never make ties with
nodes of cluster 𝑗.

First we generated a random graph on 𝑛 = 580 vertices
and with 𝑘 = 3 underlying vertex-clusters 𝐶

1
, 𝐶
2
, 𝐶
3
in the

following way. Let |𝐶
1
|fl 190, |𝐶

2
|fl 193, and |𝐶

3
|fl 197.The

parameters 𝛽
𝑖1
(𝑖 ∈ 𝐶

1
), 𝛽
𝑖2
(𝑖 ∈ 𝐶

1
), and 𝛽

𝑖3
(𝑖 ∈ 𝐶

1
)

were chosen independently at uniform from the intervals
[0, 1], [−1, 1], and [−1, 0.5], respectively. The parameters
𝛽
𝑖1
(𝑖 ∈ 𝐶

2
), 𝛽
𝑖2
(𝑖 ∈ 𝐶

2
), and 𝛽

𝑖3
(𝑖 ∈ 𝐶

2
) were chosen

independently at uniform from the intervals [−0.75, 0.5],
[−1, 0], and [−0.5, 1], respectively. The parameters 𝛽

𝑖1
(𝑖 ∈

𝐶
3
), 𝛽
𝑖2
(𝑖 ∈ 𝐶

3
), and 𝛽

𝑖3
(𝑖 ∈ 𝐶

3
)were chosen independently

at uniform from the intervals [−0.25, 0.75], [−0.25, 0.25], and
[−0.5, 0.5], respectively.

Starting with 3 clusters, obtained by spectral clustering
tools, and initial parameter values collected in B(0) of all 1
entries, after some outer steps, the iteration converged to ̂B =
(
̂
𝑏
𝑖V). With ̂𝛽

𝑖V = ln̂𝑏𝑖V, we plotted the 𝛽
𝑖V, ̂𝛽𝑖V pairs for 𝑖 ∈ 𝐶𝑢,

𝑢, V = 1, 2, 3. Figure 1 shows a good fit with MSE = 1.14634
of the estimated parameters to the original ones. Indeed, by
the general theory of the ML estimation [6], for “large” 𝑛, the
ML estimate should approach the true parameter, based on
which the model was generated. So the good fit means that
our algorithm finds estimates close to the true parameters.



Journal of Probability and Statistics 9

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

−0.2

−0.4

{𝛽
i1
, i ∈ C1}

{𝛽
i1
,i
∈
C
1
}

(a)

0.5

0.4

0.0

0

−0.5

−0.6 −0.3

{𝛽
i1
, i ∈ C2}

{𝛽
i1
,i
∈
C
2
}

(b)

0.5

0.0

0.0 0.2 0.4 0.6 0.8

−0.5

−0.4 −0.2

{𝛽
i1
, i ∈ C3}

{𝛽
i1
,i
∈
C
3
}

(c)

1.5
1.0

1.0

0.5

0.5

0.0

0.0

−0.5

−0.5

−1.0

−1.0

−1.5

{𝛽
i2
, i ∈ C1}

{𝛽
i2
,i
∈
C
1
}

(d)

0.0

0

−0.5

−0.7 −0.3−1

−1.0

−1.5

{𝛽
i2
, i ∈ C2}

{𝛽
i2
,i
∈
C
2
}

(e)

0.0
0.2

0.2

0.4
0.6

0

−0.2

−0.2

−0.4

{𝛽
i2
, i ∈ C3}

{𝛽
i2
,i
∈
C
3
}

(f)

1.0

0.5

0.4

0.0

−0.5

−0.6 −0.2

−1.0

−1

{𝛽
i3
, i ∈ C1}

{𝛽
i3
,i
∈
C
1
}

(g)

1.0

0.5

0.4 0.8

0.0

0

−0.5

−0.4

−1.0

{𝛽
i3
, i ∈ C2}

{𝛽
i3
,i
∈
C
2
}

(h)

