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Abstract

Spectra and representations of some special weighted graphs are investigated with weight matrices consisting of homogeneous
blocks. It is proved that a random perturbation of the weight matrix or that of the weighted Laplacian with a “Wigner-noise” will
not have an effect on the order of the protruding eigenvalues and the representatives of the vertices will unveil the underlying
block-structure.

Such random graphs adequately describe some biological and social networks, the vertices of which belong either to loosely
connected strata or to clusters with homogeneous edge-densities between any two of them, like the structure guaranteed by the
Regularity Lemma of Szemerédi.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Facing real-world graphs the number of vertices is sometimes so large that it is hard to discover their underlying
structure. However, spectral techniques can tell us a lot about the graph. We say that our graph has a linear structure
if its adjacency-, weight-, or Laplacian matrix can be well approximated by a lower rank matrix. This property can
be characterized by the spectral decomposition of the matrix in question: it has some protruding eigenvalues and the
Euclidean representatives of the vertices by means of the corresponding eigenvectors form well-separated clusters. In
[6] we introduced the notion of Wigner-noise that is a generalization of a random matrix investigated by Wigner [11]
and the bulk spectrum of which obeys the semi-circle law (if the size of the matrix tends to infinity). We recall the
definition.

Definition 1.1. The n × n real matrix W is a symmetric Wigner-noise if its entries wij , 1� i�j �n, are independent
random variables, Ewij =0, Var wij ��2 with some 0 < � < ∞ and the wij ’s are uniformly bounded (there is a constant
K > 0 such that |wij |�K).
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On the basis of Füredi and Komlós [8], it was proved in [1] that for the maximum absolute value eigenvalue of W

max
1� i �n

|�i (W)|�2�
√

n + O(n1/3 log n)

holds with probability tending to 1, as n → ∞.
In the sequel, we put this noise on the following deterministic structures. The structures will be described by weight

matrices assigned to special weighted graphs. Let Gn = (V , B) be a weighted graph on the n element vertex set V ,
where the interconnections between the vertices are uniquely defined by the n × n symmetric weight matrix B (for its
entries 0�bij �1 are assumed and loops are allowed).

(i) The n × n symmetric weight matrix of Gn is defined in the following way. Let k < n be a fixed integer, �i > 0
and �i (i = 1, . . . , k) be real numbers, and the integers n1, . . . , nk > 0 be such that

∑k
i=1ni = n. Let B be the

Kronecker-sum of the matrices Bi , i = 1, . . . , k, where Bi is the ni × ni symmetric matrix with non-diagonal
entries �i’s and diagonal ones �i’s (the non-diagonal blocks contain zeroes). Hence, Gn consists of k connected
components, and within these components, each pair of edges is connected with an edge of the same weight. We put
a Wigner-noise W of the corresponding size on the weight matrix B. The spectral properties of the weight matrix
A = B + W of the random graph G′

n = (V , A) are investigated when the numbers k, K , �, �i , and �i (i = 1, . . . , k)

are kept fixed as n1, . . . , nk tend to infinity in such a way that ni/n�C (i = 1, . . . , k), with n = ∑k
i=1ni and with

some constant C (0 < C < 1). In the sequel, we shall refer to this condition as growth rate condition. In [5] it was
proved that with probability tending to 1 for the eigenvalues �1, . . . , �n of A the following inequalities hold, as
n → ∞. There is an ordering of the k largest eigenvalues �1, . . . , �k such that

|�i − [(ni − 1)�i + �i]|�2�
√

n + O(n1/3 log n), i = 1, . . . , k.

Among the other eigenvalues, for i = 1, . . . , k there are ni − 1 �j ’s with

|�j − [�i − �i]|�2�
√

n + O(n1/3 log n).

