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Abstract. Convergence of rectangular arrays with nonnegative, bounded entries
is defined together with the limit object and cut distance. A statistic defined on a
contingency table is testable if it can be consistently estimated based on a smaller,
but still sufficiently large table which is selected randomly from the original one in
an appropriate manner. By the above randomization, classical multivariate methods
can be carried out on a smaller part of the array. This fact becomes important when
our task is to discover the structure of large and evolving arrays, like genetic maps,
social, and communication networks. Special block structures behind large tables
are also discussed from the point of view of stability and spectra.

Keywords: convergence of contingency tables, testable contingency table pa-
rameters, block matrices, spectrum and stability

1 Introduction

In order to discover the structure of large rectangular arrays, e.g., microar-
rays, social, economic, or communication networks, classical methods of clus-
ter and correspondence analysis may not be carried out on the whole table
because of computational size limitations. In other situations, we want to
compare contingency tables of different sizes. For basic notions see Section 2.

For the above causes, convergence and distance of general normalized
arrays is introduced in Section 3. Roughly speaking, a squence of contigency
tables converges if their global structure becomes more and more similar
which fact will be formulated in terms of the convergence of homomorphism
densities of maps taking small 0-1 “probe” tables into the large one. The limit
object is a measurable, bounded function on [0, 1]2 which can be regarded
as generalization of graph limits, cf. Lovász and Szegedy (2006). As such a
convergent sequence of contingency tables is also a Cauchy sequence in the so-
called cut metric, we are able to define distance between contingency tables
of different sizes. Relation to the Aldous–Hoover Representation Theorem
(see Diaconis and Janson (2008)) is also discussed.

In Section 4, testable contingency table parameters are defined. In fact,
they are statistics that can be consistently estimated based on a fairly large
sample. Most parameters based on spectral and balanced classification prop-
erties of the table are testable. Hence, classical methods of variance, factor,
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or cluster analysis can be carried out on a smaller part of the table, obtained
by an appropriate random selection of the rows and columns.

In Section 5, we generalize the famous Szemerédi’s Regularity Lemma
(see Frieze and Kannan (1999), Borgs et al. (2008)) to rectangular arrays. In
this form, the theorem states that any m × n rectangular array can be ap-
proximated by a matrix having a special block structure, where the number
of blocks does not depend on m and n, it merely depends on the accuracy
of the approximation. If the number of blocks is relatively small, both the
original and the (correspondence) transformed table will have as many struc-
tural singular values as the rank of the block matrix, see Bolla et al. (2010).
In the m = n, but not necessarily symmetric case, it is true for the number
of structural eigenvalues too, the real parts of which determine the stability
of the system, cf. May (1972), Érdi and Tóth (1990), Juhász (1996).

2 Preliminaries

Let C = Cm×n be a contingency table of row set RowC = {1, . . . ,m} and
column set ColC = {1, . . . , n}. The nonnegative, real entries cij ’s are inter-
actions between the rows and columns, and they are normalized such that
0 ≤ cij ≤ 1. Sometimes we have binary tables of entries 0 or 1. We may
assign positive weights α1, . . . , αm to the rows and β1, . . . , βn to the columns
expressing individual importance of the categories embodied by the rows and
columns. (In correspondence analysis, these are the row- and column-sums.)
A contingency table is called simple if all the row- and column-weights are
equal to 1. Assume that C does not contain identically zero rows or columns,
moreover C is dense in the sense that the number of nonzero entries is compa-
rable with mn. Let C denote the set of such tables (with any natural numbers
m and n).

Consider a simple binary table Fa×b and maps Φ : RowF → RowC ,
Ψ : ColF → ColC ; further

αΦ :=
a∏

i=1

αΦ(i), βΨ :=
b∏

j=1

βΨ(j), αC :=
m∑

i=1

αi, βC :=
n∑

j=1

βj .

Definition 1. The F → C homomorphism density is

t(F,C) =
1

(αC)a(βC)b

∑
Φ,Ψ

αΦβΨ

∏
fij=1

cΦ(i)Ψ(j).

If C is simple, then t(F,C) = 1
manb

∑
Φ,Ψ

∏
fij=1 cΦ(i)Ψ(j). In addition, if

C is binary too, then t(F,C) is the probability that a random map F → C
is a homomorphism (preserves the 1’s). The maps Φ and Ψ correspond to
sampling a rows and b columns out of RowC and ColC with replacement, re-
spectively. In case of simple C it means uniform sampling, otherwise the rows
and columns are selected with probabilities proportional to their weights.
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To sampling without replacement, injective maps Φ, Ψ correspond.

Definition 2. The injective and induced homomorphism densities of F → C
are

tinj(F,C) =
1

(α)aa!(β)bb!