1.0

0.5

0.5

0.0

0.0

−0.5

−0.5

−1.0

{𝛽
i3
, i ∈ C3}

{𝛽
i3
,i
∈
C
3
}

(i)

Figure 2: Data were generated based on parameters 𝛽
𝑖V’s following Gaussian distribution with different parameters for the within- and

between-cluster relations, 𝑘 = 3, |𝐶
1
| = 190, |𝐶

2
| = 193, and |𝐶

3
| = 197. The estimated versus the original parameters 𝛽

𝑖V’s are shown
for 𝑖 ∈ 𝐶

𝑢
(𝑢, V = 1, . . . , 𝑘), where 𝛽

𝑖1
∼ N(0.5, 0.25) (𝑖 ∈ 𝐶

1
), 𝛽
𝑖1
∼ N(−0.125, 0.312) (𝑖 ∈ 𝐶

2
), 𝛽
𝑖1
∼ N(0.25, 0.25) (𝑖 ∈ 𝐶

3
), 𝛽
𝑖2
∼ N(0, 0.5)

(𝑖 ∈ 𝐶
1
), 𝛽
𝑖2
∼ N(−0.5, 0.25) (𝑖 ∈ 𝐶

2
), 𝛽
𝑖2
∼ N(0, 0.125) (𝑖 ∈ 𝐶

3
), 𝛽
𝑖3
∼ N(−0.25, 0.375) (𝑖 ∈ 𝐶

1
), 𝛽
𝑖3
∼ N(0.25, 0.375) (𝑖 ∈ 𝐶

2
), and

𝛽
𝑖3
∼N(0, 0.25) (𝑖 ∈ 𝐶

3
), respectively. MSE = 1.12556.

Then we generated the same size of a random graph,
where the initial parameters followed Gaussian distribution,
with different parameters for the within- and between-cluster
relations. Based on the parameters we calculated the edge
probabilities, and we generated a random graph with them.
Eventually, we estimated the parameters with our algorithm;
see Figure 2. The Gaussian data are about in the same ranges
as the uniform ones; however, they are better concentrated
to their means. It can be the cause of a bit smaller MSE =
1.12556.

Figure 3 shows the resulting clusters obtained by
applying the LBM algorithm to the B&K fraternity data
[46] with 𝑛 = 58 vertices; see also http://vlado.fmf
.uni-lj.si/pub/networks/data/ucinet/ucidata.htm#bkfrat. The
data, collected by Bernard and Killworth, are behavioral
frequency counts, based on communication frequencies
between students of a college fraternity inMorgantown,West
Virginia. We used the binarized version of the symmetric

edge-weight matrix. When the data were collected, the 58
occupants had been living together for at least three months,
but senior students had been living there for up to three
years. We used our normalized modularity based spectral
clustering algorithm [4] to find the starting clusters. In
the normalized modularity spectrum we found a gap after
the third eigenvalue (in decreasing order of their absolute
values); therefore we applied the algorithm with 𝑘 = 4
clusters. The four groups are likely to consist of persons
living together for about the same time period.

While processing the iteration, occasionally we bumped
into the situation when the degree sequence lied on the
boundary of the convex polytopes defined in Sections 2.1
and 2.2. Unfortunately, this can occur when our graph is
not dense enough. In these situations, the iteration did not
converge for some coordinates 𝛽

𝑖V, but they seemed to tend
to +∞ or −∞. Equivalently, the corresponding 𝑏

𝑖V for some
𝑖 ∈ 𝐶

𝑢
and V tended to +∞ or 0, yielding the situation that
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Figure 3: The 4 clusters found by the LBM algorithm in the B&K
fraternity data, with 10, 9, 20, and 19 students in the clusters,
respectively. RAND index = 1 between the SC and LBM.