It implies that the k largest eigenvalues of the random matrix A are of order �(n), and there must be a spectral
gap between the k largest and the remaining eigenvalues with probability tending to 1, as n → ∞. Asymptotic
k-variate normality for the random vector (�1, . . . , �k) was also proved, and it was shown that the k-variance of the
vertices of the perturbed graph G′

n—in the Euclidean representation defined by the corresponding eigenvectors—is
O(1/n). The notion of k-variance and this kind of representation will be explained thoroughly in Section 2. For
instance, such data structures occur, when the n observations come from k loosely connected strata (k < n). For
example, in [9] the importance of weak links between social strata is emphasized. In our model the weak links
correspond to the entries of the Wigner-noise.

(ii) Let the n × n weight matrix B of Gn have a more general structure. In Section 2 it will be defined as a so-called
blown up matrix of the k × k symmetric pattern matrix P (with the corresponding partition V1, . . . , Vk of the
vertex set {1, . . . , n}): all the edge weights between vertices of the vertex clusters Vi and Vj are equal to pij

(i, j = 1, . . . , k). In [6] it was proved that the n × n matrix B has k non-zero eigenvalues of order �(n) and the
corresponding eigenvectors have equal coordinates for vertices belonging to the same cluster Vi (in other words,
they have piecewise constant structure).
Now let G′

n be a random graph with weight matrix A = B + W, where W is an n × n Wigner-noise. The integer k

is kept fixed as n1, . . . , nk tend to infinity under the growth rate condition of (i). In Section 2 we shall prove that
the weight matrix A still has k protruding eigenvalues of order �(n) and the representatives of the vertices of the
noisy weighted graph G′

n = (V , A) can be well classified into k clusters with probability tending to 1, as n → ∞. It
means that there are almost homogeneous edge-densities between any two of the clusters of the random graph G′

n.
With an appropriate Wigner-noise our perturbed graph is a usual random graph with weights 1 or 0. For example,
by adding a Wigner-noise we can reach that in the random graph G′

n = (V , A) any pair of vertices of Vi and Vj

is connected with probability pij . The Regularity Lemma of Szemerédi [10] guarantees a similar structure with
some (perhaps large) k. Its relation to our problem is discussed in Section 4.

In Section 3 Laplacian spectra of graphs with weight matrices described in (i) and (ii) are investigated. Note that we
can treat random perturbations only if the so-called weighted Laplacian of [4] is used.
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2. Spectra of blown up weighted graphs

We cite the notion of a blown up matrix introduced in [6].

Definition 2.1. The n × n matrix B is a blown up matrix if there is a constant k < n, a k × k symmetric pattern matrix
P with entries 0�pij �1, and there are positive integers n1, . . . , nk ,

∑k
i=1ni = n such that B can be divided into k2

blocks, the block (i, j) being an ni × nj matrix with entries all equal to pij (1� i, j �k).

As far as the spectrum of B is concerned, we repeat the statement and sketch a proof different from that of [6] so
that it can be used to find the spectra of weighted Laplacian matrices in Section 3.

Proposition 2.2. Under the growth rate condition all the non-zero eigenvalues of the n × n blown up matrix B are of
order n in absolute value.

Proof. As there are at most k linearly independent rows in B, r = rank (B)�k.
Let �1, . . . , �r > 0 be the non-zero eigenvalues of B and u1, . . . , ur ∈ Rn be the corresponding orthonormal eigen-

vectors. We drop the subscripts: let � �= 0 be an eigenvalue with eigenvector of ‖u‖ = 1. It is easy to see that u
has piecewise constant structure: it has ni coordinates equal to u(i) (i = 1, . . . , k). Then, with these coordinates the
eigenvalue–eigenvector equation

Bu = � · u

has the form

k∑
j=1

njpiju(j) = � · u(i) (i = 1, . . . , k). (1)

With the notations

ũ = (u(1), . . . , u(k))T, D = diag (n1, . . . , nk), (2)

Eq. (1) can be written in the form

PDũ = � · ũ.

Further, introducing the transformation

v = D1/2ũ, (3)

the equivalent equation

D1/2PD1/2v = � · v (4)

is obtained. It is easy to see that the transformation (3) results in a unit-norm vector. Furthermore, applying the
transformation (3) for the ũi vectors obtained from the ui (i = 1, . . . , r), the orthogonality is also preserved.

