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a b s t r a c t

Asymptotic behavior of the singular value decomposition (SVD) of blown up matrices and
normalized blown up contingency tables exposed to random noise is investigated. It is
proved that such an m × n random matrix almost surely has a constant number of large
singular values (of order

√
mn), while the rest of the singular values are of order

√
m+ n

asm, n→∞. We prove almost sure properties for the corresponding isotropic subspaces
and for noisy correspondence matrices. An algorithm, applicable to two-way classification
of microarrays, is also given that finds the underlying block structure.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

A common problem in modern multivariate statistics is that of finding linear structures in large real-world data sets like
internet ormicroarraymeasurements. In Bolla [1], large symmetric blown upmatrices burdenedwith a so-called symmetric
Wigner noise were investigated. It was proved that such an n×nmatrix has some outstanding eigenvalues of order n, while
the majority of the eigenvalues are at most of order

√
n, with probability tending to 1 as n→∞. Our goal is to generalize

these results for the stability of SVD of large rectangular randommatrices and to apply them to the contingency tablematrix
of categorical variables in order to perform two-way clustering of these variables.
Throughout this paper so-called blownup structures burdenedwith a general kind of noise are investigated. Anm×n real

matrix is a blown upmatrix if after rearranging its rows and columns, it consists of blocks of the same entries. Such schemes
are sought for in microarray analysis, and they are called chessboard patterns; cf. Kluger et al. [2]. The problem is that, in
practical applications, withm and n large, we need sophisticated algorithms to find the convenient permutation of the rows
and columns producing the chessboard, not to mention the noise added to our observations. There may be measurement
errors that are very typical in microarray data. Therefore, we suppose that there is noise added to the entries independently.
Thenoisematrix has independent entries of zero expectationwhose distributions are usually not identical. The entries are

uniformly bounded, though this condition can be relaxed. In the proofs we use thewell-known fact that the spectral norm of
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anm× n noise matrix is of order
√
m+ nwith high probability ifm and n are large. If the entries of all matrices are defined

on thesame probability space (this is often the case when we take larger and larger samples from the same population),
a large deviation theorem of Alon et al. [3] — formulated for the eigenvalues of symmetric matrices — is applicable to get an
almost sure statement for the largest singular value of the noise. A stronger result is proved by Litvak et al. [4] for the whole
singular spectrum of rectangular matrices with special sub-Gaussian entries under the condition that m ≥ n with n→∞
in such a way thatm is proportional to n.
Our almost sure statements are formulated in terms of m, n → ∞ independently of each other under some growth

conditions imposed on the cluster sizes, while the number of clusters remains constant under the blow up. First Füredi and
Komlós [5] viewed a non-centered symmetricWigner-typematrix not merely a noise by introducing a shift that puts off the
edge of the spectrum.We generalize this setting to rectangularmatriceswith different shifts, and prove that the noisymatrix
will almost surely have outstanding singular values whose number is equal to the rank k of the blown upmatrix. In addition
we prove that the sum of the inner variances of the clusters, formed by means of the corresponding singular vector pairs, is
of order m+nmn , which tends to 0 almost surely asm, n→∞ under the growth conditions. This fact can be interpreted as the
good classification property of such a structure, irrespective of the noise. Thus, the coordinates of the singular vector pairs
belonging to the leading k singular values will be used to form k-dimensional representatives of the rows and columns,
and on this basis, we can find the row- and column-clusters, as well as the row- and column-memberships by using the
k-means algorithm. On the other hand, in the presence of some outstanding singular values, an explicit construction is also
given for finding a blown up structure in a noisy matrix.
This is the underlying linear structure only if the error matrix is comparable with the noise matrix in spectral norm.

Otherwise, there may be a nonlinear structure or chaos behind our data. These questions have little significance in the
classical multivariate analysis, as withm and n small, the whole singular spectrum, together with the singular vectors, is at
our disposal and statistical hypotheses can be tested. In contrast, in modern data mining we deal with enormous data sets.
On the basis of some leading singular values and corresponding singular vector pairs, merely approximate inferences can
be made due to the computational limitations and random errors.
In most applications the underlying matrix is a contingency table with non-negative integer entries that contain, for

example, counts for two categorical variables with m and n different categories. As the categories may be measured in
different units, a normalization is necessary. This normalization is achieved by dividing the entries by the square roots of
the corresponding row- and column-sums. In Kluger et al. [2], the authors use a similar transformation and find the clusters
by means of just one eigenvector or singular vector pair belonging usually to an outstanding singular value. We show that
the above transformation is identical to that of the correspondence analysis (cf. Greenacre [6]), and prove that there is a
remarkable gap between the k largest and the other singular values of the noisy correspondence matrix. This implies good
two-way classification properties of the row- and column-categories.
In microarray measurements the rows correspond to different genes, the columns correspond to different conditions