Figure 4:The 3 clusters found by the LBM algorithm in the network
of the Last.fm users with 1012, 97, and 53 users in the clusters,
respectively. RAND index = 0.99205 between the SC and LBM.

member 𝑖 ∈ 𝐶
𝑢
had +∞ or 0 affinity towards members of 𝐶V.

Another way, recommended in [8], is to add a small amount
to each degree to avoid this situation. However, we did not
want to manipulate the original graph, which was too sparse
to produce degree sequences in the interior of one or more
polytopes.

We also analyzed the network based on the friendships
between the users of the Last.fm music recommendation
system [47]. Last.fm is an online service inmusic based social
networking. Each user may have friends inside the Last.fm
social network, and so they form a timestamped undirected
graph. In 2012, there were 71,000 users and 285,241 edges
between them.Actually, we only used the 15-core of this graph
for clustering. Starting with SC, the LBM iteration refined the
three underlying clusters; see Figure 4.

We clustered the vertices of the above networks with the
EM algorithm and estimated the parameters in both the LBM
and SBM (for the iteration of the letter one, see Chapter 5
of [5]). For the initial clustering we used SC with number
of clusters 𝑘 such that we found a remarkable gap in the

normalized modularity spectrum between |𝜇
𝑘−1
| and |𝜇

𝑘
|.

During the iteration some clusters may become empty which
reduces 𝑘; it was not the case in our iterations. It is also
possible to start with different values of 𝑘; here we started
with the smallest possible 𝑘 which indicated a gap. In case of
the B&K fraternity data, the leading eigenvalues in decreasing
absolute values (apart from the trivial 1) were 𝜇

1
= 0.235826,

𝜇
2
= −0.228652, 𝜇

3
= 0.223039, 𝜇

4
= −0.198867, and

𝜇
5
= 0.194783, indicating a gap between |𝜇

3
| and |𝜇

4
|, so

we selected 𝑘 = 4. In case of the Last.fm data, the leading
eigenvalues in decreasing absolute values (apart from the
trivial 1) were 𝜇

1
= 0.97061, 𝜇

2
= 0.942929, 𝜇

3
= 0.892111,

and 𝜇
4
= 0.862594, indicating a gap between |𝜇

2
| and |𝜇

3
|, so

we selected 𝑘 = 3.
After some outer iterations both the LBM and SBM

converged to a local maximum. We compared the clustering
obtained by SC versus LBM and SC versus SBM via the Rand
index introduced in [48]. This index is between 0 and 1,
and the larger it is, the better the agreement between the
two clusterings is. We found a good agreement between the
SC clusters and those of the LBM: RAND = 1 in Figure 3
and RAND = 0.99205 in Figure 4, whereas, between the
SC clustering and SBM clustering, we obtained RAND =
0.61525 for the B&K fraternity data and RAND = 0.96912 for
the Last.fm data.This shows that LBM is better fine tuning of
the spectral clustering than SBM, at least, in these examples,
where the diversity of the degrees is present.

5. Discussion

Our model is a profoundly heterogeneous kind of a block
model, where the subgraphs and bipartite subgraphs obey
parametric graph models, within which the connections are
mainly determined by the degrees. The EM type algorithm
introduced here finds the blocks and estimates the parameters
at the same time.

When investigating controllability of large networks, the
authors of [49] observe and prove that a system’s controlla-
bility is to a great extent encoded by the underlying network’s
degree distribution. In our model, this is true only for the
building blocks. Possibly, the blocks could be controlled
separately, based on the degree sequences of the subgraphs.

Our model is applicable to large inhomogeneous net-
works, and above finding clusters of the vertices, it also
assigns multiscale parameters to them. In social networks,
these parameters can be associated with attitudes of persons
of one group towards those in the same or another group.The
attitudes are, in fact, affinities to make ties.