Consequently, vi = D1/2ũi is an eigenvector corresponding to the eigenvalue �i of the k × k matrix D1/2PD1/2

(i = 1, . . . , r). With the shrinking

D̃ = 1

n
D. (5)

Eq. (4) is also equivalent to

D̃1/2PD̃1/2v = �

n
· v,

that is the k × k matrix D̃1/2PD̃1/2 has non-zero eigenvalues �i/n with orthonormal eigenvectors vi (i = 1, . . . , r).
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Now we want to establish relations between the eigenvalues of P and D̃1/2PD̃1/2. Let si(Q) denote the ith largest
singular value of a matrix Q. By the Courant–Fischer–Weyl minimax principle (cf. [3, p. 75])

si(Q) = max
dim H=i

min
x∈H

‖Qx‖
‖x‖ .

Since the singular values of a symmetric matrix are the absolute values of its real eigenvalues, and we are interested
only in the first r eigenvalues, where r = rank B = rank D̃1/2PD̃1/2, it is sufficient to consider vectors x, for which
D̃1/2PD̃1/2x �= 0 and apply the minimax principle with i ∈ {1, . . . , r} and an arbitrary i-dimensional subspace H ⊂ Rk:

min
x∈H

‖D̃1/2PD̃1/2x‖
‖x‖ = min

x∈H

‖D̃1/2PD̃1/2x‖
‖PD̃1/2x‖ · ‖PD̃1/2x‖

‖D̃1/2x‖ · ‖D̃1/2x‖
‖x‖

�sk(D̃1/2) · min
x∈H

‖PD̃1/2x‖
‖D̃1/2x‖ · sk(D̃1/2)�C · min

x∈H

‖PD̃1/2x‖
‖D̃1/2x‖ ,

with the constant C in the growth rate condition. Now taking the maximum for all possible i-dimensional subspace H

we obtain that |�i (D̃1/2PD̃1/2)|�C · |�i (P)| > 0. On the other hand,

|�i (D̃1/2PD̃1/2)|�‖D̃1/2PD̃1/2‖�‖D̃1/2‖ · ‖P‖ · ‖D̃1/2‖�‖P‖�k.

These imply that�i (D̃1/2PD̃1/2) is a non-zero constant, and because of�i (D̃1/2PD̃1/2)=�i/nwe obtain that�1, . . . , �r=
�(n). �

In the following special case, in [6] we proved a little bit more:

Proposition 2.3. Let the entries of the k×k pattern matrix be the following: pii =0 (i =1, . . . , k) and pij =pji =p ∈
[0, 1] (1� i < j �k). Let B be the blown up matrix of P with block sizes n1 �n2 � . . . �nk , n := ∑k

i=1 ni . Then B has
exactly n− k zero eigenvalues, the negative eigenvalues of B are in the interval [−pnk, −pn1], while the positive ones
in [p(n − nk), p(n − n1)].

We remark that in the case p = 1 our matrix B is the adjacency matrix of Kn1,...,nk
, the complete k-partite graph on

disjoint, edge-free vertex sets V1, . . . , Vk with |Vi | = ni (i = 1, . . . , k).
Now let B be an n×n blown up matrix with non-zero eigenvalues �1, . . . , �r and W be a symmetric Wigner-noise of

the same size. Let G′
n be a random graph with weight matrix A = B + W. We are looking for the spectral properties of

A, as k is kept fixed and n1, . . . , nk tend to infinity under the usual growth rate condition. In [6], by an easy application
of the Weyl’s perturbation theorem, it was proved that under these conditions the weight matrix A still has r protruding
eigenvalues: there are r eigenvalues �1, . . . , �r of the noisy random matrix A such that

|�i − �i |�2�
√

n + O(n1/3 log n), i = 1, . . . , r

and for the other n − r eigenvalues

|�j |�2�
√

n + O(n1/3 log n), j = r + 1, . . . , n

hold with probability tending to 1, as n → ∞.
Consequently, taking into account the order �(n) of the non-zero eigenvalues of B, there is a spectral gap between

the r largest absolute value and the other eigenvalues of A, this is of order � − 2ε, where

