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ESTIMATING PARAMETERS OF A DIRECTED
WEIGHTED GRAPH MODEL WITH
BETA-DISTRIBUTED EDGE-WEIGHTS

M. Bolla!, J. Mala''?, and A. Elbanna'?

We introduce a directed, weighted random graph model, where the edge-weights are independent and
beta distributed with parameters depending on their endpoints. We will show that the row- and
column-sums of the transformed edge-weight matrix are sufficient statistics for the parameters, and
use the theory of exponential families to prove that the ML estimate of the parameters exists and is
unique. Then an algorithm to find this estimate is introduced together with convergence proof that
uses properties of the digamma function. Simulation results and applications are also presented.

1. Introduction

The theory of ML estimation in the following types of exponential family random graph models has
frequently been investigated in the last decade, see, e.g., [5,6,8,10,11]. The graph has n vertices, and
the adjacency relations between them are given by the n x n random edge-weight matrix W = (w;;) of
zero diagonal. If W is symmetric, then we have an undirected graph; otherwise, our graph is directed,
where w;; is the nonnegative weight assigned to the i — j edge according to the model. We assume that
the edge-weights (above or out of the main diagonal) are completely independent (but their distribution
usually depends on different parameters), and have an exponential family distribution Pg. So the
likelihood function has the general form

Lo(W) = {0t WD =20) . p(w), (1)

with the canonical parameter 6, log-partition (cumulant) function Z(0), and canonical sufficient statistic
t. In these random graph models, the components of ¢ = t(W) are the row-sums and/or column-sums
of W or some W-related matrix, i.e., they are vertex-degrees or in- and out-degrees of the observed
undirected or directed, weighted or unweighted graph (in the weighted case, the edge-weights may
undergo a suitable transformation). Also, h(W) is usually 1 over the support of the likelihood function,
indicating that given the canonical sufficient statistics, the joint distribution of the entries is uniform
(microcanonical) in these models.

To make inference on the parameters, typically we have only one observation for the graph. It may
seem that it is a one-element sample, but there are the adjacencies that form the sample; the number of
them is (g) in the undirected, and n(n —1) in the directed case. The number of parameters contained in
0 is n in the undirected and 2n in the directed case. The parameters can be considered as affinities or
potentials of the vertices to make ties in the undirected, and to emanate or adsorb edges in the directed
case. It is important that we divide the components of the canonical parameter 8 of the underlying
distribution of the 7j or ¢ — j edge between the connected vertices, like o; + «; in the undirected and
a; + f; in the directed case (i # j), see [5,6,10].
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In regular exponential families (© is open), the ML equation Vg In Lg(W') = 0 is equivalent to
VoZ(0) =t. (2)

Since VgZ(0) = Egt, the ML Eq. (2) means that the canonical sufficient statistic is made equal to its
expectation. But when is it possible? Now we briefly summarize existing theoretical results on this
issue.

Let M = {Egt : 6 € ©} denote the so-called mean parameter space in the model; it is necessarily
convex. Let M? denote its interior. When the canonical statistic is also complete, and hence, minimal

sufficient, the representation (1) is minimal (i.e., the model is not overparametrized).
Proposition 1 [11, Proposition 3.2]. In exponential family, the gradient mapping VZ : © — M is

one-to-one, if and only if the exponential family representation is minimal.

Proposition 2 [11, Theorem 3.3]. In a minimal exponential family, the gradient mapping VZ is
onto MO,

By Propositions 1 and 2, any parameter in M9 is uniquely realized by the Py distribution for some
6 € ©. Also, in a regular and minimal exponential family, M is an open set and is identical to MO,

As the ML estimate of 6 is the solution of (2), we have the following.

Proposition 3 [10, Proposition 5]. Assume that the (canonical) parameter space © is open. Then
there exists a solution @ € © to the ML equation Vo Z(0) = t if and only if t € MO; further, if such a
solution exists, it is also unique.

Note that in regular and minimal exponential families, M is also the interior of 7, which is the
convex hull of all possible values of ¢, see, e.g., [6,9]. In the case of discrete distributions, it frequently
happens that the boundary of T has positive measure. For instance, the so-called threshold graphs are
located on the boundary of the polyhedron, determined by the Erdés—Gallai conditions, in the model
of [6] which uses Bernoulli distributed entries. However, in the case of an absolutely continuous Pg
distribution, the boundary of 7 has zero Lebesgue measure, and so, probability zero with respect to
the Py measure. Therefore, in view of Proposition 3, the ML equation has a unique solution with
probability 1.