We prove the convergence of the inner cycle of the
algorithm to the unique solution of the maximum likelihood
equationwithin the subgraphs and bipartite subgraphs.Then,
by the iteration of the EM algorithm, the convergence of
the outer cycle to a local maximum of the overall likelihood
is straightforward. As there can be several local maxima,
good starting is important. Our final clusters show a good
agreement with the spectral clusters; therefore, the algorithm
can be considered as a refinement of the spectral clustering
and gives estimates of the parameters which provide a local
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maximum of the overall LBM likelihood with clusters near to
the spectral ones.

Appendix

Proof of Theorem 1. To show the convergence, we rewrite the
iteration as the series of (𝜙, 𝜓) : R𝑚+𝑛 → R𝑚+𝑛 maps, where
𝜙 = (𝜙

1
, . . . , 𝜙

𝑚
) and 𝜓 = (𝜓

1
, . . . , 𝜓

𝑛
); further 𝜓 depends on

𝜙 such that

𝑏
(𝑡)

𝑖
= 𝜙
𝑖
(b(𝑡−1), g(𝑡−1)) , 𝑖 = 1, . . . , 𝑚,

𝑔
(𝑡)

𝑗
= 𝜓
𝑗
(b(𝑡), g(𝑡−1)) = 𝜓

𝑗
(𝜙 (b(𝑡−1), g(𝑡−1)) , g(𝑡−1)) ,

𝑗 = 1, . . . , 𝑛.

(A.1)

We define

𝜌 ((b, g) , (b, g))

= max{max{max
1≤𝑖≤𝑚

𝑏
𝑖

𝑏


𝑖

, max
1≤𝑖≤𝑚

𝑏


𝑖

𝑏
𝑖

} ,

max{max
1≤𝑗≤𝑛

𝑔
𝑗

𝑔


𝑗

,max
1≤𝑗≤𝑛

𝑔


𝑗

𝑔
𝑗

}} .

(A.2)

It is easy to see that 𝜌 ≥ 1 and 𝜌 = 1 if and only if (b, g) =
(b, g); further, log 𝜌 is a metric. We will use the following
lemma of [9].

Lemma A.1. For any integer 𝑛 > 1 and arbitrary positive real
numbers 𝑢

1
, . . . , 𝑢

𝑛
and V
1
, . . . , V

𝑛
, we have

𝑢
1
+ ⋅ ⋅ ⋅ + 𝑢

𝑛

V
1
+ ⋅ ⋅ ⋅ + V

𝑛

≤ max
1≤𝑖≤𝑛

𝑢
𝑖

V
𝑖

, (A.3)

and equality holds if and only if the ratios 𝑢
𝑖
/V
𝑖
have the same

value.

Now we prove that the (𝜙, 𝜓) map is a weak contraction
in the log 𝜌metric.

Step 1. Applying Lemma A.1 twice (first with 𝑛 and then with
two terms),

𝜙
𝑖
(b, g)

𝜙
𝑖
(b, g)

=

𝑟
𝑖
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𝑛
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)))
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)))
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=

∑
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𝑗
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𝑖
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𝑖
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1/𝑔
𝑗
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𝑗
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𝑖

≤ max
1≤𝑗≤𝑛
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𝑔


𝑗

𝑔
𝑗

,

𝑏
𝑖
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𝑔


𝑗

𝑔
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𝑖
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(A.4)

Likewise,

𝜙
𝑖
(b, g)
𝜙
𝑖
(b, g)

≤ max
1≤𝑗≤𝑛

max{
𝑔
𝑗

𝑔


𝑗

,

𝑏


𝑖

𝑏
𝑖

}

= max{max
1≤𝑗≤𝑛

𝑔
𝑗

𝑔


𝑗

,

𝑏


𝑖

𝑏
𝑖

} .

