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Abstract

Constructions for regression graphs and verification of the statistical model via
linear, linearized, and logistic regressions along them have recently been inten-
sively studied by Wermuth, Sadeghi, and Cox. In the present paper an iterative
regression method, using local averaging estimators, is introduced for prediction,
based on a complete training sample. The method makes it possible to perform
nonparametric regressions recursively, irrespective of the type of the context
and response variables. As a consequence, predictions for the multiple response
variables of a test sample are performed in the possession of their context vari-
ables only. Consistency is proved if the joint distribution is Markov compatible
with a DAG or with a regression graph. In the latter case, the prediction goes
on from chain component to chain component, with vector valued smoothers,
mainly of product kernel types in the implementation. Practical considerations
and application to randomly generated and real-world data are also presented.

Keywords: graphical models, nonparametric regression, iterated conditional
expectation, mean-square consistency, product kernel

1. Introduction

A regression graph is a refined chain graph that gives rise to a collection
of so-called traceable regressions along the directions of its edges, see [1, 2]. It
contains both directed and undirected edges in the following way. If we keep
only the undirected edges, the graph falls apart into connected chain compo-
nents, and if we keep only the directed ones, we have a DAG (Directed Acyclic
Graph). The components are numbered so that the last ones (with highest
indices) correspond to the so-called context variables that are given in the con-
text of the experiment. Context variables of the same component are connected
with undirected edges based on the concentration graph on them. From the
context variables arrows point to variables in the lower indexed components,
which are primary, secondary, etc. responses, and they can also be connected
with directed edges. Between the joint response variables of the same connected
component, there may be dashed lines (sometimes denoted as bidirected edges),
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which indicate dependences on conditional covariance base. Joint response vari-
ables are also called to be on equal standing, and they usually correspond to
similar aspects of an experiment, without direct causality between them. For
every directed edge j → i in the DAG part, the relation i < j holds (this
so-called topological ordering is referred to as ‘j is the parent of i’). So the
‘youngest’ vertex has label 1, and the ‘older’ a vertex, the larger its label is (we
can think of labels as ages). The arrows point from the right (past) to the left
(future), see [3] and Figs. 4,7, and 9 as examples. Let C1, C2, . . . , C` denote
the chain components (` < d, where d is the number of variables). Here C`
contains the context variables, and the chain components are also indexed so
that lower index components contain ‘younger’ vertices. With the shorthand
C>m := Cm+1 ∪ · · · ∪ C`, we can make the following conditional independence
statements (denoted by ⊥⊥) that uniquely define the missing edge positions,
whatever their type is:

• for i < j such that Xi ∈ Cm and Xj ∈ C>m are in different chain compo-
nents, there is no j → i arrow if and only if Xi⊥⊥Xj |C>m \ {Xj};

• for Xi, Xj ∈ C` (context component), there is no solid line between them
if and only if Xi⊥⊥Xj |C` \ {Xi, Xj};

• for Xi and Xj in the same Cm (non-context component, m < `), there is
no dashed line between them if and only if Xi⊥⊥Xj |C>m.

In Theorem 1 of [2], the authors state that two regression graphs are Markov
equivalent if and only if they have the same skeleton (the graph resulting by
making every edge undirected) and the same set of collision Vs, irrespective of
the type of edges, see Fig. 1. In their Theorem 2, they prove that a regression
graph with a chordal graph for the context variables can be oriented to be
Markov equivalent to a DAG on the same skeleton if and only if it does not
contain any chordless collision path in four nodes. These so-called forbidden
quadruples are shown in Fig. 2. When we prove consistency of our algorithm
along a DAG, the starting object can be this DAG, with the above labeling of
the vertices given in Algorithm 1 of [2] that is applicable if there is no forbidden
quadruple in the underlying chain graph. The possible dashed line based arrows,
though they are taken into consideration in the iteration, do not add any extra
information to the prediction of joint responses along the arrows of the original
regression graph. This is supported by the Cochran’s theorem, and will be
further discussed in Section 4.2. Note that this DAG is not unique, but it is
important that the actual topological ordering of its vertices should comply
with the ordering of the chain components. Whenever the regression graph
does not contain any forbidden quadruple, the DAG version of our algorithm,
processed on the Markov equivalent DAG, gives the same result as the version
that uses parallel regressions along the chain components. Further, the DAG
version of our algorithm is applicable to other directed graphical models with a
DAG representation, and without any relation to regression graphs.

Even in the presence of a forbidden quadruple, if our joint distribution is
Markov compatible with a regression graph, we can prove consistency along the
chain components with vector valued smoothers. By using parallel regressions,
we disregard the dashed edges of the response components during the iteration.
It is justified by the fact that in this type of chain graphs the conditioning set
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Figure 1: Possible collision Vs of non-context nodes in a regression graph

Figure 2: Chordless collision paths on four nodes

for a response variable does not include other responses within the same chain
component.

In an ordering of the vertices compatible with the chain graph, instead of
linear, linearized, or logistic regression we take conditional expectation in a non-
parametric way, like the ACE (Alternating Conditional Expectation) algorithm
of Breiman and Fiedman [4]. The ACE is applicable to an additive model that
finds a unit variance measurable function of the dependent variable and those
of the independent ones, the sum of which approximates best the former in L2

norm. In the convergence proof of the ACE, the emphasis is on the optimal
function of the single regressor, when predicting the current phase (additive
function) of all the other variables. On the contrary, we find the measurable
function of all the predictors recursively, and the finite iteration ends up with
predicting the very target (targets). Though, in the consistency proof we com-
pare the conditional expectation to the smoother, it differs from the ACE setup.
Here we need not alternate, we just take directed conditional expectations con-
secutively, with the nonparametric regression concepts of [5]. Therefore, we call
our recursive algorithm ICE (Iterated Conditional Expectation).

In comparison to former results in the literature, our algorithm uses the
theory of chain graphs and regression graphs, also the conditional expectation
concept of the ACE and EM algorithms, however we have no infinite iteration
and maximization step as we do not have a parametric likelihood, but work
in a nonparametric setup. Our contribution is that we extend the application
area of regression graph models (and probabilistic DAGs), by applying non-
parametric smoothings recursively along the directed part of the graph. The
algorithm is a regression technique with multiple outputs, and it is applicable
in environments with missing data as well, since we only need the values of the
context variables for the prediction. The selection of the smoothing functions
can be automated according to the types of the variables in the nonparametric
regression, as discussed in our implementation. In this way, the ICE algorithm
can be the building block of an artificial intelligence, where the first step is the
construction of the regression graph. The basis for the construction is a train-
ing sample, expert knowledge, and the statistical validation of the edges, see [2].
This far not trivial task is not considered in the present paper, here the focus is
on the prediction of multiple responses, given the graph. The soundness of the
ICE algorithm is also supported by the proof of its consistency, meaning that
with large training samples we get near optimal estimates (in L2 sense) for the
test samples.
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The mean-square consistency of the individual smoothers, based on local
averaging, is guaranteed under the conditions of the C. J. Stone’s theorem, see [5]
and Theorem A.1 of AppendixA. For example, k-nearest neighbor (k-NN),
partitioning, and kernel regression estimates are mean-square consistent under
particular conditions (see again [5]). Actually, we mainly use the product kernel
regression approach of [6] which adopts well to different types of variables. It is
asymptotically normal, and in turn, mean-square consistent too, see AppendixA.
For comparison, we include results obtained with other smoothers too, in our
applications.

The organization of the paper is as follows. In Section 2, a detailed descrip-
tion of the ICE algorithm is given, while in Section 3 its consistency is proved
both for DAGs and for regression graphs. In Section 4, the implementation of
the kernel smoothing is discussed together with kernel and bandwidth selection
according to the types and sample characteristics of the variables and other
practical considerations. In Section 5, the algorithm is applied to randomly
generated and real-world demographic and educational data. Comparison of
the product kernel based smoothers with other local averaging methods is also
presented. In Section 6, conclusions are drawn and possible further perspectives,
e.g., extension to undirected decomposable graphical models, are suggested. In
AppendixA and AppendixB, some background material on nonparametric re-
gression, in particular, on kernel regression is provided.

2. Description of the ICE algorithm

2.1. ICE on a DAG
Let the joint distribution of X1, . . . , Xd be (in this ordering) Markov com-

patible with a DAG. Say, at least the values of the variables Xk+1, . . . , Xd are
known; these include the ones without parents in the DAG. Then we first pre-
dict Xk, then Xk−1, . . . , finally X1, based on an n-element complete training
sample x(i)1 , . . . , x

(i)
d , i = 1, . . . , n. We also introduce some notation: X>j :=

{Xj+1, . . . , Xd}, x>j := {xj+1, . . . , xd} and Xpa(j) denotes the set of the parents
of Xj , from where directed edges point to it.

For j = k, k − 1, . . . , 1 we define

Pj(x>j) := E(Xj |X>j = x>j) = E(Xj |Xpa(j) = xpa(j)) (1)

as the exact solution of the regression task; it is a projection and a measurable
function of its arguments. The last equality follows by Markovity.