∑
Φ,Ψ inj.

αΦβΨ

∏
fij=1

cΦ(i)Ψ(j) and

tind(F,C) =
1

(α)aa!(β)bb!

∑
Φ,Ψ inj.

αΦβΨ

∏
fij=1

cΦ(i)Ψ(j)

∏
fij=0

(1− cΦ(i)Ψ(j)),

where (α)a and (β)b denote the ath and bth elementary symmetric polyno-
mials of α1, . . . , αm and β1, . . . , βn, respectively.

For simple C, (α)a =
(
m
a

)
and (β)b =

(
n
b

)
. Clearly, tinj(F,C) and tind(F,C)

are zeroes if a ≥ m or b ≥ n. Typically, a and b are much smaller than m and
n. As most maps into a large table are injective, t(F,C) and tinj(F,C) are
very close to each other. Namely, for simple C, |t(F,C)− tinj(F,C)| ≤ ab

m+n
that tends to zero for fixed a and b as m,n → ∞. For not simple C the
above difference also tends to zero if we assume that there are not dominant
rows and columns in C in the sense that maxi

αi

αC
→ 0 and maxj

βj

βC
→ 0 as

m →∞ and n →∞, respectively.
The following simple binary random table ξ(a× b, C) will play an impor-

tant role in proving the theorems of Section 4. Select a rows and b columns
of C with replacement, with probabilities αi/αC (i = 1, . . . ,m) and βj/βC

(j = 1, . . . , n), respectively. If the ith row and jth column of C are selected,
they will be connected by 1 with probability cij and 0, otherwise, indepen-
dently of the other selected row–column pairs, conditioned on the selection
of the rows and columns. For large m and n, P(ξ(a× b, C) = F ) is very close
to tind(F,C) that is reminiscent of a likelihood function.

3 Convergence of contingency tables

Definition 3. We say that the sequence (Cm×n) of contingency tables is
convergent if the sequence t(F,Cm×n) converges for any simple binary table
F as m,n →∞.

In view of Section 2, the convergence of t(F,Cm×n) is equivalent to the
convergence of tinj(F,Cm×n) and tind(F,Cm×n), as well. The convergence
means that the tables Cm×n become more and more similar in small details
as they are probed by smaller 0-1 tables (m,n →∞).

The limit object is a measurable function U : [0, 1]2 → [0, 1] and we call it
contingon. In the m = n and symmetric case, C can be regarded as the weight
matrix of an edge- and node-weighted graph (the row-weights are equal to
the column-weights, loops are possible) and the limit object was introduced
as graphon, see Lovász and Szegedy (2006). The step-function contingon
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UC is assigned to C in the following way: the sides of the unit square are
divided into intervals I1, . . . , Im and J1, . . . , Jn of lengths α1/αC , . . . , αm/αC

and β1/βC , . . . , βn/βC , respectively; then over the rectangle Ii×Jj the step-
function takes on the value cij .

In fact, the above convergence of contingency tables can be formulated in
terms of a special distance. First we define it for contingons.

Definition 4. The cut distance between the contingons U and V is

δ�(U, V ) = inf
µ,ν

‖U − V µ,ν‖� (1)

where the cut norm of the contingon U is defined by

‖U‖� = sup
S,T⊂[0,1]

∣∣∣∣∫∫
S×T

U(x, y) dx dy

∣∣∣∣ ,

and the infimum in (1) is taken over all measure preserving bijections µ, ν :
[0, 1] → [0, 1], while V µ,ν denotes the transformed V after performing the
measure preserving bijections µ and ν on the sides of the unit square, respec-
tively.

An equivalence relation is defined over the set of contingons: two contin-
gons belong to the same class if they can be transformed into each other by
measure preserving map, i.e., their cut distance is zero. In the sequel, we con-
sider contingons modulo measure preserving maps, and under contingon we
understand the whole equivalence class. By a theorem of Borgs et al. (2008),
the equivalence classes form a compact metric space with the δ� metric.

Definition 5. The cut distance between the contingency tables C,C ′ ∈ C is

δ�(C,C ′) = δ�(UC , UC′).

By the above remarks, the distance of C and C ′ is indifferent to permuta-
tions of the rows or columns of C and C ′. In the special case when C and C ′

are of the same size, δ�(C,C ′) is 1
mn times the usual cut distance of matrices,

cf. Frieze and Kannan (1999).
The following reversible relation between convergent contingency table

sequences and contingons also holds, as a rectangular analogue of a theorem
of Borgs et al. (2008).