The organization of the paper is as follows. In Section 2, we introduce a model for directed edge-
weighted graphs and prove that a unique ML estimate of the parameters exists. In Section 3, we define
an iterative algorithm to find this solution, and prove its convergence with a convenient starting. In
Section 4, the algorithm is applied to randomly generated and real-word data. In Appendix A, properties
of the digamma function, whereas in Appendix B, the boundary of our M, is discussed. The long proof
of the main convergence theorem of the iteration algorithm, introduced in Section 3, is presented in
Appendix C.

We remark that edge-weighted graphs of uniformly bounded edge-weights are prototypes of real-
world networks, see, e.g., [4]. Without loss of generality, if the edge-weights are transformed into the
[0,1] interval, the beta distribution for them, with varying parameters, is capable to model a wide range
of possible probability densities on them. This indicates the soundness of the model to be introduced in
Section 2.

2. A random graph model with beta distributed edge-weights

Let W = (w;;) be the n x n (usually not symmetric) edge-weight matrix of a random directed graph
on n vertices: w;; =0 (i =1,...,n) and w;; € [0,1] is the weight of the i — j edge (i # j). Our model
is the following: the 7 # j weight obeys a beta distribution with parameters a; > 0 and b; > 0. The
parameters are collected in a = (aq,...,a,) and b = (by,...,b,), or briefly, in & = (a,b). Here a; can
be thought of as the potential of the vertex i to send messages out, and b; is its resistance to receive
messages in.
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The likelihood function is factorized as

Lapn(W) = H %wqu(l — ])bj—l =

i#j
C(a,b Hexp — 1) Inw;; + (bj — 1) In(1 — wyy)] =
i#]
= exp Z i —1 Zlnw”—FZb -1 Zln (1 —wi;) — Z(a,b)|,
i=1 J#i i7#]
where C(a,b) is the normalizing constant, and Z(a,b) = —InC(a,b) is the log-partition (cumulant)

function. Since the likelihood function depends on W only through the row-sums of the n x n matrix
U = U(W) of general entry Inw;; and the column-sums of the n x n matrix V' = V(W) of general

entry In(l1 — w;j), by the Neyman-Fisher factorization theorem, the row-sums Ry,...,R, of U and
column-sums C1,...,C, of V are sufficient statistics for the parameters. Moreover, t = (R,C) =
= (Ry,...,R,,C4,...,C,) is the canonical sufficient statistic, which is also minimal. Note that U

contains the log-weights of the original graph, while V' contains the log-weights of the complement
graph of edge-weight matrix W with entries 1 — w;; (i # j). The first factor in the Neyman-Fisher
factorization (including gamma functions) depends only on the parameters and on the sample through
these sufficient statistics, whereas the seemingly not present other factor — which would merely depend on
W —is constantly 1, indicating that the conditional joint distribution of the entries, given the row- and
column-sums of the log-weight and log-complement matrix is uniform (microcanonical) in this model.
So under the conditions on the margins of U and V, the directed graphs coming from the above model
are uniformly distributed.

The system of likelihood equations is obtained by making the derivatives of Ly (W) with respect
to the parameters equal to 0:

In Lo ( |
an—b =" wai+ b)) — (0= Db(ag) + Ri =0, i=1,....n,
JF#i
(3)
In Lo ( |
an—b = 3" Wai+ b)) — (0= Db(b) +C; =0, j=1,....n.
i#j

Here ¢(x) = 81%2(9”) = E,/((;)) for > 0 is the digamma function. For its properties, see Appendix A.

To apply the theory of Section 1, we utilize that the parameter space @ C ]Ri” is open, akin to the
canonical parameter space, (—1,00)?". Note that the canonical parameter is, in fact, (a’,b’) = 8’ = 6—1,
where 1 € R?" is the vector of all 1 coordinates. With it, the log-partition function is

Z@,b)==> T(a/+b'+2)+> T(a'+1)+> T/ +1).
J#i JF#i i#]

In view of (2), the ML equation is equivalent to

0Z(a', b’ .