If our data are from multivariate Gaussian distribution, then the above con-
ditional expectations are linear functions of the variables in the condition, and
are obtainable by linear regression, where the coefficients are estimated from
the training data. Otherwise, we take the conditional expectation in a non-
parametric way, by the smoothing procedures discussed in [4, 5]. Therefore, we
define

S
(n)
j (x>j) :=

n∑
i=1

x
(i)
j W

(n,i)
j (x>j) =

n∑
i=1

x
(i)
j W

(n,i)
j (xpa(j)) (2)

as a smoother, based on local averaging and mapping into the convex hull of
the sample space for Xj . By Markovity, instead of the set x>j , the parent set
xpa(j) is considered.
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Here the non-negative weightsW (n,i)
j (x>j) are calculated from the n-element

training sample, and are usually normalized such that

n∑
i=1

W
(n,i)
j (x>j) = 1.

The smoother S(n)
j itself depends on the segment x(i)j , x

(i)
j+1, . . . , x

(i)
d for i =

1, . . . , n of the training sample, and is also a measurable function of its argu-
ments. The smoothers we implemented are mainly Nadarya–Watson type kernel
estimators, where

W
(n,i)
j (x>j) =

K(x>j ,x
(i)
>j)∑n

i′=1K(x>j ,x
(i′)
>j )

.

For possible kernels K, see the product kernel approach and other local averag-
ing estimators, discussed in Section 4, AppendixA, and AppendixB.

Then the iterated conditional expectations

Pj(Pj+1(Pj+2(. . . (Pk(X>k), . . . ),X>k),X>k),X>k)

are imitated with the iterated smoothings

S
(n)
j (S

(n)
j+1(S

(n)
j+2(. . . (S

(n)
k (X>k), . . . ),X>k),X>k),X>k).

In Section 3, it is proved that the mean-square difference between the iterated
smoothings and the iterated conditional expectations tends to 0 as n→∞, for
j = k− 1, . . . , 1. Therefore, the successive estimates are close to the optimal (in
L2 sense) that means the consistency of the algorithm. For detailed explanation,
see Section 3.1.

2.2. ICE on a regression graph
Here the joint density of X1, . . . Xd can be factorized along the chain com-

ponents C1, . . . , C` like

fC`

`−1∏
k=1

fC`−k |C>`−k
, (3)

so the conditional expectations are taken from chain component to chain com-
ponent, starting from the last one, C`. We postulate that at least the context
variables, included in C`, are known. The above formula is in terms of the joint
densities and conditional densities of the chain components in their given re-
versed ordering, however it easily adopts to discrete variables (with probability
mass functions instead of the densities).

In the general step, for k = `− 1, `− 2, . . . , 2, 1, let

Pk(xC>k
) := E(XCk

|XC>k
= xC>k

) (4)

denote the exact solution of the regression task. The result is a vector of com-
ponents

Pk,j(xC>k
) := E(Xj |XC>k

= xC>k
) = E(Xj |Xpa(j) = xpa(j)), Xj ∈ Ck. (5)
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This is the instance of parallel regressions, where we utilized that all the par-
ents of Xj ∈ Ck are in C>k. We also used that the conditional expectation of
a random vector on another one is the vector of components that are the con-
ditional expectations of its components on the same conditioning set. By the
Markov properties of the regression graphs, even if we condition on the same
set of random variables, the individual components may have different parent
sets to which the conditioning sets are limited.

The smoothers are also defined component-wise:

S
(n)
k,j (xC>k

) :=

n∑
i=1

x
(i)
j W

(n,i)
k,j (xC>k

) =

n∑
i=1

x
(i)
j W

(n,i)
k,j (xpa(j)), Xj ∈ Ck (6)

is the approximate solution using a smoother, based on local averaging. The
smoother S

(n)
k (xC>k

) consists of coordinates S(n)
k,j (xC>k

) for Xj ∈ Ck.
Then, by the forthcoming Section 3.2, our estimates are close to the optimal

if the mean-square difference between the iterated component-wise conditional
expectations

Pk(Pk+1(Pk+2(. . . (P`−1(XC`
), . . . ),XC`

),XC`
),XC`

)

and the analogous smoothers

S
(n)
k (S

(n)
k+1(S

(n)
k+2(. . . (S

(n)
`−1(XC`

), . . . ),XC`
),XC`

),XC`
)

tends to 0 as n→∞, for k = `− 1, `− 2, . . . , 2, 1.

3. Consistency of the ICE algorithm

3.1. Consistency along a DAG
3.1.1. When the target variable is absolutely continuous

Now assume that X1, . . . , Xd (in the topological DAG ordering) have finite
variances and obey an absolutely continuous joint distribution. The preparation
for the proof of the mean-square consistency of the ICE algorithm follows. Since

E[S
(n)
k (X>k)−Xk]2 = E[S

(n)
k (X>k)− Pk(X>k)]2 + E[Pk(X>k)−Xk]2, (7)

and the second term on the right depends only on the nature of the underlying
distribution (the larger the coefficient of determination, the smaller this regres-
sion error is), it is the first term on the right that can be directly decreased
by the sampling and smoothing procedure. (Note that the coefficient of deter-
mination is closely related to the maximal correlation of Rényi [7], and to the
multiple correlation in the Gaussian case.) Therefore, the above objective func-
tion on the left of (7) is close to the optimal value if the first term on the right is
close to 0. In the spirit of [5], we call our nonparametric estimate mean-square
consistent if

E
∫
Rd−k

[S
(n)
k (x>k)− Pk(x>k)]2 µ(dx>k)→ 0, n→∞,

where µ denotes the joint distribution of the variables behind it. Here both the
n-element sample for Xk, Xk+1, . . . , Xd, used by the smoother, and the values

6



of the variables Xk+1, . . . , Xd of a new-coming observation are random, this is
why we separated these two concepts, when taking the expectation. Briefly,

E[S
(n)
k (X>k)− Pk(X>k)]2 → 0, n→∞,

where E now takes the expectation with respect to both of the above concepts
of randomness.

First we prove consistency in the first step of the iteration (see Lemma 3.1),
then we prove the consistency of the whole ICE on DAG process by induction
(see Theorem 3.1). Going backward, to predict Xk−1, we have to prove the
mean-square consistency of the estimate

S
(n)
k−1(S

(n)
k (X>k),X>k).

Here, because of the orthogonality properties of the conditional expectation
operator (as a projection), we get that

E[S
(n)
k−1(S

(n)
k (X>k),X>k))−Xk−1]2

= E[S
(n)
k−1(S

(n)
k (X>k),X>k))− Pk−1(S

(n)
k (X>k),X>k))]2

+ E[Pk−1(S
(n)
k (X>k),X>k))− Pk−1(Pk(X>k),X>k))]2

+ E[Pk−1(Pk(X>k),X>k))− Pk−1(Xk,X>k))]2

+ E[Pk−1(Xk,X>k))−Xk−1]2.

The last two terms are the regression errors that are cumulated in the consec-
utive steps. Therefore, it suffices to estimate the first two terms, the sum of
which also estimates the mean-square difference

E[S
(n)
k−1(S

(n)
k (X>k),X>k))− Pk−1(Pk(X>k),X>k))]2

≤ 2E[S
(n)
k−1(S

(n)
k (X>k),X>k))− Pk−1(S

(n)
k (X>k),X>k))]2

+ 2E[Pk−1(S
(n)
k (X>k),X>k))− Pk−1(Pk(X>k),X>k))]2

(8)

between the iterated conditional expectation and the iterated smoothing. We
will use this form in our forthcoming Lemma 3.1 and Theorem 3.1.

Lemma 3.1. With the notation of Equations (1) and (2), let Pk(x>k) and
S
(n)
k (x>k) be the exact solution of the regression task and a smoother (based on

local averaging and mapping into the convex hull of the sample space of Xk),
respectively. Assume that the smoother gives a mean-square consistent estimate
for the conditional expectation, i.e.,

E[S
(n)
k (X>k)− Pk(X>k)]2 → 0, n→∞.

Then the one-step-ahead smoothing is also mean-square consistent, i.e.,

E[S
(n)
k−1(S

(n)
k (X>k),X>k))− Pk−1(Pk(X>k),X>k))]2 → 0, n→∞.