ε := 2�
√

n + O(n1/3 log n) and � := min
1� i � r

|�i |. (6)

In general, r = rank B=k, and the above statement guarantees the existence of k protruding eigenvalues of A. On this
basis, we can also estimate the distances between the corresponding eigenspaces of the matrices B and A=B+W. Let
us denote the unit norm eigenvectors belonging to the eigenvalues �1, . . . , �k of B by u1, . . . , uk and those belonging
to the eigenvalues �1, . . . , �k of A by x1, . . . , xk . Let F := Span {u1, . . . , uk} ⊂ Rn be k-dimensional subspace and
let dist(x, F ) denote the Euclidean distance between the vector x ∈ Rn and the subspace F .
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Proposition 2.4. With the above notation the following estimate holds with probability tending to 1 (n → ∞) for the
sum of the squared distances between x1, . . . , xk and F :

k∑
i=1

dist2(xi , F )�k
ε2

(� − ε)2
= O

(
1

n

)
. (7)

The order of the estimate follows from the order of ε and � of (6).
This implies the well-clustering property of the representatives of the vertices of G′

n in the following representation.
Let X be the n × k matrix containing the eigenvectors x1, . . . , xk in its columns. Let the k-dimensional representatives
of the vertices be the row vectors of X: x(1), . . . , x(n) ∈ Rk . Let S2

k (X) denote the k-variance—introduced in [4]—of
these representatives in the clustering V1, . . . , Vk:

S2
k (X) =

k∑
i=1

∑
j∈Vi

‖x(j) − x̄(i)‖2 where x̄(i) = 1

ni

∑
j∈Vi

x(j).

With the above notation for the k-variance of the representation of the noisy weighted graph G′
n = (V , A) the relation

S2
k (X) = O

(
1

n

)

holds with probability tending to 1, as n → ∞ under the usual growth rate condition.
That is, by Theorem 3 of [5] it can easily be seen that S2

k (X) is equal to the left-hand side of (7), therefore it is also
of order O(1/n).

Hence, the addition of any kind of a Wigner-noise to a weight matrix that has a blown up structure B will not change
the order of the protruding eigenvalues of the noisy weight matrix, and the block structure of B can be concluded from
the representatives of the vertices (where the representation is obtained by means of the corresponding eigenvectors).

With an appropriate Wigner-noise we can also reach that our matrix B + W in its (i, j)th block contains 1’s with
probability pij , and 0’s otherwise. That is, for indices 1� i < j �k and l ∈ Vi , m ∈ Vj let

wlm :=
{

1 − pij with probability pij ,

−pij with probability 1 − pij

be independent random variables, and for i = 1, . . . , k and l, m ∈ Vi (l�m) let

wlm :=
{

1 − pii with probability pii,

−pii with probability 1 − pii

be also independent, otherwise W is symmetric. This W satisfies the conditions of Definition 1.1 with entries of zero
expectation and bounded variance

�2 = max
1� i � j �k

pij (1 − pij )�
1

4
.

So, the noisy weighted graph G′
n = (V , B + W) becomes a usual random graph that has an edge between vertices of

Vi and Vj with probability pij , 1� i�j �k. In particular, the noisy graph with underlying structure B of Proposition
2.3 has no edges within Vi (i = 1, . . . , k), and it has an edge between vertices of Vi and Vj with the same probability
p = pij (i �= j). In this case the above statements guarantee the existence of k protruding eigenvalues of the incidence
matrix of this random graph, while the corresponding eigenvectors give rise to a Euclidean representation of the vertices
revealing the vertex clusters V1, . . . , Vk .