or samples, and the entries are the expression levels of a specific gene under a specific condition or in a specific sample.
Multivariate analysis and spectral decomposition of some similarity matrix derived from the microarray are frequently
used in the steadily developing literature on microarrays. But even if the SVD is applied, usually only one singular vector
pair is used for classification purposes, e.g., Higham et al. [7] and Liu et al. [8]. In Omberg et al. [9], the authors use a more
sophisticated algorithm for three-dimensional fixed (usually small) size arrays that result in traditional microarrays in their
special two-dimensionalmarginals. They introduce a higher order SVD but neither using noise and preprocessing of the data
nor investigating asymptotics is included.
The organization of the paper is as follows. In Section 2, we introduce the precise notions of a noise matrix, and a blown

up matrix; further the frequently used convergence facts and conditions are formulated together with a summary of the
relevant literature. In Section 3, it is proved that the m × n noisy matrix almost surely has k outstanding singular values
of order

√
mn. In Section 4, the distances of the corresponding isotropic subspaces are estimated, and this gives rise to a

two-way classification of the rows and columns of the noisy matrix with sum of inner variances O(m+nmn ), almost surely. In
Section 5, noisy correspondence matrices are investigated, while in Section 6 an explicit construction is given showing how
a blown up structure behind a real-life matrix with a few outstanding singular values and ‘‘well classifiable’’ corresponding
singular vector pairs can be found.

2. Preliminaries

First we introduce some notation and facts needed in the sequel.

Definition 1. The m × n real matrix B is a blown up matrix if there is an a × b so-called pattern matrix P with entries
0 ≤ pij ≤ 1, and there are positive integers m1, . . . ,ma with

∑a
i=1mi = m and n1, . . . , nb with

∑b
i=1 ni = n, such that the

matrix B, after rearranging its rows and columns, can be divided into a × b blocks, where block (i, j) is an mi × nj matrix
with entries equal to pij (1 ≤ i ≤ a, 1 ≤ j ≤ b).

Definition 2. Let wij (1 ≤ i ≤ m, 1 ≤ j ≤ n) be independent random variables defined on the same probability space.
E(wij) = 0 (∀i, j) and the wij’s are uniformly bounded (i.e., there is a constant K > 0, independently of m and n, such that
|wij| ≤ K , ∀i, j). Them× n real matrixW = (wij)1≤i≤m,1≤j≤n is called a noise matrix.
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Sometimes we use the notationWm×n to emphasize that the sequence of noise matrices is expanding. In fact, our results
are valid under relaxed conditions with a noise matrix of independent, sub-Gaussian entries and anypattern matrix of fixed
sizes and non-negative entries. The restriction that the entries of P take on values in the [0,1] interval is used merely in a
construction of Section 4, where pij’s are regarded as probabilities.
Our model is the following. Let us fix the matrix P, blow it up to obtain matrix B, and let A = B+W, whereW is a noise

matrix of appropriate size. We are interested in the properties of Awhenm1, . . . ,ma →∞ and n1, . . . , nb →∞, roughly
speaking, at the same rate. More precisely, we impose two different constraints on the growth of the sizesm and n, and the
growth rate of their components. The first one is required for all our reasonings, while the second one will be used in the
case of noisy correspondence matrices, only.

Definition 3. GC1 (Growth Condition 1). There exists a constant 0 < c < 1 such that mi/m ≥ c (i = 1, . . . , a) and there
exists a constant 0 < d < 1 such that ni/n ≥ d (i = 1, . . . , b).
GC2 (Growth Condition 2). There exist constants C ≥ 1, D ≥ 1, and C0 > 0, D0 > 0 such that m ≤ C0 · nC and n ≤ D0 · mD
hold for sufficiently largem and n.

Remark 4. GC1 implies that

c ≤
mk
mi
≤
1
c
and d ≤

n`
nj
≤
1
d

(1)

hold for any pair of indices k, i ∈ {1, . . . , a} and `, j ∈ {1, . . . , b}.