722 ) S b+ 2) 4 (- Dlad +1) = Riy i=1,..m,
‘ ji

0Z(a, b’ .

7; ) S gl b D)+ D+ ) =Gy =1,
I i

But this system of equations is the same as (3), in terms of the parameter 8" instead of 6.
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In view of Section 1, the mean parameter space M consists of parameters (Ay,...,A,, B1,...,By)
obtained by the gradient mapping, that is,

A= Ai(a,b) = = " [la; +bj) —v(a;)], i=1,....n,
j#i

Bj = Bj(a,b) = =Y [(a;i + b)) —v(b)], j=1,....n.
i#j

(4)

Space M is an open set, whose boundary is determined by the limit properties between the digamma and
the log functions; see Appendix B for details. There we also find a correspondence between the points on
the boundary of M and those on the boundary of the convex hull 7 of the possible sufficient statistics
t = (R, C) within R?". It is interesting that while the boundary points of M do not belong to the open
set M, the boundary points of 7 do belong to 7 and can be realized as row- and column-sums of the
U(W) and V(W) matrices with a W of off-diagonal entries in (0,1). However, this boundary has 0
probability, and so, any canonical sufficient statistic ¢ of the observed graph is in M, with probability 1.
Therefore, by Proposition 3, we can state the following

Theorem 1. The system of the ML Eq. (3) has a unique solution 0 = (a, B), with probability 1.

Later we will use the following trivial upper bound for the sum of row- and column-sums (of the U
and V matrices):

ZRZ + ZC] = ZZIH'LUZ']' + ZZln(l — 'LUZ']') = Zln[w”(l — ’LUZ])] < —2In2n(n—1) (5)
i=1 j=1

i=1 j#i =1 i#j i#]

due to rearranging the terms and the relation w;;(1 — wy;) < 1/4 for wy; € [0,1] with equality if and
only if w;; = % (i # j). For finer estimates see Appendix B.

Also note that the Hessian of the system of ML equations (consisting of the second order partial
derivatives of Lg at é) does not contain the sufficient statistics anymore; therefore the negative of it
is the Fisher-information matrix at . Because of the regularity conditions, the information matrix is
positive, and so, the Hessian is negative definite. This is also an indication of the existence of a unique
ML estimate.

3. Iteration algorithm to find the parameters

To use a fixed point iteration, now we rewrite the system of likelihood equations in the form 6 = f(8),
where 8 = (a, b), as follows:

_ 1 1 )
ai:d} ! n_le"i_n_l;T/}(aZ"‘b]) ::gi(a7b)7 ZZlJ"'an7
- - (6)
_ 1 1 .
b=v n—1Cj+n—1;¢(ai+bj) =thj(ab), j=1,...,n

Here g;’s and h;’s are the coordinate functions of f = (g,h) : R2" — R2". Then, starting at (%), we use
the successive approximation () := f (0(”_1)) for it = 1,2,..., until convergence. Now the statement
of convergence of the above iteration to the theoretically guaranteed unique 6 (see Theorem 1) follows.

Theorem 2. Let 6 = (a, B) be the unique solution of the ML Eq. (3). Then the above mapping
f = (g,h) is a contraction in some closed neighborhood K of 0, and so, starting at any 0 ¢ K, the

fized point of the iteration 8 = f(@W=1) exists and is 6.
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The proof of this theorem is to be found in Appendix C.
Since K is only theoretically guaranteed, we need some practical considerations about the choice of

09, which should be adapted to the sufficient statistics. In the sequel, for two vectors & = (T1,. .., 2p),
Yy = (y1,...,yn) we use the notation x > y if x; > y; for each i = 1,...,n. Likewise, x > y is the
shorthand for z; > y; foreach i =1,... n.

Recall that f = (g, h) is the mapping (6) of the fixed point iteration, and 0 = (a, f)) > 0 is the (only)
solution of the equation f(0) = 6, where 0 € R?" is the vector of all 0 coordinates.

Proposition 4. Let

M :=max<{ max |[— B , max | — Ci (7)
ie{l,...,n} n—1) ie{l,..n} n—1

and € > 0 be the (only) solution of the equation 1(2x) —¢(x) = M. Then (a,b) > 1.