Theorem 1. For any convergent sequence (Cm×n) ⊂ C there exists a con-
tingon such that δ�(UCm×n

, U) → 0 as m,n → ∞. Conversely, any contin-
gon can be obtained as the limit of a sequence of contingency tables in C.
The limit of a convergent contingency table sequence is essentially unique:
if Cm×n → U , then also Cm×n → U ′ for precisely those contingons U ′ for
which δ�(U,U ′) = 0.
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It also follows that a sequence of contingency tables in C is convergent if, and
only if it is a Cauchy sequence in the metric δ�.

A simple binary random a × b table ξ(a × b, U) can also be randomized
based on the contingon U in the following way. Let X1, . . . , Xa and Y1, . . . , Yb

be i.i.d., uniformly distributed random numbers on [0,1]. The entries of ξ(a×
b, U) are indepenent Bernoully random variables, namely the entry in the ith
row and jth column is 1 with probability U(Xi, Yj) and 0, otherwise. It is
easy to see that the distribution of the previously defined ξ(a×b, C) and that
of ξ(a× b, UC) is the same. Further, δ�(Cm×n, ξ(a× b, Cm×n)) tends to 0 in
probability, for fixed a and b as m,n →∞. This fact also plays an important
role in proving the theorems of Section 4.

Note, that in the above way, we can as well randomize an infinite simple
binary table ξ(∞×∞, U) out of the contingon U by generating countably
infinitely many i.i.d. uniform random numbers on [0,1]. The distribution of
the infinite binary array ξ(∞ × ∞, U) is denoted by PU . Because of the
symmetry of the construction, this is an exchangeable array in the sense that
the joint distribution of its entries is invariant under permutations of the
rows and colums. Moreover, any exchangeable binary array is a mixture of
such PU ’s. More precisely, the Aldous–Hoover Representation Theorem (see
Diaconis and Janson (2008)) states that for every infinite exchangeable binary
array ξ there is a probability distribution µ (over the contingons) such that
P(ξ ∈ A) =

∫
PU (A)µ(dU).

4 Testable contingency table parameters

A function f : C → R is called a contingency table parameter if it is invariant
under isomorphism and scaling of the rows/columns. In fact, it is a statistic
evaluated on the table, and hence, we are interested in contingency table
parameters that are not sensitive to minor changes in the entries of the table.

Definition 6. A contingency table parameter f is testable if for every ε > 0
there are positive integers a and b such that if the row- and column-weights
of C satisfy

max
i

αi

αC
≤ 1

a
, max

j

βj

βC
≤ 1

b
, (2)

then
P(|f(C)− f(ξ(a× b, C))| > ε) ≤ ε.

Consequently, such a contingency table parameter can be consistently esti-
mated based on a fairly large sample. Now, we introduce some equivalent
statements of the testability, indicating that a testable parameter depends
continuously on the whole table. This is the generalization of a theorem of
Borgs et al. (2008) applicable to simple graphs.

Theorem 2. For a testable contingency table parameter f the following are
equivalent:
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• For every ε > 0 there are positive integers a and b such that for every
contingency table C ∈ C satisfying the condition (2),

|f(C)− E(f(ξ(a× b, C)))| ≤ ε.

• For every convergent sequence (Cm×n) of contingency tables with no dom-
inant row- or columnn-weights, f(Cm×n) is also convergent (m,n →∞).

• f is continuous in the cut distance.

For example, in case of simple binary tables the singular spectrum is
testable, as Cm×n can be regarded as part of the adjacency matrix of a
bipartite graph on m + n vertices, where RowC and ColC are the two in-
dependent vertex sets; further, the ith vertex of RowC and the jth vertex
of ColC are connected by an edge if and only if cij = 1. The non-zero real
eigenvalues of the symmetric (m + n) × (m + n) adjacency matrix of this
bipartite graph are the numbers ±s1, . . . ,±sr, where s1, . . . , sr are the non-
zero singular values of C, and r ≤ min{m,m} is the rank of C. Consequently,
the convergence of adjacency spectra implies the convergence of the singular
spectra. Therefore, by Theorem 2, any property of a large contingency table
based on its singular value decomposition (e.g., correspondence decomposi-
tion) can be concluded from a smaller part of it. In Section 5, testability of
some balanced classification properties is discussed.

5 Homogeneous partitions, spectra, and stability

Now, we shall prove that special blown up tables burdened with a general
kind of noise are convergent.

Definition 7. The m × n random matrix E is a noise matrix if its entries
are independent, uniformly bounded random variables of zero expectation.

Theorem 3. The cut norm of any sequence (Em×n) of noise matrices tends
to zero as m,n →∞, almost surely.