We want to establish some property Pm,n that holds for the m× n random matrix A = B+W (for short, Am×n) with m
and n large enough. In this paper Pm,n is mostly related to the SVD of Am×n.
Usually convergence in probability, that is

lim
m,n→∞

P
(
Am×n has Pm,n

)
= 1,

is considered. If in addition
∑
∞

m=1
∑
∞

n=1 pmn < ∞ also holds, where pmn = P
(
Am×n does not have Pm,n

)
, then — by the

Borel–Cantelli Lemma — the property Pm,n holds almost surely for Am×n. This means that if the independent entries of the
expanding sequence of noise and noisy matrices are defined on the same probability space, then

P
(
∃m0, n0 ∈ N such that form ≥ m0 and n ≥ n0Am×n has Pm,n

)
= 1.

Here we may assume GC1 or GC2 for the growth of m and n, while the uniform bound K , as defined in Definition 2, is kept
fixed.
As an easy consequence of Füredi and Komlós [5] for rectangular matrices, the spectral norm (i.e., the largest singular

value) of an m × n noise matrix is of order
√
m+ n in probability. Then a concentration theorem of Alon at al. [3], using

Talagrand’s technique [10], is applied for the (m+ n)× (m+ n) symmetric matrix

W̃ =
1
K

(
0 W
W T 0

)
,

whereW is them× n noise matrix and K is the uniform bound for the entries. Hence,

P (|s1(W)− E(s1(W))| > t) ≤ exp
(
−
(1− o(1))t2

32K 2

)
. (2)

The fact that s1(W) = ‖W‖ = O(
√
m+ n) in probability and inequality (2) together ensure that E(‖W‖) = O(

√
m+ n).

Hence, no matter how E(‖W‖) behaves when m → ∞ and n → ∞, the following rough estimate is valid: there exist
positive constants c1 and c2 which depend on the uniform bound K for the entries ofW, such that

P
(
‖W‖ > c1

√
m+ n

)
≤ exp(−c2(m+ n)). (3)

Remark 5. The exponential decay of the right-hand side of (3) implies, by the Borel–Cantelli Lemma, that the spectral norm
of a noise matrix Wm×n is of order

√
m+ n, almost surely. This observation suffices for us to get almost sure results in

Sections 3 and 4.

We note that the above result remains valid if the noise matrix consists of symmetrically distributed entries with some
special moment conditions, while m, n → ∞ (m ≥ n) with m/n kept near constant; see Litvak et al. [4]. We remark that
the latter growth condition is a special case of GC2 with C = D = 1 and C0D0 near 1. The authors prove that under the
above conditions not only the largest, but also the smallest singular value, and, hence, also the whole singular spectrum
are of order

√
mwith high probability. Therefore, the randommap embodied by the noise matrix becomes more and more

an ‘‘isomorphism’’ onto its image, if its sizes grow proportionally. The above conditions also imply the sharper estimate
‖W‖ = Θ(

√
m+ n) instead of ‖W‖ = O(

√
m+ n). Analogous results for different norms of random rectangular matrices

with complex, uniformly bounded entries were obtained by Meckes et al. [11] using Talagrand’s technique. However, we
included Remark 5 since it fits best into our framework.
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For square symmetric matrices, since Wigner’s famous semicircle law [12] is applicable to the mass spectrum, finer
results for the individual eigenvalues have been obtained in a steadily increasing number in the last 30 years. Hence, the
Tracy–Widom distribution of [13] came into existence for the distribution of the first few largest eigenvalues of Gaussian
orthogonal ensembles, while Soshnikov [14] proved the universality of random Wigner matrices in the sense that the
limiting distribution of their largest eigenvalues becomes independent of the entries’ distribution as their size tends to
infinity. Füredi and Komlós [5] perturbed the Wigner matrix with independent and uniformly bounded entries using a
fixed constant matrix and obtained that the limit distribution of the largest eigenvalue is normal. Recently, Féral and
Péché [15] determined the limiting behavior of the largest eigenvalue of a rank 1 deformation of aWigner matrix withmore
general entries normalized in such a way that the perturbation is comparable to the perturbed matrix in spectral norm. In
this framework, we use rectangular matrices and add more pronounced shifts that may differ from block to block. Other
generalizations for sample covariance (i.e., Wishart-type) matrices (with dependent entries) can be found in the statistics
literature, e.g., Johnstone [16], and Baik and Silverstein [17]. The only common thing that this approach shares with our
setting is thatwithWhaving independentGaussian or sub-Gaussian entries,WWT is aWishart-typematrixwith eigenvalues
being the squared singular values ofW. On this basis, inferences for the singular values of a rectangular noise matrix can be
made; cf. Litvak et al. [4] and Olkin [18].