Proof. In view of (5) we have that M > In2. Since equality in (5) is attained with probability 0,
we have that M > In2 with probability 1. Therefore, by Lemma 3 of Appendix A, there exists an ¢,
with probability 1, such that ¢(2¢) — ¥ (e) = M.

Without loss of generality we can assume that

@, = min min d;, min b; .
ie{l,...,n} 1€{1,...,n}

Then by the ML equation, the monotonicity of ¥, and Lemma 3 of Appendix A, we get
(n=1)M > —Riy = > (i +bj) — (n = 1)ih(as,) > (n = )[¥(2ai,) — v(as, ).
J#io

Therefore, a;, > ¢, whence d;, bAZ > € holds for every 1 = 1,...,n.
Proposition 5. With the solution € of (2x) — 1 (x) = M of (7), we have f(el) > €1.
Proof. We have

1) =07 (v20) + 72 ) 3 07 (w2e) - M) =

Likewise,

ha(e1) = ! (wss) + G 1) > o ((20) — M) = <.

It is also clear that we have the following.

Proposition 6. If (a,b) > (x,y) > 0, then f(a,b) > f(x,y).

Theorem 3. With e satisfying 1(2¢) — (c) = M of (7), and starting at 8°) = 1, the sequence
0 of the iteration O = f(B(it_l)) for it — oo converges at a geometric rate to the unique solution
(a,b) of the ML equation.

Proof. From Propositions 4 and 5 we obtain that the sequence 8 is coordinate-wise increasing.
Moreover, it is clear that (")) is bounded from above by (a,b), due to Proposition 6. Therefore, the
convergence of 80 follows, and by the continuity of f, the limit is clearly a fixed point of f. However,
in view of Section 2, the solution of the ML equation is a fixed point of f, and it cannot be anything
but the unique solution (a, b), guaranteed by Theorem 1. Further, from Theorem 2 we get that the rate
of convergence is (at least) geometric.

Therefore, a good starting can be chosen by these considerations. Also note that at the above ()
and possibly at its first (finitely many) iterates, f is usually not a contraction. It becomes a contraction
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only when some iterate 8(%0) gets into the neighborhood K of 0 of Theorem 2, which is inevitable in
view of the convergence of the sequence 8. So, Theorem 2 is literally applicable only if we start the
iteration at 0(%0) In practice, however, we do not know the theoretically guaranteed neighborhood K.
The practical merit of Theorem 3 is just that it offers a realizable starting.

4. Applications

First we generated a random directed edge-weighted graph on n = 100 vertices. The edge-weight
matrix W had zero diagonal, and the off-diagonal entries w;;’s were independent. Further, for i # j,
the weight w;; was generated according to beta distribution with parameters a; > 0 and b; > 0, where
a;’s and b;’s were chosen randomly in the interval [1,5].

Then we estimated the parameters based on W, and plotted the a;,a; (i = 1,...,n) and bj,l;j
(j =1,...,n) pairs.

Figure 1 shows a good fit between them.

5- .. 5t n' . ]
w .O...hr'.- _‘_n ® 'a.“..
6t o 2% i & w?r
E 3t -:"“”:‘ E 3t ';:'-' ’
© L ] i-‘-
E2 o £ 2t "
o 21V
Ok Ok
1 2 3 4 1 2 3 4 5
Initial a;'s Initial bj‘s

(a) (b)

Fig. 1. Panel (a) shows the original versus the estimated parameters a;’s with M.SE = 0.0628806, while Panel
(b) shows the original versus the estimated parameters b;’s with M SE = 0.0768382.

We also applied the algorithm to migration data among 34 countries. Here w;; is proportional to the
number of people in thousands who moved from country i to country j (to find jobs) during the year
2011, and it is normalized so that be in the interval (0,1). The estimated parameters are in Table 1.

In this context, a;’s are related to the emigration and and b;’s to the counter-immigration potentials.
When q; is large, country ¢ has a relatively large potential for emigration. On the contrary, when b; is
large, country ¢ tends to have a relatively large resistance against immigration.

It should be noted again that edge-weighted graphs of this type very frequently model real-world
directed networks.

Appendix
A. Properties of the digamma function

Though we do not use it explicitly, the following approximation of the digamma function ¢ (x) =

= 81%1;(95) = 1;((5)) (x > 0) is interesting in its own right.