We remark that by means of the sharp concentration results of Alon et al. [2] for the eigenvalues of large symmetric
special random matrices, stronger results—almost sure convergence in our statements—could be proved. Wherever
convergence with probability tending to 1 (as n → ∞) is stated, one could write with probability 1 with sufficiently
large n.
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3. Laplacian spectra of blown up graphs

The Laplacian belonging to the symmetric weight matrix A of a weighted graph on n vertices is defined by

L(A) = D(A) − A, (8)

where D(A) = diag (d1, . . . , dn) with di = ∑n
j=1aij , i = 1, . . . , n, see [4]. The Laplacian is always singular, more

precisely, the multiplicity of its zero eigenvalue is equal to the number of connected components of the underlying
graph. Let

0 = �1 ��2 � · · · ��n

be the eigenvalues of L(A) with corresponding unit norm eigenvectors v1, . . . , vn. If the graph is connected then
v1 = 1/

√
n, where 1 is the all 1 vector. In [4] it was also proved that

∑k
i=1�i gives the minimum of the quadratic

function

n−1∑
i=1

n∑
j=i+1

aij‖xi − xj‖2 (9)

over the k-dimensional representations of the vertices with x1, . . . , xn ∈ Rk such that
∑n

i=1xixT
i =Ik , and the minimum

is attained if the representatives x1, . . . , xn are row vectors of the n × k matrix with column vectors v1, . . . , vk . The
objective function (9) tends to be small if representatives of vertices connected by large-weight edges are close to each
other in Euclidean metric.

In model (i), Gn = (V , B) consists of k connected components, therefore its Laplacian spectrum is the union of those
of the components. Moreover, the Laplacian spectrum of a component is a simple linear transformation of its adjacency
spectrum, that is with the notation of Section 1

L(Bi ) = [(n − 1)�i + �i]Ini
− Bi , i = 1, . . . , k.

The multiplicity of the zero eigenvalue of L(B) is k and the corresponding eigenspace is spanned by eigenvectors
vi (i = 1, . . . , k) such that vi has zero coordinates except in the ith block, where it has coordinates equal to 1/

√
ni .

According to [4], after perturbing B (i.e., adding “few, small-weight” edges that connect different components), the
Laplacian spectrum of the noisy graph G′

n will contain k “small” (i.e., almost zero) eigenvalues and there is a spectral
gap between the k smallest and the other eigenvalues. The representation with the help of the eigenvectors corresponding
to the k smallest eigenvalues will reveal the block-structure, but the same calculations with a Wigner-noise cannot be
applied here, as the terms of the perturbation are not completely arbitrary because of the condition imposed on the
Laplacian matrix (its row sums are zeroes): L(B + W) = L(B) + L(W), but L(W) is not a Wigner-noise any more.

In the special case of model (ii)—if our underlying graph Gn is the complete k-partite graph Kn1,...,nk

(
∑k

i=1ni = n)—we found that its Laplacian spectrum consists of one zero, the number n with multiplicity k − 1,
and the numbers n−ni with respective multiplicities ni − 1 (i = 1, . . . , k). The reduction by 1 comes from the orthog-
onality of the eigenvectors belonging to positive eigenvalues to the all 1 vector. It was also shown that the maximum
of the objective function (9) over x1, . . . , xn ∈ Rk−1 with constraints

∑k
i=1xixT

i = Ik and
∑k

i=1xi = 0 is the sum
of the k − 1 largest eigenvalues, that is (k − 1)n, and it is attained with the representation by means of any k − 1
pairwise orthogonal, unit norm eigenvectors within the eigenspace belonging to this largest eigenvalue. As any vector
in this eigenspace has equal coordinates within the blocks V1, . . . , Vk , the representatives form k different points in
the (k − 1)-dimensional Euclidean space. If pii = 0 and 0 < pij = p < 1 for (i > j), the eigenvalues of the Laplacian
L(B) of the blown up matrix B are p times the eigenvalues of the complete k-partite graph’s Laplacian on the same set
of vertices V = (V1, . . . , Vk) with the same eigenvectors. A small perturbation will result in a Laplacian with k − 1
large eigenvalues (of order n), and a (k−1)-dimensional representation with the corresponding eigenvectors will result
in k well-separated clusters of the representatives. Now maximization is needed, as in this special case of model (ii),
representatives of vertices connected by large-weight edges tend to be close to each other.