7



Proof. For the first term on the right of (8),

E
∫
Rd−k

[S
(n)
k−1(S

(n)
k (x>k),x>k)− Pk−1(S

(n)
k (x>k),x>k)]2 µ(dx>k)→ 0

as the Rd−k-dimensional integral is the integral of a non-negative function under
some restrictions, where for the unrestricted integral

E
∫
Rd−k+1

[S
(n)
k−1(x>k−1)− Pk−1(x>k−1)]2 µ(dx>k−1)→ 0, n→∞

holds by the assumed mean-square consistency. It is important that S(n)
k (x>k)

is within the convex hull of the sample space for Xk.
For the second term on the right of (8), we use that Pk−1 is an L2(µ) op-

erator, and therefore, it can be approximated (with any small precision) with
a continuous function of compact support, that is also uniformly continuous
(see Theorem A.1. of [5]). So to any ε > 0 there is a P̃k−1 which is uniformly
continuous and∫

Rd−k+1

[Pk−1(x>k−1)− P̃k−1(x>k−1)]2 µ(dx>k−1) ≤ ε. (9)

With this,

[Pk−1(S
(n)
k (x>k),x>k))− Pk−1(Pk(x>k),x>k)]2

≤ 3[P̃k−1(S
(n)
k (x>k),x>k))− P̃k−1(Pk(x>k),x>k)]2

+ 3[Pk−1(S
(n)
k (x>k),x>k))− P̃k−1(S

(n)
k (x>k),x>k))]2+

+ 3[Pk−1(Pk(x>k),x>k)− P̃k−1(Pk(x>k),x>k)]2

≤ 3K2[(S
(n)
k (x>k),x>k)− (Pk(x>k),x>k)]2+

+ 3[Pk−1(S
(n)
k (x>k),x>k))− P̃k−1(S

(n)
k (x>k),x>k))]2+

+ 3[Pk−1(Pk(x>k),x>k)− P̃k−1(Pk(x>k),x>k)]2

= 3K2[S
(n)
k (x>k)− Pk(x>k)]2+

+ 3[Pk−1(S
(n)
k (x>k),x>k))− P̃k−1(S

(n)
k (x>k),x>k))]2+

+ 3[Pk−1(Pk(x>k),x>k)− P̃k−1(Pk(x>k),x>k)]2,

(10)

where K is the constant coming from the uniform continuity of P̃k−1. As

E[S
(n)
k (X>k)− Pk(X>k)]2 → 0, n→∞

by the consistency assumption,

E[P̃k−1(S
(n)
k (X>k),X>k))− P̃k−1(Pk(X>k),X>k)]2

≤ K2E[S
(n)
k (X>k)− Pk(X>k)]2 → 0, n→∞.

Finally, the integral (over Rd−k+1) of the last two terms of (10), apart from the
constant 3, is bounded from above with ε, due to (9). Taking the expectation
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of this 2ε error term with respect to the sampling procedure will result in an
error 2Dε, where D is a positive constant (valid for all n) coming from the fact
that the sample space is bounded.

Now we are able to formulate the general theorem about the mean-square
consistency of the ICE on a DAG.

Theorem 3.1. Let X1, . . . , Xd obey an absolutely continuous joint distribution
with finite variances that is Markov compatible with a DAG (in this ordering).
They are indexed such that X>k are the variables without parents in the DAG
and the others are to be predicted based on an n-element sample. With the nota-
tion of Equations (1) and (2), for j = k, k− 1, . . . , 1 let Pj(x>j) and S(n)

j (x>j)
be the exact solution of the regression task and a smoother (based on local aver-
aging and mapping into the convex hull of the sample space of Xj), respectively.
Assume that the individual smoothers give a mean-square consistent estimate
for the conditional expectations, i.e.,

E[S
(n)
j (X>j)− Pj(X>j)]

2 → 0, n→∞, j = k, k − 1, . . . , 1.

Then the iterated smoothings are also mean-square consistent, i.e.,

E[S
(n)
j (S

(n)
j+1(S

(n)
j+2(. . . (S

(n)
k (X>k), . . . ),X>k),X>k),X>k)−

− Pj(Pj+1(Pj+2(. . . (Pk(X>k), . . . ),X>k),X>k),X>k)]2 → 0, n→∞

for j = k, k − 1, . . . , 1.

Note that the parameters of our mainly kernel-based smoothers and of the
product kernels will be adopted to the data; other than kernel-based local av-
eraging estimators are also considered in Section 5. Assumptions, under which
the individual smoothers give a mean-square consistent estimate, are discussed
in Section 4, AppendixA, and AppendixB. Also, by Markovity, instead of the
set X>j , the parent set Xpa(j) is considered during the algorithm.

Proof. Using Lemma 3.1 for the one-step-ahead prediction (j = k), with induc-
tion we proceed backward. Assume that we have proved the consistency until
some j ∈ {k, k − 1, . . . , 2}, i.e., we have proved that

E[S
(n)
j (S

(n)
j+1(S

(n)
j+2(. . . (S

(n)
k (X>k), . . . ),X>k),X>k),X>k)−

− Pj(Pj+1(Pj+2(. . . (Pk(X>k), . . . ),X>k),X>k),X>k)]2 → 0, n→∞.
(11)

Now we will prove the same for j − 1. Indeed,

E[S
(n)
j−1(S

(n)
j (S

(n)
j+1(. . . , (S

(n)
k (X>k), . . . ),X>k),X>k),X>k)−

− Pj−1(Pj(Pj+1(. . . , (Pk(X>k), . . . ),X>k),X>k),X>k)]2

≤ 2[E[S
(n)
j−1(S

(n)
j (S

(n)
j+1(. . . , (S

(n)
k (X>k), . . . ),X>k),X>k),X>k)−

− Pj−1(S
(n)
j (S

(n)
j+1(. . . , (S

(n)
k (X>k), . . . ),X>k),X>k),X>k)]2+

2E[Pj−1(S
(n)
j (S

(n)
j+1(. . . , (S

(n)
k (X>k), . . . ),X>k),X>k),X>k)−

− Pj−1(Pj(Pj+1(. . . , (Pk(X>k), . . . ),X>k),X>k),X>k)]2.
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The first term on the right of the inequality tends to 0 (as n → ∞) by the
mean-square consistency assumption. For the second term, we use that Pj−1
is an L2(µ) operator, and therefore, it can be approximated (with any small
precision ε) with a continuous function P̃j−1 of compact support, that is also
uniformly continuous (with constant K). So, the same argument as in the proof
of Lemma 3.1 yields

2E[P̃j−1(S
(n)
j (S

(n)
j+1(. . . , (S

(n)
k (X>k), . . . ),X>k),X>k),X>k)−

− P̃j−1(Pj(Pj+1(. . . , (Pk(X>k), . . . ),X>k),X>k),X>k)]2

≤ K2E[S
(n)
j (S

(n)
j+1(S

(n)
j+2(. . . (S

(n)
k (X>k), . . . ),X>k),X>k),X>k)−

− Pj(Pj+1(Pj+2(. . . (Pk(X>k), . . . ),X>k),X>k),X>k)]2,

that tends to 0 (n → ∞) by the induction hypothesis (11). The integral (over
Rd−j+1) of the two terms, containing the differences between the functions of
Pj−1 and P̃j−1 at the same arguments, is bounded from above with ε, due to
an estimate analogous to (9). Taking the expectation of this 2ε error term with
respect to the sampling procedure will again result in an error 2Dε that can be
arbitrarily small. This finishes the proof.

It is important that the target variable has finite variance and it is absolutely
continuous. Intermediate responses should be continuous, but discrete ordered
variables can work quite well if they have a sufficiently large sample space. If
the target variable is discrete, categorical, then in that step we use the method
to be introduced in the forthcoming Section 3.1.2.

3.1.2. When the target variable is categorical
When Xk is categorical, taking on c different values, then the prediction is

based on the Bayes rule via mode maximization, see [5]:

Pk(x>k) := argmax
1≤i≤c

P(Xk = i |X>k = x>k).

With introducing the binary variables I{Xk=i} (i = 1, . . . , c), the posterior prob-
abilities are the conditional expectations, i.e., regression functions:

Pk,i(x>k) := P(Xk = i |X>k = x>k) = E(I{Xk=i} |X>k = x>k).

Given the training data for I{Xk=i},X>k, we construct the (smoothing) estimate
S
(n)
k,i (x>k) for each i = 1, . . . , c, and the plug-in estimate

S
(n)
k (x>k) := argmax

1≤i≤c
S
(n)
k,i (x>k).
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Now we show that the error of the plug-in estimate is close to the optimal error
of Pk(x>k):

0 ≤ P(S
(n)
k (X>k) 6= Xk)− P(Pk(X>k) 6= Xk)

= P(Pk(X>k) = Xk)− P(S
(n)
k (X>k) = Xk)

=

c∑
i=1

[P(Pk(X>k) = Xk |Xk = i)− P(S
(n)
k (X>k) = Xk |Xk = i)]P(Xk = i)

≤
c∑
i=1

∫
|Pk,i(x>k)− S(n)

k,i (x>k)|µ(dx>k)

≤

[
c∑
i=1

∫
|S(n)
k,i (x>k)− Pk,i(x>k)|2 µ(dx>k)

]1/2
.

This is true for any data in the smoothing within the n-element sample space
for Xk, Xk+1, . . . , Xd. Then taking the expectation with respect to the sample,

E[P(S
(n)
k (X>k) 6= Xk)− P(Pk(X>k) 6= Xk)]

≤ D

[
c∑
i=1

∫
[S

(n)
k,i (x>k)− Pk,i(x>k)]2 µ(dx>k)

]1/2
→ 0,

as n → ∞, by the mean-square consistency assumption, where D is a positive
constant (independent of n) resulting from the boundedness of the sample space.
The same holds for j ∈ {k−1, . . . , 2}. We also refer to the Bayes risk consistency
in discrimination, see [8].