(A.5)

Assume that 𝜌((b, g), (b, g)) = 𝜅 and 𝜅 > 1; otherwise, when
𝜅 = 1, we already have the fixed point and there is nothing to
prove. In view of the above calculations and (A.2),

𝜌 ((𝜙 (b, g) , g) , (𝜙 (b, g) , g)) ≤ 𝜅, (A.6)

and the inequality can be attained with equality only if at least
one of the following holds:

(1)

(a) max
𝑖

𝜙
𝑖
(b, g)

𝜙
𝑖
(b, g)

= 𝜅 or

(b) max
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𝜙
𝑖
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(A.7)

(2)
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(A.8)

1(a) is equivalent to the following: there is 𝑖 such that 𝑏
𝑖
/𝑏


𝑖
=

𝜅 and 𝑔
𝑗
/𝑔
𝑗
= 𝜅, ∀𝑗; meanwhile 1(b) is equivalent to the

following: there is 𝑖 such that 𝑏
𝑖
/𝑏
𝑖
= 𝜅 and 𝑔

𝑗
/𝑔


𝑗
= 𝜅, ∀𝑗.

1(a) implies 2(b) and 1(b) implies 2(a). However, it cannot
be that 2(a) or 2(b) hold, but 1(a) and 1(b) do not, since
max
𝑖
(𝜙
𝑖
(b, g)/𝜙

𝑖
(b, g)) = 𝜅 with 1 < 𝜅 < 𝜅 would result in

𝑔


𝑗
/𝑔
𝑗
= 𝜅
, ∀𝑗, which is in contradiction with 2(b); likewise,
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𝑖
(𝜙
𝑖
(b, g)/𝜙

𝑖
(b, g)) = 𝜅 with 1 < 𝜅 < 𝜅 would result in

𝑔
𝑗
/𝑔


𝑗
= 𝜅
, ∀𝑗, which is in contradiction with 2(a).Therefore,

it suffices to keep condition 1.
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Step 2. Again applying Lemma A.1 twice (first with 𝑚 and
then with two terms),
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(A.9)

Likewise,
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(A.10)

Therefore, in view of (A.2),

𝜌 ((𝜙 (b, g) , 𝜓 (𝜙 (b, g) , g)) ,

(𝜙 (b, g) , 𝜓 (𝜙 (b, g) , g))) ≤ 𝜌 ((𝜙 (b, g) , g) ,

(𝜙 (b, g) , g)) ≤ 𝜅

(A.11)

and both inequalities can be attained with equality only if at
least one of the following holds:

(1)

(a) max
𝑗

𝜓
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(A.12)

(2)

(a) max
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= 𝜅 or

(b) max
𝑖

𝜙
𝑖
(b, g)
𝜙
𝑖
(b, g)

= 𝜅.

(A.13)

1(a) is equivalent to the following: there is 𝑗 such that 𝑔
𝑗
/𝑔


𝑗
=

𝜅 and 𝜙
𝑖
(b, g)/𝜙

𝑖
(b, g) = 𝜅, ∀𝑖; meanwhile, 1(b) is equivalent

to the following: there is 𝑗 such that 𝑔
𝑗
/𝑔
𝑗
= 𝜅 and

𝜙
𝑖
(b, g)/𝜙

𝑖
(b, g) = 𝜅, ∀𝑖. Here again, 1(a) implies 2(b) and

1(b) implies 2(a), and it cannot be that 2(a) or 2(b) hold, but
1(a) and 1(b) do not. Therefore, it suffices to keep condition 1
again. But conditions 1(a) and 1(b) of Steps 1 and 2 together
imply that either 𝑏

𝑖
/𝑏
𝑖
= 𝜅, ∀𝑖, and 𝑔

𝑗
/𝑔


𝑗
= 𝜅, ∀𝑗, or 𝑏

𝑖
/𝑏


𝑖
= 𝜅,

∀𝑖, and 𝑔
𝑗
/𝑔
𝑗
= 𝜅, ∀𝑗. In either case, this means that (b, g)

and (b, g) belong to the same equivalence class, and, in two
steps, we already obtained a fixed point with due regard to
the equivalence classes. But this fixed point can only be the
unique solution of the system of likelihood equations (17),
which is guaranteed (up to equivalence) if (r, c) ∈ ri(P

𝑚,𝑛
).