3. Singular values of a noisy matrix

We now prove the main asymptotic results for the singular values of a noisy matrix.

Proposition 6. If GC1 holds, then all the non-zero singular values of the m× n blown up matrix B are of order
√
mn.

Proof. As there are at most a and b linearly independent rows and linearly independent columns in B, respectively, the rank
r of the matrix B cannot exceed min{a, b}. Let s1 ≥ s2 ≥ · · · ≥ sr > 0 be the positive singular values of B. Let vk ∈ Rm,
uk ∈ Rn be a singular vector pair corresponding to sk, k = 1, . . . , r . Without loss of generality, v1, . . . , vr and u1, . . . ,ur
can be unit-norm, pairwise orthogonal vectors in Rm and Rn, respectively.
For the subsequent calculations we drop the subscript k, and v, u denotes a singular vector pair corresponding to the

singular value s > 0 of the blown up matrix B, ‖v‖ = ‖u‖ = 1. It is easy to see that they have piecewise constant
structures: v has mi coordinates equal to v(i) (i = 1, . . . , a) and u has nj coordinates equal to u(j) (j = 1, . . . , b). Then,
with these coordinates the singular value–singular vector equation

Bu = s · v (4)

has the form

b∑
j=1

njpiju(j) = s · v(i) (i = 1, . . . , a). (5)

With the notation

ũ = (u(1), . . . , u(a))T , ṽ = (v(1), . . . , v(b))T ,
Dm = diag (m1, . . . ,ma), Dn = diag (n1, . . . , nb)

the equations in (5) can be written as

PDnũ = s · ṽ.

Introducing the following transformations of ũ and ṽ:

w = D1/2n ũ, z = D1/2m ṽ, (6)

the equation is equivalent to

D1/2m PD1/2n w = s · z. (7)

Applying the transformation (6) for the ũk, ṽk pairs obtained from the uk, vk pairs (k = 1, . . . , r), orthonormal systems in
Ra and Rb are obtained:

wkT ·w` =

b∑
j=1

njuk(j)u`(j) = δk` and zkT · z` =
a∑
i=1

mivk(i)v`(i) = δk`.

Consequently, zk,wk is a singular vector pair corresponding to singular value sk of the a×bmatrixD1/2m PD1/2n (k = 1, . . . , r).
With the shrinking

D̃m =
1
m

Dm, D̃n =
1
n
Dn
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an equivalent form of (7) is

D̃
1/2
m PD̃

1/2
n w =

s
√
mn
· z,

that is the a×bmatrix D̃
1/2
m PD̃

1/2
n has non-zero singular values sk√

mn with the same singular vector pairs zk,wk (k = 1, . . . , r).
If the sk’s are not distinct numbers, the singular vector pairs corresponding to a multiple singular value are not unique, but
still they can be obtained from the SVD of the shrunken matrix D̃

1/2
m PD̃

1/2
n .

Now we want to establish relations between the singular values of P and D̃
1/2
m PD̃

1/2
n . Let sk(Q) denote the kth-largest

singular value of a matrix Q. By the Courant–Fischer–Weyl minimax principle (cf. [19, p. 75])

sk(Q) = max
dimH=k

min
x∈H

‖Qx‖
‖x‖

.

Since we are interested only in the first r singular values, where r = rank (B) = rank (D̃
1/2
m PD̃

1/2
n ), it is sufficient to consider

vectors x for which D̃
1/2
m PD̃

1/2
n x 6= 0. Therefore with k ∈ {1, . . . , r} and an arbitrary k-dimensional subspace H ⊂ Rb one

can write

min
x∈H

‖D̃
1/2
m PD̃

1/2
n x‖

‖x‖
= min

x∈H

‖D̃
1/2
m PD̃

1/2
n x‖

‖PD̃
1/2
n x‖

·
‖PD̃

1/2
n x‖

‖D̃
1/2
n x‖

·
‖D̃
1/2
n x‖
‖x‖

≥ sa(D̃
1/2
m ) ·min

x∈H

‖PD̃
1/2
n x‖

‖D̃
1/2
n x‖

· sb(D̃
1/2
n ) ≥

√
cd ·min

x∈H

‖PD̃
1/2
n x‖

‖D̃
1/2
n x‖

,

with c, d of GC1. Now taking the maximum for all possible k-dimensional subspaces H we obtain that sk(D̃
1/2
m PD̃

1/2
n ) ≥

√
cd · sk(P) > 0. On the other hand,

sk(D̃
1/2
m PD̃

1/2
n ) ≤ ‖D̃

1/2
m PD̃

1/2
n ‖ ≤ ‖D̃

1/2
m ‖ · ‖P‖ · ‖D̃

1/2
n ‖ ≤ ‖P‖ ≤

√
ab.