3.2. Consistency along a regression graph
Now the mean-square consistency is formulated in terms of the mean-square

consistency of the vectors that in turn reduces to the the mean-square consis-
tency of their coordinates. Since

E‖S(n)
`−1(XC`

)−XC`−1
‖2

= E‖S(n)
`−1(XC`

)−P`−1(XC`
)‖2 + E‖P`−1(XC`

)−XC`−1
‖2

=
∑

j:Xj∈C`−1

E|S(n)
`−1,j(XC`

)− P`−1,j(XC`
)|2 + E‖P`−1(XC`

)−XC`−1
‖2,

where the last term depends only on the nature of the underlying distribution,
it is the first term that can be directly decreased by the sampling and smoothing
procedure. It will be proved that the finitely many terms after the summation
tend to 0 as n → ∞, whenever the mean-square consistency of the individual
smoothers is guaranteed. In this way, the following consistency theorem is stated
under similar conditions as Theorem 3.1.

Theorem 3.2. Let X1, . . . , Xd have an absolutely continuous joint distribution
with finite variances that is Markov compatible with a regression graph. The
variables are organized into chain components C1, . . . , C` so that their joint
distribution obeys the factorization (3); further, they are indexed such that the
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last chain component C` contains the context variables and the others are to
be predicted backward, from component to component, based on an n-element
sample.

With the vector extensions (5) and (6) of the conditional expectations and
the smoothers, and assuming that the individual smoothers component-wise give
a mean-square consistent estimate for the conditional expectations, the iterated
smoothings are also mean-square consistent, i.e.,

E‖S(n)
k (S

(n)
k+1(S

(n)
k+2(. . . (S

(n)
`−1(XC`

), . . . ),XC`
),XC`

),XC`
)−

−Pk(Pk+1(Pk+2(. . . (P`−1(XC`
), . . . ),XC`

),XC`
),XC`

)‖2 → 0, n→∞,

for k = `− 1, `− 2, . . . , 2, 1.

Proof. In the first step,

E‖S(n)
`−1(XC`

)−P`−1(XC`
)‖2 =

∑
j:Xj∈C`−1

E
[
S
(n)
`−1,j(XC`

)− P`−1,j(XC`
)
]2
,

where the finitely many terms after the summation tend to 0 (as n→∞), when-
ever the mean-square consistency of the individual smoothers is guaranteed.

Analogously to the considerations of Lemma 3.1 and Theorem 3.1, by induc-
tion, we proceed backward. Assume that we have proved the consistency until
some k, and now we prove it for k − 1:

E‖S(n)
k−1(S

(n)
k (. . . (S

(n)
`−1(XC`

), . . . ),XC`
),XC`

)−
−Pk−1(Pk(. . . (P`−1(XC`

), . . . ),XC`
),XC`

)‖2

≤ 2E‖S(n)
k−1(S

(n)
k (. . . (S

(n)
`−1(XC`

), . . . ),XC`
),XC`

)−

−Pk−1(S
(n)
k (. . . (S

(n)
`−1(XC`

), . . . ),XC`
),XC`

)‖2

+ 2E‖Pk−1(S
(n)
k (. . . (S

(n)
`−1(XC`

), . . . ),XC`
),XC`

)

−Pk−1(Pk(. . . (P`−1(XC`
), . . . ),XC`

),XC`
)‖2.

The first term (apart from the multiplier 2) on the right of the inequality is

E‖S(n)
k−1(S

(n)
k (. . . (S

(n)
`−1(XC`

), . . . ),XC`
),XC`

)−

−Pk−1(S
(n)
k (. . . (S

(n)
`−1(XC`

), . . . ),XC`
),XC`

)‖2

=
∑

j:Xj∈Ck−1

E[S
(n)
k−1,j(S

(n)
k (. . . (S

(n)
`−1(XC`

), . . . ),XC`
),XC`

)−

− Pk−1,j(S(n)
k (. . . (S

(n)
`−1(XC`

), . . . ),XC`
),XC`

)]2,

where the individual terms after the summation tend to 0 (as n → ∞) by the
mean-square consistency of the individual smoothers.

For the second term we use that for all j, such that Xj ∈ Ck−1, Pk−1,j is an
L2(µ) operator, and therefore, it can be approximated (with any small precision
εj) with a continuous function P̃k−1,j of compact support, that is also uniformly
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continuous (with constant Kj). With it,

E[P̃
(n)
k−1,j(S

(n)
k (. . . (S

(n)
`−1(XC`

), . . . ),XC`
),XC`

)

− P̃k−1,j(Pk(. . . (P`−1(XC`
), . . . ),XC`

),XC`
)]2

≤ K2
jE‖S

(n)
k (. . . (S

(n)
`−1(XC`

), . . . ),XC`
),XC`

)

−Pk(. . . (P`−1(XC`
), . . . ),XC`

),XC`
)‖2

that tends to 0 (n → ∞) by the induction hypothesis. The integral over
R|Ck|+···+|C`| of the two terms, containing the differences between the func-
tions of Pk−1,j and P̃k−1,j at the same arguments, is bounded from above with
εj , due to an estimate analogous to (9). Taking the expectation of this εj error
term with respect to the sampling procedure will again result in an error Dεj
that can be arbitrarily small. Here D is a positive constant (independent of n),
coming from the fact that the sample space is bounded. Applying this for all j,
such that Xj ∈ Ck−1, the sum of these finitely many terms will also tend to 0.
This finishes the proof.

4. The numerical algorithm

4.1. Implementation of the smoothings
Note that in Theorem 3.1 and Theorem 3.2 we utilize that the smoothing

is mean-square consistent in every step. Again, there are different smoothers,
for example, k-NN, partitioning, and kernel regression estimation. These are
all local averaging techniques of Equation (A.1), each with different conditions
regarding their mean-square consistency (see [5]), usually derived from Theo-
rem A.1. In the realization of our iterated method, we mainly use kernel-based
smoothing, more precisely the Nadaraya–Watson (NW) kernel regression esti-
mation [9, 10]. Some theoretical background on kernel regression is provided in
AppendixA.

We have implemented our method based on the Python package of Statsmod-
els [11]. This package uses a product kernel setup in the multivariate case, see
Equation (A.3), thus works with a vector h of bandwidths for the kernel regres-
sion estimation. The source for this is mainly the works of Racine and Li [6, 12],
who have refined the product kernel approach with the usage of mixed (continu-
ous and discrete) regressors and a proper cross-validated choice of bandwidths.
For the theoretical background behind the selection of the kernels and band-
widths, see [6] and AppendixA.

To compare the product kernel approach with other methods, we include
results obtained by using a full bandwidth matrix H (see AppendixA), by the
local linear version of the product kernel approach, and by the k-NN regression
(see AppendixB).

Kernel selection of Racine and Li. In Equation (A.3), each univariate kernel
and the corresponding bandwidth parameter is chosen according to the regressor
variables. This implementation needs the type of the regressors as an input.
They can be of three types: (a) continuous, (b) ordered (discrete), (c) unordered
(discrete, categorical). Based on this, the three default univariate kernels are as
follows:
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(a) Gaussian kernel in the continuous case:

K
(G)
h

(
x, x(i)

)
=

1

h
√

2π
e−

(x−x(i))
2

2h2 ;

(b) Wang–Ryzin kernel in the ordered case:

K
(WR)
h

(
x, x(i)

)
= (1− h)× I{x=x(i)} +

1

2
(1− h)h|x−x

(i)| × I{x6=x(i)};

(c) Aitchison–Aitken kernel in the unordered case if the categorical variable
X admits c different values:

K
(AA)
h

(
x, x(i)

)
= (1− h)× I{x=x(i)} +

h

c− 1
× I{x 6=x(i)}.

In this way, the multivariate product kernel becomes

Khn

(
x,x(i)

)
=

rc∏
j=1

K
(G)
hn,j

(
xj , x

(i)
j

) ro∏
k=1

K
(WR)
hn,k

(
xk, x

(i)
k

) ru∏
l=1

K
(AA)
hn,l

(
xl, x

(i)
l

)
,

where rc, ro, ru are the number of continuous, discrete ordered, and discrete
unordered regressors, respectively. The choice of the kernel is of little importance
compared to the bandwidths, and the conditions on the kernel can be relaxed
as pointed out by Racine and Li:

• the Gaussian kernel can be replaced with any compactly supported kernel
function that is Hölder continuous, e.g., the Epanechnikov kernel;

• the Wang–Ryzin kernel can be replaced with the Aitchison–Aitken kernel,
which further simplifies things but performs slightly worse.

Bandwidth selection. The bandwidth is chosen in every iteration step indepen-
dently, with two possible validation methods or with the forthcoming rule-of-
thumb. The first is the leave-one-out cross-validation, by minimizing

CV (h) =
1

n

n∑
i=1

(
Yi − S(n)\{i}

Y (x(i))
)2
M(x(i)), (12)

where S(n)\{i}
Y is the estimator in which the ith sample entry is left out from

the prediction. M(·) is an optional weight function that trims out boundary
observations. In [6], the asymptotic normality results are proved for this choice
of bandwidth.