In the general model (ii) the Laplacian L(B) of the blown up matrix B has one zero eigenvalue with correspond-
ing eigenvector 1, and the positive eigenvalues are as follows. There are k − 1 eigenvalues, say, �1, . . . , �k−1 with
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eigenvectors having equal coordinates, say,y1, . . . , yk within the blocksV1, . . . , Vk that satisfy the eigenvalue–eigenvector
equation∑

j �=i

njpij yi −
∑
j �=i

njpij yj = �yi, i = 1, . . . , k.

It is also the eigenvalue–eigenvector equation of the k×k formal Laplacian L(D1/2PD1/2)=L(nD̃1/2PD̃1/2), where D
and D̃ are defined in (2) and (5). Due to this coincidence, latter ones also have non-negative real eigenvalues: one zero,
and k−1 positive numbers in the generic case. Let us denote the positive eigenvalues of L(D̃1/2PD̃1/2) by �1, . . . , �k−1.
Therefore

�i = n�i = �(n), i = 1, . . . , k − 1,

and the corresponding eigenvectors are the blown up vectors of the eigenvectors of form (y1, . . . , yk)
T satisfying∑k

i=1niyi = 0 (due to the orthogonality to the vector 1 ∈ Rn).
The other positive eigenvalues of L(B) are the numbers �i with multiplicity ni − 1:

�i =
∑
j �=i

njpij = n
∑
j �=i

nj

n
pij = �(n), i = 1, . . . , k,

since the summation is only over k − 1 indices and we use the growth rate condition. It can be easily seen that an
eigenvector vi belonging to �i with coordinates vij (j = 1, . . . , n) is such that vij = 0, if j /∈ Vi and

∑
j∈Vi

vij = 0.
The non-zero eigenvalues are all of order �(n), therefore the eigenvectors belonging to the non-zero eigenvalues

above are capable to reveal the underlying block-structure of the blown up graph, as they have either piecewise constant
structure or zero coordinates except one cluster. However, Wigner-type perturbations cannot be treated in this case
either. In [4] the notion of weighted Laplacian belonging to the n × n weight matrix A = (aij ) was also introduced that
assigns the generalized degree di = ∑n

j=1aij to vertex i as weight. Sometimes this kind of a Laplacian matrix is more
suitable for classification purposes and, as it is emphasized in this paper, for perturbation with Wigner-noise too.

Given a weighted graph on n vertices with weight matrix A, its weighted Laplacian is defined as

L′(A) = In − D(A)−1/2 · A · D(A)−1/2.

In [4] the properties of L′(A) were thoroughly discussed: its eigenvalues are in the [0,2] interval and the multiplicity of
zero as an eigenvalue is also equal to the number of connected components of the underlying graph. It was also proved
that the sum of the k smallest eigenvalues of L′(A) gives the minimum of the quadratic function defined in (9) under
the constraint

∑n
i=1dixixT

i = Ik .
Now let Gn = (V , B) be a weighted graph with n×n blown up weight matrix B of the k×k symmetric pattern matrix

P. We want to characterize the spectrum of L′(B). Without loss of generality, suppose that rank (B) = rank (P) = k,
and P has no identically zero rows (it means that the underlying graph has no isolated vertices).

Proposition 3.1. Under the growth rate condition there exists a constant 	 ∈ (0, 1), independent of n, such that there
are k eigenvalues of L′(B) that are not equal to 1 and they are located in the union of intervals [0, 1−	] and [1+	, 2].

Proof. It is easy to see that D(B)−1/2 · B · D(B)−1/2 is also a blown up matrix of the k × k symmetric pattern matrix
P̃ with entries

p̃ij = pij√
(
∑k

l=1pilnl)(
∑k

m=1pmjnm)

.

Following the considerations of the proof of Proposition 2.2, the blown up matrix D(B)−1/2 · B · D(B)−1/2 has exactly
k non-zero eigenvalues that are the eigenvalues of the k × k symmetric matrix P′ = D1/2P̃D1/2 with entries

p′
ij = pij

√
ni

√
nj√

(
∑k

l=1pilnl)(
∑k

m=1pmjnm)

= pij√
(
∑k

l=1pil
nl

nj
)(

∑k
m=1 pmj

nm

ni
)
.
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As P has no identically zero rows, the matrix P′ varies on a compact set of k×k matrices determined, due to the growth
rate condition, by the inequalities

C� ni

nj

� 1

C
(i, j = 1, . . . , k).