Lemma 1. The equation ¢(z) = In(z — ) + O (#) holds for x > 1.

The statement of the lemma easily follows by Taylor expansion.

1 1
7@ T W

Lemma 2. The equation w’(;ﬂ/) > holds for x,y > 0.



Estimating Parameters of a Directed Weighted Graph Model with Beta-Distributed Edge-Weights 617

Table 1. Estimated parameters for migration data, 2011

i | Country a; b; i | Country a; b;

1 | Australia 0.26931 1475.75242 18 | Japan 0.23211 9926.91644
2 | Austria 0.27403 632.81653 19 | Korea 0.22310 4199.25005
3 | Belgium 0.33380 46.01197 20 | Luxembourg 0.17543 107.91399
4 | Canada 0.27383 2363.23435 21 | Mexico 0.26706 4655.95370
5 | Chile 0.21236 | 28940.59777 22 | Netherlands 0.37754 39.52320
6 | Czech Rep. | 0.31188 470.28651 23 | New Zealand 0.20542 2568.00582
7 | Denmark 0.26514 847.34887 24 | Norway 0.22646 519.12451
8 | Estonia 0.23235 | 25602.33371 25 | Poland 0.62846 1106.55946
9 | Finland 0.29357 1100.00568 26 | Portugal 0.31011 1606.59979
10 | France 0.52721 37.92122 27 | Slovak Rep. 0.27871 42451.19093
11 | Germany 0.62020 1.64064 28 | Slovenia 0.19720 6824.54028
12 | Greece 0.29708 6319.19184 29 | Spain 0.39732 182.47160
13 | Hungary 0.31443 | 32750.88310 30 | Sweden 0.39627 57.34509
14 | Iceland 0.18051 2950.72653 31 | Switzerland 0.33611 4524.67821
15 | Ireland 0.27555 364.52781 32 | Turkey 0.25900 | 146175.82805
16 | Israel 0.25854 1926.04551 33 | United Kingdom | 0.49301 48.61626
17 | Italy 0.50522 135.14076 34 | United States 0.38019 2433.78269

Proof. First we prove that the function u(z) = i
easily see that

o T E (0, 00), is strictly convex. Indeed, one can

o (z) = —¢" (@) [ (2)] + 2[" (2)*¢ (@)
v ()] ’
and this is positive due to ¢’(xz) > 0 and the fact that
WP 1

(@)l (x) — 2

The latter is a particular case of Corollary 2.3 in [2].
Now, in view of lin% Y/ (z) = oo, we can extend u continuously to 0 by setting u(0) = 0. Then u is

T—

still strictly convex, and therefore, for every x,y > 0 we have

_ y . ro Y
u(z) _u<x+y 0+ Tty (m—i—y)) < x+yu(0)+ x+yu(az+y).
Consequently,
T
< + ), 8
u(@) < ——ule+y) )
and likewise,
Y
< +y). 9
u(w) < —u(w+) o)

Adding (8) and (9) together, we get the statement of the lemma.

Lemma 3. The function ¥ (2x) — (z), z € (0,00), is decreasing and its range is (In2,00).

Proof. This is easily seen from the identity ¢(2z) = 3¢ (2) + 39 (z + 3) +1n 2, which can be found
in [1].

In the last lemma we collect some limiting properties of the digamma function and its derivative,
see, e.g., [1-3] for details.

Lemma 4. The digamma function v is a strictly concave, smooth function on (0,00) that satisfies
the following limit relations:

lim ¢(z) = —oc0, lim ¢(z) =00, lim ¢'(x)=0,

r—0+ T—00 r—00

lim (¢(z) —lnx) =0, lim (¢¥(2z) — ¢ (z)) = oc.

T—00 z—0+
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B. Considerations on the boundary of the mean parameter space

In Section 2, we saw that the mean parameter space M consists of 2n-tuples (A1,..., Ay, B1,...,By)
obtained from the parameters (a,b) = (a1,...,an,b1,...,b,) of the underlying beta distributions by
Eq. (4).