Alternatively, one can use the minimization of the corrected AIC Hurvich cri-
teria, see [13]. These two methods produce asymptotically the same results, [14].
The optimization is performed by the Nelder–Mead downhill simplex method
in the underlying Python implementation.

Scott’s rule-of-thumb [15] may also work well for the selection of the band-
width:

hn,j ≈ 1.06× σ̂j × n−
1

4+r ,
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where σ̂j is the sample standard deviation ofXj and r is the number of regressors
in the particular step. Note that this is close to optimal for Gaussian variables,
and also used as the starting point by the code in the aforementioned cross-
validation optimization processes.

The aforementioned bandwidth selections are data driven, their asymptotic
behavior for the NW (local constant) and the local linear kernel regression is
studied in [6, 13, 14, 16]. In [6], the authors prove that under the conditions,
listed in Assumptions A.1 and A.2, the estimate (with the leave-one-out cross-
validated choice of bandwidths) is asymptotically normal, see Theorem A.2.
Their proof uses the same ĥc for all continuous, and another same ĥd for all
discrete regressors, also they use the Aitchison–Aitken kernel for all discrete
variables. They anticipate that similar results can be proved for distinct pa-
rameters and using the Wang–Ryzen kernel for the discrete ordered regressors.
Asymptotic normality does not always imply mean-square consistency, but un-
der some extra conditions we are able to prove mean-square consistency of their
estimator, see Lemma A.1.

Using a full bandwidth matrix. Again, we include results of the NW estimate
with a full bandwidth matrix H as well, see Equation (A.2). We use the multi-
variate version of the Gaussian kernel,

K
(G)
H

(
x,x(i)

)
=

1

|H|
√

2π
r e
− 1

2 [H−1(x−x(i))]
T
[H−1(x−x(i))],

and the multivariate version of Scott’s rule [17] for the selection of a full band-
width matrix:

Hn ≈ 1.06× Σ̂
1
2 × n−

1
4+r ,

where Σ̂ is the sample covariance matrix of X, and r is the number of regressors
in a particular step. As for the mean-square consistency of this estimator, we
have not found any results in the literature yet.

4.2. Practical considerations
As for the realization of our algorithm, some remarks are in order.

• In case of a discrete unordered categorical intermediate response, the ker-
nel regression method leads to a Bayes classification method via dummy
indicator variables, see Section 3.1.2. Then we continue with the original
variable in a consecutive step on the regression graph, not with its indi-
cators. In case of a discrete ordered intermediate response, the regression
estimation produces a value between two possible consecutive values of the
variable. One can leave these predicted values as they are, or substitute
a rounded value for them to have a classification instead of regression.

• In case of long chains, our iterative algorithm may result in overtly smooth
predictions compared to a direct prediction, because the smoothing will
effect not only the target, but all previously predicted variables too.

• In lack of a forbidden quadruple, we can find a Markov equivalent DAG
to a regression graph. If we proceed from chain component to chain com-
ponent along the directed edges, and predict the joint response variables
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Figure 3: Examples for Cochran’s formula

in the same chain component in parallel, we get the same result thanks to
the Markov equivalence of the original chain graph and the DAG.

In Fig. 3, we illustrate the equivalence of the predictions in the two setups
with three variables. Let X1, X2 be on equal standing, connected with a
dashed line in the same chain component, whereas their joint parent X3 is
in a chain component of their past (see Fig. 3a). So our iteration predicts
X1 only with X3, with regression coefficient β1|3. After constructing a
DAG, then say, there is a directed edge X2 → X1 (replacing the former
dashed line), see Fig. 3b. Along this DAG, our algorithm predicts first
X2 with X3, then X1 with X3 (old parent) and with X2 (new parent).
But in this case, the direct and indirect effect of X3 is added together as
β1|3.2 + β1|2.3β2|3, where β1|3.2 is the partial regression coefficient of X3

when regressing X1, given also X2 as regressor for X1. By the Cochran’s
formula (see also Wermuth–Sadeghi [2] and Cox–Wermuth [18]):

β1|3 = β1|3.2 + β1|2.3β2|3, (13)

so we get the same result if our variables are Gaussian, or we confine our-
selves to the second moments. As the smoothings imitate the conditional
expectations, the predictions would be the same if we used the Markov
equivalent DAG. The above equivalence extends to several variables, actu-
ally the seminal paper of Wright [19] discusses it with a more complicated
notation.

From Equation (13) we can see that in the special case when X3 → X2 →
X1 form a Markov chain, i.e., X1⊥⊥X3|X2 (see Fig. 3c), β1|3.2 = 0 and
β1|2.3 = β1|2. Therefore, β1|3 = β1|2β2|3. If our variables have unit
variances, the above product rule extends to the correlation coefficients,
and so, r13 = r12r23. Consequently, for the regression errors we have
1− r212 ≤ 1− r213, showing that the prediction error of X1 by X2 is smaller
than that by X3, via X2. In the course of the algorithm, there are indirect
and direct effects, so the prediction errors combine in the above way. The
main concepts extend to absolutely continuous distributions, other than
Gaussian, if we confine ourselves to the second moments.

5. Application

Three examples of application are included. The first is based on randomly
generated data; the theoretical regression function can be well controlled in
this environment. The second deals with the 2014’s Egypt Demographic and
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Health Survey (EDHS 2014) data and examines the effect of background char-
acteristics on the ideal number of children a woman thinks manageable to have.
The third considers data collected at the Budapest University of Technology
and Economics (BME) to study students’ academic achievements in the first
two semesters, related to their background characteristics and university ap-
plication scores. In the two real-life examples the regression graphs are built
by expert knowledge and the R package gRchain [20] which implements the
methods described in [18] for multivariate regression chain graphs. In these two
examples 90%–10% training–test data split is applied, and the results refer to
the test data. The following smoothings are selected:

• the NW estimate of Racine and Li with Scott’s bandwidths (NWsc);

• the same NW estimate with cross-validated bandwidths (NWcv);

• the NW estimate but with the full bandwidth matrix of Scott (NWH);

• the local linear estimate of Racine and Li with Scott’s bandwidths (LLsc);

• the k-NN estimate with cross-validated choices for k.

5.1. Randomly generated regression graph
Consider the following randomly generated example. The context variables

(X5, X6, X7, X8) obey a zero-centered 4-dimensional normal distribution with
covariance and concentration matrices as follows.

Σ =


0.8 0.6 0.4 0.2
0.6 1.2 0.8 0.4
0.4 0.8 1.2 0.6
0.2 0.4 0.6 0.8

 , Σ−1 =


−2 −1 0 0
−1 −2 −1 0
0 −1 −2 −1
0 0 −1 −2

 .
The size of the sample is 1000. Response variables are generated with the
equations:

X4 := X2
5 + ε4,

X3 := X3
8 + ε3,

X2 := X6X7 + ε2,

X1 := X2 +X3 +X4 + ε1,

where εis are independent, standard normal error terms. This naturally results
in the regression graph of Fig. 4.

The context variables X5, X6, X7, X8 are considered to be known, and we
predictX1 through the intermediate responsesX2, X3, X4. In this artificial envi-
ronment, the regression functions are known, therefore obviously, the prediction
is accurate enough, see Fig. 5.

In this example, Gaussian kernel was used for each variable. In Figs. 5 and 6,
the response variable (X1) is plotted versus the four context variables. The data
points, their iterated theoretical regression, and the smoothed estimate by ICE
are included; a leave-one-out cross-validation, see Equation (12), was applied in
each step of the iteration. Error scores (R2 and MSE) versus the true value of
X1 and the theoretical regression function, are shown in Tab. 1 with respect to
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Figure 4: Regression graph of the generated data

the different bandwidth choices and smoothers listed in Section 4.1. With the
relatively small sample size of 1000, the cross-validated methods were able to
achieve better results than the rule-of-thumb. The scores in the first row are
calculated according to

MSE =
1

n

n∑
i=1

[
S
{i}
1 (·)− x{i}1

]2
, R2 = 1−

∑n
i=1

[
S
{i}
1 (·)− x{i}1

]2
∑n
i=1

[
x1 − x{i}1

]2 ; (14)

while, in the second row,

MSE =
1

n

n∑
i=1

[
S
{i}
1 (·)− P {i}1 (·)

]2
, R2 = 1−

∑n
i=1

[
S
{i}
1 (·)− P {i}1 (·)

]2
∑n
i=1

[
P1(·)− P {i}1 (·)

]2 ,

where S1(·) and P1(·) are as in our Theorem 3.1, and the shorthand (·) for the ar-
guments corresponds to the smoothings and conditional expectations of the pre-
vious steps, respectively. The superscript {i} indicates the ith test sample entry.
These results reassure that in the continuous case and when a well-compatible
regression graph is available, the estimate is accurate enough. In this simulated
case, the different smoothers give similar results. The cross-validation improved
the results of the NW estimate but the local linear regression, even without
cross-validation, outperformed the other smoothers. Using a full bandwidth
matrix had little if any impact on the results.
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NWsc NWcv NWH LLsc kNN