The range of the non-zero eigenvalues depends continuously on the matrix that does not depend on n. Therefore, the
minimum non-zero eigenvalue does not depend on n. The eigenvalues of D(B)−1/2 · B · D(B)−1/2 being in the [−1, 1]
interval, this finishes the proof. (If our matrix is subtracted from the identity matrix, the zero eigenvalue is transformed
into 1, while the others are transformed into the right and left neighborhood of 0 and 2, respectively.) �

Proposition 3.1 states that the non-one eigenvalues of L′(B) are strictly separated from 1. We claim that this property
is inherited to the weighted Laplacian L′(A) of the noisy graph G′

n = (V , A), where A = B + W with a Wigner-noise
of appropriate size. In fact, the following statement can be formulated.

Proposition 3.2. There exists a positive number 	 ∈ (0, 1), independent of n, such that for every 0 < 
 < 1
2 the following

statement holds with probability tending to 1, as n → ∞ under the growth rate condition: there are exactly k eigenvalues
of L′(A) that are located in the union of intervals [−n−
, 1 − 	+n−
] and [1 + 	−n−
, 2 +n−
], while all the others
are in the interval (1 − n−
, 1 + n−
).

This statement, as well as the following results are not proved here, as they are topics of a paper—dealing with more
general types of random matrices—in preparation.

Let u1, . . . , uk be unit-norm, pairwise orthogonal eigenvectors belonging to the non-one eigenvalues of L′(B). The
n-dimensional vectors obtained by the transformations

u′
i := D(B)−1/2ui (i = 1, . . . , k)

have the following optimality property: the n×k matrix formed by them, as column vectors, contains the k-dimensional
representatives x1, . . . , xn of vertices that minimize (9) under the constraint

∑n
i=1dixixT

i = Ik .
Let 0 < 
 < 1

2 be arbitrary and ε := n−
. Let us also denote the unit-norm, pairwise orthogonal eigenvectors cor-
responding to the k eigenvalues of L′(A) separated from 1 by y1, . . . , yk ∈ Rn (their existence is guaranteed by
Proposition 3.2). Further set

F := Span {u1, . . . , uk}.

Proposition 3.3. With the above notation, the following estimate holds with probability tending to 1 (n → ∞ under
the growth rate condition) for the distance between yi and F :

dist(yi , F )� ε

(	 − ε)
= 1(

	

ε
− 1

) (i = 1, . . . , k). (10)

Observe that the statement is similar to that of Proposition 2.4 with 	 instead of � and ε instead of ε. The right-hand
side of (10) is of order n−
 that tends to zero, as n → ∞.

Proposition 3.3 implies the well-clustering property of the vertex representatives by means of the transformed
eigenvectors

y′
i := D(A)−1/2yi (i = 1, . . . , k).

Let Y′ be the n × k matrix containing the vectors y′
1, . . . , y′

k in its columns. Let the k-dimensional representatives of
the vertices be the row vectors of Y′ : y(1), . . . , y(n) ∈ Rk . With respect to the vertex weights d1, . . . , dn the k-variance
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of these representatives is defined by

S2
k (Y′) =

k∑
i=1

∑
j∈Vi

dj‖y(j) − ȳ(i)‖2 where ȳ(i) =
∑
j∈Vi

dj y(j)

and V1, . . . , Vk is the partition of the vertices with respect to the blow up.

Proposition 3.4. With the above notation,

S2
k (Y′)� r(

	

ε
− 1

)2

holds with probability tending to 1, as n → ∞ under the growth rate condition.