Denoting by L(a,b) = (4i(a,b),..., Ay(a,b), Bi(a,b),. .., By(a, b)) this dependence, i.e., the ® —

— M (one-to-one) mapping, a boundary pomt L= (Ay,...,A,, By,...,By,) of M can be obtalned as
L = lim L(a*,b*), where a* = (a¥,...,ak), b* = (b}, .. bk) and
k—o00
lim ak—aZ €0,00], i=1,...,n,
k—o0
hmb =b;€[0,0], j=1,...,n.
k—o0

In view of Lemma 4, only the @;, b; = oo cases have relevance. The sequence (a*, b*) can be chosen such
that

k
kli)nrolOZ—]i =ux;; with 0<x;; <oo for i#j. (10)
J

Then, using (4),

c=— i bk —ua®)| = i E k E =
A; kh—>nolo 3 [Q/)(az +b5) — ¥(a; )} klgrolo 3 [ln( ¥y —In(ak + b3) ] In T + % i=1,...,n,
JF JF JFi
_ 1
=1 Eopky — )| = 1 ky k| = | =
Bj = - lim 2 [ﬂ)(az +b;) w(b])] Jim gﬁj [ln(bg) In(az +b])] géj In et L...,n.

These equations show that the boundary point L of M contains — in its coordinates — the row- and
column-sums of the matrices U(W') ad V(W) respectively (see Section 2), where the general off-diagonal

entry of the n x n edge-weight matrix W is lig”
Observe that 2n — 1 z;;’s can be chosen freely, and all the others are obtainable from them. To see
this, consider the complete bipartite graph on vertex classes (aq,...,a,) and (by,...,by,), where to the

edge connecting a; and b; we assign b . Choose a minimal spanning tree of this graph (it contains 2n —1
edges), and consider the sequence of (a*, b*)’s satisfying condition (10). Then, as k — oo, the z;;’s of
the edges not included in the spanning tree can be obtained from the z;;’s of the 2n — 1 edges included
in the spanning tree. Therefore the row- and column-sums of the edge-weight matrix W of entries —

Tij
1+(E1']'
(i # j) are on a (2n — 1)-dimensional manifold in R?", so they are on the boundary of the convex hull
T of the possible sufficient statistics (R,C). However, this boundary has zero Lebesgue measure, and
S0, zero probability with respect to the underlying absolutely continuous distribution.

C. Proof of Theorem 2

It suffices to prove that some induced matrix norm of the matrix of the first derivatives J of f at 8
is strictly less than 1. We prove this for the Li-norm. From (6) we obtain that

(@i +b;)
' (a,b) = iz . (11)

da; 1 R
/ A~ 7. 7
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From (3) we have —1- > (@i + l;]) + LB — 4(a;). Substituting it into (11), we get

n—1

1 .
Z mﬂ/(dz’ + bs)

dg; . .
'(A.b) = sF#1L e -
8@]’ (a7 ) 1/}/(&1) 9 lf ] - Z?
0, if j #1d.
Likewise,
) 0, it j =1,
" (a,6) = § ——/(ai +by)
db; 1w’(A ) ,if g £
a;
Further,
0, if j =1,
oh; ,. - 1 . -
(av b) = wl(aj + bz)
8(1]- n—1 if 5 751
’lp,(gz) 9 j
and
1 ' ~
> Y (as + by)
Ohi o oy _ ) Zn ! e
ab; (a,b) ?[),(i?z‘) , if j =1,
0, if £ .

Observe that J(a, f)) has nonnegative entries. Therefore, its Li-norm is the maximum of its column-
sums. The jth column-sum of J(a,b) is equal to

1o,
) M AL R R

s#7 n—1 _ "(a; + b ! X
O e Rl C s I

for j =1,...,n; and likewise, the (n + j)th column-sum of J(&,b) is

1 Y 1 1

for j =1,...,n. As (12) and (13) are of similar in appearance, it suffices to prove that the right-hand
side of (12) is less than 1. But

PP 1 1
Vi +b) <w<aj> ! wss)) b
holds by Lemma 2, and we have n — 1 terms in the summation.

Since f : R2" — R2" is continuously differentiable in a neighborhood of @ = (a,b), Theorem 3 of [7]
implies that there is a closed neighborhood K of 6 such that f is a contraction on K. In particular, the
fixed point iteration f(00~1)) = @) (it — co) converges for every () € K to 6, which is the unique
solution of (6).
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