X1 4.385 3.982 4.402 3.790 4.543
P1(·) 0.578 0.304 0.629 0.194 1.164

(a) Mean-square errors

NWsc NWcv NWH LLsc kNN

X1 0.682 0.696 0.684 0.705 0.675
P1(·) 0.965 0.971 0.962 0.978 0.895

(b) R2 scores

Table 1: Error scores of the generated example: versus the true value of X1 (first rows) and
the theoretical regression function (second rows)
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Figure 5: ICE on the generated example: the response variable (X1) is plotted versus each
of the four context variables (X5, X6, X7, X8); the data points are in green, the iterated
theoretical regression is in black, and the smoothed estimate by ICE is in orange
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Figure 6: ICE on the generated example (3D): the response variable (X1) is plotted versus the
two pairs of context variables (X5, X6 and X7, X8); the data points are in green, the iterated
theoretical regression is in black, and the smoothed estimate by ICE is in orange

5.2. The EDHS 2014 data
Based on data from the EDHS 2014, we examined the effect of background

characteristics on the ideal number of children a woman thinks manageable to
have. The research question is: to what extent do age and education level of
married couples affect the conceivable ideal number of children, through inter-
mediate variables. The focus is on a selected random sample of more than 17000
urban married women aged 20-49 years. Fig. 7 shows the regression graph, built
on the variables listed below. The grouping of the variables is based on the re-
lationships between the variables suggested by the experts.

For some descriptive statistics of the included variables, see Tab. 2. As shown
in the regression graph, Fig. 7, the far right box includes the relevant context
variables in the model:

• Husband’s and Wife’s Education level in years;

• Husband’s and Wife’s Age.

The next box from the right contains two intermediate variables:

• Woman’s age at the first marriage;

• Wealth index of the family (ordered variable from 1 to 5).

The graph shows that some variables are considered explanatory for some vari-
ables and responses to others. Moving to the next box, the secondary responses
are presented:

• Number of years the woman has been using any Contraception method;

• Number of births.

The first box on the left is the primary response variable, the ideal number of
children the woman thinks to be optimal.

The choice of kernels is based on considering the age/year-related variables
to be continuous, and the others to be ordered discrete. The variables were
min-max scaled to the [0, 1] interval before the application, but were rescaled
afterwards for the sake of the figures. Our results show an overtly smooth re-
gression surface after the iteration. In Fig. 8, one can see the iterated estimates
along the graph. A row of scatter plots belongs to every non-context variable.
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count mean std min max

AgeWoman 17686 32.79 7.89 20 49
WealthIndex 17686 3.23 1.42 1 5
NumOfBornChildren 17686 2.68 1.62 0 15
AgeWomanAtFirstMar 17686 20.55 4.05 9 49
AgeHusband 17686 39.16 9.56 14 86
IdealNumOfChildren 17686 3.08 1.37 0 24
SchoolYearsWoman 17686 9.34 5.55 0 23
SchoolYearsHusband 17686 9.82 5.28 0 23
ContraceptionYears 17686 5.07 6.16 0 32

Table 2: Descriptive statistics of the variables in the EDHS example

NWsc NWcv NWH LLsc kNN

IdealNumOfChildren 0.003 0.003 0.003 0.003 0.003
NumOfBornChildren 0.007 0.007 0.007 0.007 0.007
ContraceptionYears 0.030 0.030 0.030 0.030 0.030
WealthIndex 0.100 0.095 0.094 0.094 0.094
AgeWomanAtFirstMar 0.007 0.006 0.006 0.006 0.006

(a) Mean-square errors

NWsc NWcv NWH LLsc kNN

IdealNumOfChildren 0.028 0.029 0.031 0.031 0.023
NumOfBornChildren 0.378 0.390 0.393 0.396 0.386
ContraceptionYears 0.201 0.203 0.190 0.198 0.195
WealthIndex 0.244 0.251 0.254 0.253 0.252
AgeWomanAtFirstMar 0.309 0.313 0.322 0.325 0.322

(b) R2 scores

Table 3: Error scores per variable along the iteration in the EDHS example

In each subplot, a non-context variable is presented versus its parent variables,
one by one. These are cross-sections of the multidimensional space. Red dots
correspond to the actual data points, blue and yellow dots belong to the esti-
mates given by the ICE versus the estimated value of the parent and the actual
value of it, respectively. In a subplot, the blue and yellow dots obviously co-
incide if the parent is a context node or a node with known values. Note that
some jittering is added to the data points to have more comprehensible figures.
For example, we can see that, regardless of the background characteristics, the
iterated regression estimate for the ideal number of children is around 3. In our
iterated regime we can calculate error scores for each non-context variable. The
calculated R2-scores and the mean-square errors, Equation (14), are presented
in Tab. 3 for all non-context variables with respect to the different smoothings
listed in Section 4.1. With the relatively large sample, the other kernel methods
were unable to achieve much better results than the rule-of-thumb NW estimate.
The k-NN provided similar results.
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Figure 7: Regression graph of the EDHS example

5.3. On students academic achievements
The Central Academic Office of BME (short: KTH) registers the data of

all students entering into the institution. We were interested in the iterative
prediction of some characteristics of the students, based on variables which are
already available at their application into the university.

The involved data consists of records for over 12000 students with the lim-
itation that it is their first time entering into our university and they wrote a
so-called ‘zeroth midterm’ of mathematics.

In the regression graph of Fig. 9, the boxes are formed by the chronological
ordering of the included variables. The far right box includes the relevant con-
text variables in the model, which are already available during the application
process into the university:

• Matura points (secondary school exit examination);

• Study points, calculated from the grades of the core secondary school
subjects;

• Extra points, earned in the application process;

• Gender and Age when starting the first semester.

For a detailed description of the Hungarian university admission system, see [21].
The next box from the right contains an intermediate variable, which is the
points earned at the aforementioned ’zeroth midterm’. It is a mandatory entry
examination written by first year students of the BME in mathematics. It is
taken on the first week of the semester by almost all entering students.

Moving to the next box, the secondary responses are:

• Grade of the first semester mathematics (calculus) course (discrete ordered
variable from 1 to 5);

• Credit weighted average result of the first semester without the result of
the aforementioned calculus course (continuous).

The first box on the left is the primary response variable, the cumulative credit
weighted average result of the first two semesters without the result of the first
semester calculus course. Some descriptive statistics of the involved variables
are in Tab. 4.
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Figure 8: ICE on the EDHS data: to each non-context variable a row of the scatter plot
belongs. In each subplot, a non-context variable is presented versus one of its parent vari-
ables. Red dots correspond to the actual data points, blue and yellow dots belong to the
estimates given by the ICE versus the estimated value of the parent and the actual value of
it, respectively.
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count mean std min max

ZeroExamPoints 11876 29.50 15.66 -13 60
MathsGrade 11876 2.45 1.25 1 5
Gender 11876 0.74 0.44 0 1
Age 11876 20.19 1.02 18 43
CWA w/o Maths 11876 1.86 1.15 0 5
CumCWA w/o Maths 11876 2.10 1.28 0 6
StudyPoints 11876 174.71 14.75 87 200
MaturaPoints 11876 167.66 17.96 81 200
ExtraPoints 11876 69.20 23.46 0 100

Table 4: Descriptive statistics of the variables in the educational example

The variables in this example are not all continuous, but for most of them,
the sizes of the sample spaces are relatively large, so we can treat them as
continuous variables. Finally, Gender is considered as binary, Age as discrete
ordered (its sample space is too small), and the Grade of mathematics also as
discrete ordered, every other variable is treated as continuous.