Proof. An easy calculation shows that

S2
k (Y′) =

k∑
i=1

dist2(yi , F )

and hence the result of Proposition 3.3 can be used. �

4. Conclusions and further remarks

Through the models introduced in Section 1 we have shown that if the adjacency matrix of our underlying graph
Gn has some protruding eigenvalues (of order n in absolute value), then a Wigner-noise cannot disturb essentially
this structure: with probability tending to 1 (as n → ∞), the adjacency matrix of the noisy graph G′

n will have
the same number of protruding eigenvalues with corresponding eigenvectors revealing the structure of the graph. A
representation with them makes it possible to find the clusters, if our underlying graph consists of k loosely, strongly,
or homogeneously connected components.

The Laplacians also reflect the underlying structure, but it depends on the model that eigenvectors belonging to the
small, large or medium eigenvalues are to be chosen for the representation. In addition, the application of perturbation
results is not straightforward for the Laplacian, but it can be done with the help of the weighted Laplacian. As we
showed in Section 3, the noisy weighted graph (of the blown up structure burdened with Wigner-noise) also has a
well-classifiable representation by means of its weighted Laplacian’s spectral decomposition.

For any graph on n vertices the Regularity Lemma of Szemerédi guarantees the existence of a partition V0, V1, . . . , Vk

of the vertices (here V0 is a “small” exceptional set) such that most of the Vi, Vj pairs (1� i < j �k) are ε-regular with
ε > 0 fixed in advance. (A pair Vi, Vj (i �= j) is ε-regular, if for any A ⊂ Vi , B ⊂ Vj with |A| > ε|Vi |, |B| > ε|Vj |
the relation |dens (A, B) − dens (Vi, Vj )| < ε holds, where dens (A, B) denotes the edge-density between the disjoint
vertex-sets A and B. In fact, denoting by cut (A, B) the cut-set between A and B, dens (A, B)=|cut (A, B)|/|A| · |B|.)
In some sense, ε-regularity means that the edge-densities between the Vi, Vj pairs are homogeneous. If our random
graph has a weight matrix A + W (a blown up matrix plus a special Wigner-noise discussed at the end of Section 2),
then |cut (Vi, Vj )| is the sum of |Vi | · |Vj | independent, identically distributed Bernoulli variables with parameter pij

(1� i, j �k), where pij ’s are entries of the pattern matrix P. Hence |cut (A, B)| is a binomially distributed random
variable with expectation |A| · |B| · pij and variance |A| · |B| · pij (1 − pij ). We shall need the following lemma.

Lemma 4.1 (Chernoff inequality for large deviations). Let X1, . . . , Xn be independent random variables, |Xi |�K ,
X := ∑n

j=1Xj . Then for any a > 0:

P(|X − E(X)| > a)�e−a2/2(Var (X)+Ka/3).
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Therefore, with a fixed ε > 0, K = 1 and with A ⊂ Vi , B ⊂ Vj , |A| > ε|Vi |, |B| > ε|Vj | we have that

P(|dens (A, B) − pij | > ε) = P(|cut (A, B) − |A| · |B| · pij | > ε · |A| · |B|)
�e−ε2|A|2|B|2/2[|A||B|pij (1−pij )+ε|A||B|/3]

= e−ε2|A||B|/2[pij (1−pij )+ε/3]

�e−ε4|Vi ||Vj |/2[pij (1−pij )+ε/3]

that tends to 0, as |Vi | = ni → ∞ and |Vj | = nj → ∞. Hence, any pair Vi, Vj is ε-regular with probability tending to
1, if n1, . . . , nk → ∞ under the growth rate condition.

In summary, if the adjacency matrix of the noisy random graph has k protruding eigenvalues (greater than
√

n in order
of magnitude) and the representatives of vertices (by means of the corresponding eigenvectors) form k well-separated
clusters, we get a construction for the clusters of the Szemerédi’s Regularity Lemma themselves (see [6] for further
details of this algorithm). A Wigner-noise will not change these clusters. So, our graph is a so-called generalized random
graph of [10]. An other kind of construction for the clusters of the lemma is discussed in [7].

In case of large real-life graphs one often looks for a blown up structure behind the edge-weights. For example,
some communication networks and metabolic networks of cells on a large number of vertices may have homogeneous
edge-densities between a fixed number of components, that is exposed to random noise, like weak links between social
strata or mutations in cells.
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