Definition 8. The m × n real matrix B is a blown up matrix, if there is
an a × b so-called pattern matrix P with entries 0 ≤ pij ≤ 1, and there
are positive integers m1, . . . ,ma with

∑a
i=1 mi = m and n1, . . . , nb with∑b

i=1 ni = n, such that the matrix B, after rearranging its rows and columns,
can be divided into a× b blocks, where block (i, j) is an mi×nj matrix with
entries all equal to pij (1 ≤ i ≤ a, 1 ≤ j ≤ b).

Let us fix the matrix Pa×b, blow it up to obtain matrix Bm×n, and let
Am×n = B + E, where Em×n is a noise matrix. If the block sizes grow
proportionally, the following almost sure statements are proved in Bolla et.
al (2010): the noisy matrix A has as many structural (protruding) singular
values of order

√
mn as the rank of the pattern matrix, all the other singular
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values are of order
√

m + n; further, by representing the rows and columns
by means of the singular vector pairs corresponding to the structural singular
values, the a- and b-variances of the representatives tend to 0 as m,n →∞.
Conversely, in the presence of structural singular values, with some additional
conditions for the representatives, the block structure can be recovered.

Theorem 4. Let the block sizes of the blown up matrix Bm×n are m1, . . . ,ma

horizontally, and n1, . . . , nb vertically (
∑a

i=1 mi = m and
∑b

j=1 nj = n). Let
Am×n := B +E and m,n →∞ is such a way that mi/m → ri (i = 1, . . . , a),
nj/n → qj (j = 1, . . . , b), where ri’s and qj’s are fixed ratios. Under these
conditions, the “noisy” sequence (Am×n) converges almost surely.

In many applications we are looking for clusters of the rows and columns
of a rectangular array such that the the densities within the cross-products of
the clusters be homogeneous. E.g., in microarray analysis we are looking for
clusters of genes and conditions such that genes of the same cluster equally
influence conditions of the same cluster. The following theorem ensures the
existence of such a structure with possibly many clusters. However, the num-
ber of clusters does not depend on the size of the array, it merely depends on
the accuracy of the approximation.

Theorem 5. For every ε > 0 and Cm×n ∈ C there exists a blown up matrix
Bm×n of an a× b pattern matrix with a + b ≤ 41/ε2

(independently of m and
n) such that δ�(C,B) ≤ ε.

The theorem is a consequence of the Szemerédi’s Regularity Lemma (see
Frieze and Kannan (1999), Borgs et al. (2008)) and can be proved by embed-
ding C into the adjacency matrix of an edge-weighted bipartite graph. The
statement of the theorem is closely related to the testability of the following
contingency table parameter:

S2
a,b(C) = min

a∑
i=1

b∑
j=1

∑
k∈Ai

∑
l∈Bj

(ckl − c̄i,j)2, c̄i,j =
1

|Ai| · |Bj |
∑
k∈Ai

∑
l∈Bj

ckl,

where the minimum is taken over balanced a- and b-partitions A1, . . . , Aa

and B1, . . . , Bb of RowC and ColC , respectively; further, instead of ckl we
may take αkβlckl in the row- and column-weighted case, provided there are
no dominant rows/columns.

We applied our spectral partitioning algorithm for mixture of noisy data.
Figure 1 shows the original 300× 500 contingency table (a); the 1500× 2500
blown up table close to the limit, with rows and columns sorted with respect
to their cluster memberships obtained by k-means algorithm (b); eventually,
the colour illustration of the average densities of the blocks formed by SVD
(c).

The Gardner–Ashby’s connectance cn of a not necessarily symmetric ar-
ray An×n is the percentage of nonzero entries in the matrix, that is the ratio
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Fig. 1. noisy table (a); table close to the limit (b); approximation by SVD (c).

of actual row-column interactions to all possible ones in the network. In social
and ecological models, a random array An×n of independent entries is con-
sidered. Suppose that the entries have symmetric distribution (consequently,
zero expectation) and common variance σ2

n, where σn is called average inter-
action strength. The stability of the system is characterized by the stability
of the equilibrium solution 0 of the differential equation dx/dt = An×nx
(sometimes this is achieved by linearization techniques in the neighbourhood
of the equilibrium solution). Based on Wigner’s famous semicircle law, May
(1972) proves that the equilibrium solution is stable in the σ2

nncn < 1, and
unstable in the σ2

nncn > 1 case; further, the transition region between sta-
bility and instability becomes narrow as n → ∞. Hence, it seems that high
connectance and high interaction strength destroy stability, but only in this
simple model. If An×n is a block matrix, like a noisy matrix before, it has
some structural, possibly complex eigenvalues, cf. Juhász (1996). If all their
real parts are negative, the system is stable, see Érdi and Tóth (1990). In fact,
in many natural ecosystems and other networks the interactions are arranged
in blocks, at least an approximation of Theorem 5 works.
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