In Fig. 10, scatter plots of the iteration steps are presented, akin to the
EDHS example, with the leave-one-out cross-validated choices of bandwidths.
Error scores are shown in Tab. 5 for all non-context variables and with respect
to the different smoothings listed in Section 4.1. Again, with the relatively
large sample, the other kernel methods were unable to achieve much better
results than the rule-of-thumb NW estimate, and the k-NN also provided similar
numbers. It seems that, with a large enough sample, the techniques aimed at
improving the results – like cross-validation over rule-of-thumb, full bandwidth
matrix over independent kernels, local linear over NW estimation – have only
small effect on the results when applying the ICE algorithm. However, the
computational burden can be significant. The problem with k-NN is that, as
the sample size grows, finding the close neighbors becomes intractable. Though,
implementations handle this issue with clever algorithms, the choice of k remains
a problem to be solved.
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NWsc NWcv NWH LLsc kNN

CumCWA w/o Maths 0.024 0.024 0.025 0.024 0.024
CWA w/o Maths 0.026 0.026 0.026 0.026 0.026
MathsGrade 0.072 0.072 0.074 0.070 0.071
ZeroExamPoints 0.031 0.031 0.032 0.033 0.031

(a) Mean-square errors

NWsc NWcv NWH LLsc kNN

CumCWA w/o Maths 0.426 0.432 0.412 0.428 0.426
CWA w/o Maths 0.430 0.433 0.426 0.431 0.432
MathsGrade 0.368 0.356 0.326 0.347 0.333
ZeroExamPoints 0.331 0.333 0.318 0.300 0.338

(b) R2 scores

Table 5: Error scores per variable along the iteration in the educational example

box 2 box 1

context

box 3

CWA w/o Maths

MathsGrade

CumCWA w/o Maths

ZeroExamPoints

Gender

StudyPoints

MaturaPoints

ExtraPoints

Age

Figure 9: Regression graph of the educational example
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Figure 10: ICE on the educational data: to each non-context variable a row of the scatter
plot belongs. In each subplot, a non-context variable is presented versus one of its parent
variables. Red dots correspond to the actual data points, whereas, blue and yellow ones to
the estimates given by the ICE versus the estimated value of the parent and the actual value
of it, respectively.
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6. Discussion

The ICE algorithm expands the application area of graphical models and
regression graphs. Consistency of the algorithm is proved under generic con-
ditions and useful observations are presented for future applications. The ICE
seems versatile enough to be applied in graphical modeling frameworks other
than DAGs and regression graphs. Prediction along chain graphs could be part
of an artificial intelligence if graph construction is included too.

If no regression graph is known, but the undirected skeleton is triangulated,
we can find a junction tree, and make predictions from separators to residuals
according to the following factorization of the joint probability density or mass
function

p(x) =

k∏
i=1

p(xRj
|xSj

).

This resembles Equation (3), and the kernel smoothing usually applies to ran-
dom vectors.

Consider the ordering of the cliques, obeying the running intersection prop-
erty with cliques Cj , residuals Rj and separators Sj (indexed from the past to
the future), S1 = ∅ and R1 = C1. Assume that we have the coordinates of x
corresponding to C1. Then

xRj = E(XRj |XSj = xSj )

for j = 2, . . . , k, where k now denotes the number of cliques. Because of Cj =
Rj ∪ Sj , we so get xCj and via marginalizing, the new xSj+1 is obtained. For
a new-coming case, in the possession of an n-element training sample, we have
the estimate

x̂Rj
=

n∑
i=1

x
(i)
Rj
W

(n,i)
Rj

(xSj
) (15)

for j = 2, . . . , k. Here the same weights can be used for all the components of
xRj as the variables in the same Sj have usually similar sample characteristics.
Since both the separators Sj and the residuals Rj are complete subgraphs (see
[3]), the prediction of the joint responses can be easily programmed as they have
the same parents in the clique Cj = Rj ∪ Sj . Hence, in case of a decomposable
(equivalently, chordal or triangulated) graph we can proceed from separator to
residual, then marginalize.

In case of a generic chain graph, the joint responses usually do not share
the same parents. In addition, in the predictions the bandwidths are adopted
to the (only) target variable, which technique is not quite straightforward in
case of multiple targets with possibly diverse sampling statistics. In a future
research we plan to formulate the consistency of the multiple response situations
in terms of the error covariance matrix. The ICE algorithm is also applicable
to more general constructs emerging in econometrics, like time series, where the
directions of the arrows indicate not only causation but time sequence of the ob-
servations. Longitudinal data can be treated too. We also plan to involve SEM
(Structural Equation Modeling) and PLS (Partial Least Squares) techniques by
distinguishing between measurement and latent variables, see e.g., [22].
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AppendixA. Background material on kernel regression

In this section we work with the usual (Y : target, X: regressors) setup
to keep the notation simple, with an n-element training sample y(i),x(i), i =
1, . . . , n. The number or regressors will be denoted by r, out of which the
number of continuous ones is p, and x = (xc,xd) decomposes into continuous
and discrete coordinates.

The supervised learning procedure of the kernel regression (see [9, 10]) is
historically preceded by the unsupervised learning procedure of kernel density
estimation. It is a local averaging technique of Equation (2), which reads here:

S
(n)
Y (x) :=

n∑
i=1

y(i)W (n,i)(x). (A.1)

The mean-square consistency of such methods is usually formulated in terms
of the following theorem, from which specific conditions can be derived for the
different types of local averaging techniques, see e.g., [5].

Theorem A.1 (C. J. Stone [5, 23]). Assume that the following conditions are
satisfied for any distribution of X:

1. ∃ c such that for every non-negative function g(·) with E [g(X)] <∞ and
for any n:

E

[
n∑
i=1

|W (n,i)(X)| · g(Xi)

]
≤ c · E [g(X)] ,

2.

∃ D ≥ 1 such that P

(
n∑
i=1

|W (n,i)(X)| ≤ D

)
= 1,

3.

lim
n→∞

E

[
n∑
i=1

|W (n,i)(X)| · I{‖Xi−X‖>a}

]
= 0, ∀ a > 0,

4.
n∑
i=1

|W (n,i)(X)| → 1 as n→∞, in probability,

5. asymptotically all weights become small:

lim
n→∞

E

[
n∑
i=1

|W (n,i)(X)|2
]

= 0.

Then for all distribution of (X, Y ) with E
[
Y 2
]
<∞,

lim
n→∞

E
[∫

Rd

|S(n)
Y (x)− PY (x)|2µ(dx)

]
= 0

holds.
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The Nadaraya–Watson (NW) kernel estimate of the regression around an
appropriate x is

S
(n)
Y (x) =

∑n
i=1KHn

(
x,x(i)

)
y(i)∑n

j=1KHn

(
x,x(j)

) , (A.2)

where Hn = {h(n)i,j }
r,r
i=1,j=1 is the bandwidth matrix, which has to be positive

definite, and
KH (x, x̃) := |H|−1 κ

(
H−1 |x− x̃|

)
,

where κ is a kernel function and |·| refers to coordinatewise absolute value. It
is a local averaging estimate of Equation (A.1) with weights

W (n,i)(x) =
KHn

(
x,x(i)

)∑n
j=1KHn

(
x,x(j)

) .
Choosing the right bandwidth matrix H is as crucial in the multivariate setup
as the selection of the only bandwidth parameter h in the univariate case (only
one regressor). However, it is a computationally demanding matrix optimiza-
tion task, therefore practitioners often choose diagonal bandwidth matrices
H = diag(h), which reduces the complexity of the task significantly. Con-
sidering a full bandwidth matrix gives more flexibility, but notably increases
the amount of bandwidth parameters that needs to be chosen. Off-diagonal
entries of H correspond to some dependency between the regressors, but it is an
understudied topic in the literature regarding regression problems. Note that in
our graphical modeling framework we have to perform several regression esti-
mations, the number of which is #{dimensions}−#{context variables}, one for
each intermediate node; this further increases the computation time. It would
make sense to use full bandwidth matrices in our case, because we have some
knowledge (through edges between parents of a given node) about the depen-
dencies between the regressors in every step. However, we wanted to decrease
the computation time and make the process more automatic, therefore we also
used diagonal bandwidth matrices by default.

Mean-square consistency of the NW estimator. For the mean-square consistency
of the NW estimator, there are several results. In case of a single deterministic
bandwidth parameter hn, when H = diag(hn, . . . , hn), and is deterministic in
the sense that only depends on the sample size, the following result holds, see [5].
The NW estimator of this case is mean-square consistent if:

• Kh is a bounded non-negative function on Rr with compact support; fur-
ther, Kh ≥ βIB with some β > 0 and some closed sphere B centered at
the origin with positive radius (I is the indicator function);

• hn → 0 and nhrn →∞ as n→∞.

This type of kernel is called boxed kernel in [5]. In particular, a bounded kernel
with compact support, such that it is bounded away from zero at the origin,
satisfies this condition. For example, the Epanechnikov kernel is such, but the
Gaussian is not. However, we can take truncated Gaussian kernels, the support
of which contains the sample entries.

This result can be extended (see [5]) to product kernels (multivariate ker-
nels defined as the product of univariate kernels) with a vector of bandwidth
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parameters hn = diag (hn,1, . . . , hn,r). In this way, the multivariate kernel is
the product of univariate kernels:

Khn

(
x,x(i)

)
=

r∏
j=1

Khn,j

(
xj , x

(i)
j

)
. (A.3)

The NW estimator constructed from a product kernel is mean-square consistent
if:

• each univariate kernel in the product is boxed kernel in the previous sense;

• hn,j → 0 for j = 1, . . . , r and n
∏r
j=1 hn,j →∞.

From the second condition nhn,j = ∞ follows for j = 1, . . . , r, but not vice
versa.

These consistency results are universal in the sense that they do not depend
on the underlying distributions. Practitioners often use the same kernel func-
tions for discrete and continuous regressors, which is a questionable modeling
choice. There are kernel functions designed especially for discrete regressors
(see the Section 4.1), but their consistency in mean-square sense has not been
extensively studied so far.