Otherwise, both inequalities in (A.11) cannot hold with
equality, but there must be a strict inequality. Consequently,

𝜌 ((𝜙 (b, g) , 𝜓 (𝜙 (b, g) , g)) ,

(𝜙 (b, g) , 𝜓 (𝜙 (b, g) , g))) < 𝜌 ((b, g) ,

(b, g)) ,

(A.14)

and hence 𝑓 = (𝜙, 𝜓) is a weak contraction.

Observe that 𝑓((b(𝑡), g(𝑡))) = (b(𝑡+1), g(𝑡+1)), and, under
the condition (r, c) ∈ ri(P

𝑚,𝑛
), the ML estimate (̂b, ĝ) is a

unique fixed point of 𝑓; that is, 𝑓(̂b, ĝ) = (̂b, ĝ). Therefore,
we have

ln 𝜌 ((b(𝑡+1), g(𝑡+1)) , (̂b, ĝ))

< ln 𝜌 ((b(𝑡), g(𝑡)) , (̂b, ĝ)) .
(A.15)

This means that ln 𝜌((b(𝑡), g(𝑡)), (̂b, ĝ)) is a monotonic
decreasing sequence of nonnegative entries, and so it has
a limit 𝑐 ≥ 0. But this implies that lim

𝑡→∞
ln 𝜌((b(𝑡), g(𝑡)),

(b∗, g∗)) = 0, where (b∗, g∗) is in the equivalence class of
(
̂b, ĝ), with scaling constant 𝜅 = 𝑒𝑐.

On the contrary, when (r, c) ∉ ri(P
𝑚,𝑛
), the sequence

cannot converge to a fixed point, since then it was the solution
of the maximum likelihood equations (17). But we have seen
that no finite solution can exist in this case. It means that
at least one coordinate of the sequence {(b(𝑡), g(𝑡))} tends
to infinity. We remark that, even in this case, we obtain
convergence in the other coordinates; this issuewas discussed
in Section 4.
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fruitful discussions and making the music recommendation



Journal of Probability and Statistics 13

data available; further, Despina Stasi for suggesting to the
authors the fraternity data to be processed. Ahmed Elbanna’s
researchwas partly done under the auspices of theMTA-BME
Stochastic Research Group.

References

[1] A. Clauset, M. E. J. Newman, and C. Moore, “Finding commu-
nity structure in very large networks,” Physical Review E, vol. 70,
no. 6, Article ID 066111, 2004.

[2] M. E. J. Newman,Networks, An Introduction, Oxford University
Press, Oxford, UK, 2010.

[3] S. Fortunato, “Community detection in graphs,”Physics Reports,
vol. 486, no. 3–5, pp. 75–174, 2010.

[4] M. Bolla, “Penalized versions of the Newman-Girvan mod-
ularity and their relation to normalized cuts and k-means
clustering,” Physical Review E, vol. 84, no. 1, Article ID 016108,
2011.

[5] M. Bolla, Spectral Clustering and Biclustering. Learning Large
Graphs and Contingency Tables, Wiley, 2013.

[6] C. R. Rao, Linear Statistical Inference and Its Applications,Wiley,
1973.

[7] G. J. McLachlan,The EMAlgorithm and Extensions, JohnWiley
& Sons, New York, NY, USA, 1997.

[8] S. Chatterjee, P. Diaconis, and A. Sly, “Random graphs with a
given degree sequence,” Annals of Applied Probability, vol. 21,
no. 4, pp. 1400–1435, 2011.

[9] V. Csiszár, P. Hussami, J. Komlós, T. F. Móri, L. Rejtő, and G.
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Tusnady, “Testing goodness of fit of random graph models,”
Algorithms, vol. 5, no. 4, pp. 629–635, 2012.
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