Product kernel estimator of Racine and Li. Product kernel estimation was fur-
ther refined for mixed regressors by Racine and Li [6]. Here we list their con-
ditions (with additional remarks) they used to prove their consistency results.
Again, the number of continuous regressors will be denoted by p. For the sake
of their proof, the same hc, hd bandwidths was chosen for all continuous and
for all discrete regressors, respectively.

Assumption A.1 ([6]). Conditions on the regression estimation.

(i) (hd, hc) lie in a shrinking set H(n)
d ×H(n)

c , where

H(n)
d =

[
0,min

(
1,

C0

log n

)]
H(n)
c =

[
nδ−

1
p

C1
,
C1

nδ

]

for some C0, C1, δ > 0;

• Note that the first part of the condition is hd → 0 and for small δ
the second part of the condition is virtually identical to hc → 0 and
nhpc →∞.

(ii) the univariate kernel function Kc(·) used for the continuous variables is
non-negative, symmetric, bounded,

∫
Kc(v)v4 dv < ∞, m-times differ-

entiable and
∫
|K(s)

c (v)vs| dv < ∞ for all s = 1, . . . ,m, where m >
max{2 + 4/p, 1 + p/2};

• Note that the Gaussian kernel satisfies these conditions; further, this
condition can be replaced with a compactly supported kernel function
that is Hölder continuous, e.g., the Epanechnikov kernel.

(iii) the weighting function M(·) (optionally used in the cross-validation, see
Equation (12)) is bounded and supported on a compact set with nonempty
interior for all realization of the discrete variables;
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(iv) the joint density of the variables (f(·) from now on) is bounded from below
on the support of M(·).

• Note that conditions (iii) and (iv) are only needed to have a uniform
convergence rate, M(·) can be omitted from the cross-validation.

Assumption A.2 ([6]). Conditions on the underlying distribution.

(i) {Yi,Xi}ni=1 are i.i.d. and Y − PY (X) has finite fourth moment;

(ii) σ(·,xd), PY (·,xd), f(·,xd) are all twice differentiable, and their partial
derivatives (up to the second order) are all bounded by some functions
with finite fourth moment for all possible xd, where

σ2(x) := E
[
(Y − PY (X))

2
∣∣∣ X = x

]
and f(·) is the joint density of the variables;

(iii) lengthy technical condition, only needed to rule out the case when the re-
gression function is independent of the continuous regressors.

Theorem A.2 ([6]). Under the Assumptions A.1 and A.2, the product kernel
regression estimate (with the leave-one-out cross-validated bandwidth choice of
Racine and Li, see Equation (12)) is asymptotically normal:√

nĥc
p
(
SY (x)− PY (x)− B̂(ĥc, ĥd)

)
→ N

(
0, Ω̂(x)

)
,

where

Ω̂(x) =
σ̂2(x)

f̂(x)

∫ ( p∏
i=1

Kc(vi)

)2

dv

B̂(ĥc, ĥd) = ĥc
2
Φ1(x)

∫
Kc(v)v2 dv + ĥdΦ2(x)

Φ1(x) =
∇f̂(x)T∇SY (x)

f̂(x)
+

tr(∇2SY (x))

2

Φ2(x) =
∑

x̃d:d(xd,x̃d)=1

[SY (xc, x̃d)− SY (xc,xd)]
f̂(xc, x̃d)

f̂(xc,xd)

d(xd, x̃d) =

k∑
i=1

I{xd,i 6=x̃d,i}

σ̂2(x) =
1

nf̂(x)

n∑
i=1

(Yi − SY (Xi))
2
Khn

(
x,x(i)

)
f̂(x) =

1

n

n∑
i=1

Khn

(
x,x(i)

)
.

Lemma A.1. Under Assumptions A.1, A.2, further assuming that

lim sup
n→∞

E
∣∣∣∣√nĥcp (SY (x)− PY (x)− B̂(ĥc, ĥd)

)∣∣∣∣3 <∞, (A.4)
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E
[
Φ1(X)2

]
<∞ and E

[
Φ2(X)2

]
<∞, (A.5)

the estimate is mean-square consistent.

Proof. We need that

E
[
(SY (X)− PY (X))2

]
= Ẽ

[∫
(SY (x)− PY (x))2µ(dx)

]
→ 0 as n→∞,

where Ẽ refers to the expectation over the distribution of the sample. We use
the B̂() term of Theorem A.2:

E
[
(SY (X)− PY (X))2

]
=

E
[
(SY (X)− PY (X)− B̂(ĥc, ĥd) + B̂(ĥc, ĥd))

2
]
≤

2E
[
(SY (X)− PY (X)− B̂(ĥc, ĥd))

2
]

+ 2E
[
(B̂(ĥc, ĥd))

2
]

For the first term:

SY (x)− PY (x)− B̂
(
ĥc, ĥd

)
� N

0,
Ω̂(x)√
nĥc

p


asymptotically as n→∞, by Theorem A.2. Further,

lim
n→∞

∫
E
[
(SY (x)− PY (x)− B̂(ĥc, ĥd))

2
]
µ(dx) = lim

n→∞

∫
Ω̂(x)√
nĥc

p
µ(dx) = 0,

because Equation (A.4) ensures the convergence of moments (see Example 2.21
of [24]), and Ω̂(x) is essentially bounded:

Ω̂(x) =
σ̂2(x)

f̂(x)
CK ≤

D2

f̂(x)
CK ≤

D2

ε
CK ,

where D = Ymax−Ymin is the range of Y in the sample, ε = inf{f̂(x)|f̂(x) > 0}
and CK is the finite integral in the definition of Ω̂(x). (Note that f̂(x) = 0 only
for those xs that are "too far away" from the sample, resulting in undefined
SY (x) and Ω̂(x). The probability of this event goes to zero as n → ∞, so the
bound will hold almost surely.) Therefore, we can use the dominated conver-
gence theorem and that nhpc → ∞ by Assumption A.1(i) to get the zero limit.
For the second term:

lim
n→∞

E
[
B̂(ĥc, ĥd)

2
]

=E
[

lim
n→∞

B̂(ĥc, ĥd)
2
]

=

E

[
lim
n→∞

(
ĥc

2
Φ1(X)

∫
Kc(v)v2 dv + ĥdΦ2(X)

)2
]

= 0,

where ĥc → 0, ĥd → 0 and
∫
Kc(v)v2 dv < ∞, by Assumption A.1. The

limit and the expectation can be interchanged by the dominated convergence
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theorem:∣∣∣∣ĥc2Φ1(X)

∫
Kc(v)v2 dv + ĥdΦ2(X)

∣∣∣∣ < C1Φ1(X)

∫
Kc(v)v2 dv + C0Φ2(X),

where C0, C1 are from Assumption A.1, and by Equation (A.5) the second mo-
ment of the right hand side is finite.

AppendixB. Background material on other smoothers

Local linear regression. The NW estimate is also called local constant estimate,
since it is actually the minimizer of

S
(n)
Y (x) = argmin

α(x)

n∑
i=1

KHn

(
x,x(i)

) [
y(i) − α(x)

]2
= α̂(x),

where α̂(x) is the optimal constant estimate around x. Likewise, local linear
and polynomial estimates can be constructed by substituting a polynomial (with
coefficients depending on x) for α(x). In the linear case:

{
α̂(x), β̂(x)

}
= argmin
α(x),β(x)

n∑
i=1

KHn

(
x,x(i)

) [
y(i) −

(
α(x)− β(x)Tx(i)

)]2
,

and the estimate from this is:

S
(n)
Y (x) = α̂(x) + β̂(x)Tx.

Local linear estimators usually work better in practice, for example, they do not
suffer from bias at the boundary of the regressors as the NW estimator does.
The local linear version of Racine and Li’s kernel estimate is discussed in details
in [14]. The mean-square consistency in case of continuous regressors is proved
in [25], albeit under restrictive conditions on the coefficients of the polynomials.

The k-nearest neighbor regression. This so-called k-NN regression is another
type of a local averaging regression estimate, see Equation (A.1). While fixing
an x ∈ Rr, reorder the training data according to the increasing values of
‖Xi − x‖:

{(X1,n(x), Y1,n(x)) , (X2,n(x), Y2,n(x)) , . . . (Xn,n(x), Yn,n(x))} .

Then

S
(n)
Y (x) :=

1

kn

kn∑
i=1

Yi,n(x)

is the kn-NN regression estimate of Y .
In case of continuous regressors, the following theorem can be stated on the

mean-square consistency.

Theorem B.1 (Theorem 6.1 of [5]). If limn→∞ kn = ∞ and limn→∞
kn
n = 0,

then the kn-NN estimate is mean-square consistent for all distribution of (X, Y )

such that E
[
Y 2
]
< ∞ and for each x ∈ Rr, the random variable ‖X− x‖2 is

absolutely continuous.
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The last condition is the no-tie condition, which always can be satisfied
by the inclusion of a new component Z attached to X: ((X, Z), Y ), where Z
is uniformly distributed on [0, 1] and independent of (X, Y ). Of course, the
training sample is also supplemented with components Z1, Z2, . . . , Zn.
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