These inequalities imply that sk(D̃
1/2
m PD̃

1/2
n ) is a non-zero constant, and because of sk(D̃

1/2
m PD̃

1/2
n ) =

sk√
mn we obtain that

s1, . . . , sr = Θ(
√
mn). �

Theorem 7. Let A = B+W be an m× n random matrix, where B is a blown up matrix with positive singular values s1, . . . , sr
andW is a noise matrix. Then, under GC1, the matrix A almost surely has r singular values z1, . . . , zr , such that

|zi − si| = O(
√
m+ n), i = 1, . . . , r

and for the other singular values almost surely

zj = O(
√
m+ n), j = r + 1, . . . ,min{m, n}.

Proof. The statement follows from the analog of Weyl’s perturbation theorem for singular values of rectangular matrices
(see [19, p. 99]) and from Remark 5. If si(A) and si(B) denote the ith-largest singular values of the matrix in the argument
then for the difference of the corresponding pairs

|si(A)− si(B)| ≤ max
i
si(W) = ‖W‖, i = 1, . . . ,min{m, n}.

By Remark 5, ‖W‖ is of order
√
m+ n almost surely; that finishes the proof. �

Corollary 8. With the notation

ε := ‖W‖ = O(
√
m+ n) and ∆ := min

1≤i≤r
si(B) = min

1≤i≤r
si = Θ(

√
mn) (8)

there is a spectral gap of size∆− 2ε between the r largest and the other singular values of the perturbed matrix A, and this gap
is significantly larger than ε.

Under the growth conditions of Litvak et al. [4], ε = Θ(
√
m+ n) is valid, indicating that the error cannot be decreased.

4. Classification via singular vector pairs

In this section perturbation results for the singular vector pairs corresponding to the leading singular values are
established. To this end, with the help of Theorem 7, we estimate the distances between the corresponding right- and left-
hand side eigenspaces (isotropic subspaces) of the matrices B and A = B+W. Let v1, . . . , vm ∈ Rm and u1, . . . ,un ∈ Rn be
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orthonormal left- and right-hand side singular vectors of B,
Bui = si · vi (i = 1, . . . , r) and Buj = 0 (j = r + 1, . . . , n).

Let us also denote the unit-norm, pairwise orthogonal left- and right-hand side singular vectors corresponding to the r
outstanding singular values z1, . . . , zr of A by y1, . . . , yr ∈ Rm and x1, . . . , xr ∈ Rn, respectively. Then Axi = zi · yi (i =
1, . . . , r). Let

F := Span {v1, . . . , vr} and G := Span {u1, . . . ,ur}
denote the spanned linear subspaces inRm andRn, respectively; further, let dist(y, F)denote the Euclideandistance between
the vector y and the subspace F .

Proposition 9. With the above notation, under GC1, the following estimate holds almost surely:
r∑
i=1

dist2(yi, F) ≤ r
ε2

(∆− ε)2
= O

(
m+ n
mn

)
(9)

and analogously,

r∑
i=1

dist2(xi,G) ≤ r
ε2

(∆− ε)2
= O

(
m+ n
mn

)
. (10)

Proof. Let us choose one of the right-hand side singular vectors x1, . . . , xr of A = B +W and denote it simply by x with
corresponding singular value z. We shall estimate the distance between x and G, and similarly that between y = Ax/z and
F . For this purpose we expand x and y in the orthonormal bases u1, . . . ,un and v1, . . . , vm, respectively:

x =
n∑
i=1

tiui and y =
m∑
i=1

livi.

Then

Ax = (B+W)x =
r∑
i=1

tisivi +Wx, (11)

and, on the other hand,

Ax = zy =
m∑
i=1

zlivi. (12)

Equating the right-hand sides of (11) and (12) we obtain
r∑
i=1

(zli − tisi)vi +
m∑

i=r+1

zlivi = Wx.

Applying the Pythagorean Theorem,

r∑
i=1

(zli − tisi)2 + z2
m∑

i=r+1

l2i = ‖Wx‖2 ≤ ε2, (13)

because ‖x‖ = 1 and ‖W‖ = ε.
As z ≥ ∆− ε holds almost surely by Theorem 7,

dist2(y, F) =
m∑

i=r+1

l2i ≤
ε2

z2
≤

ε2

(∆− ε)2
.

The order of the above estimate follows from the order of ε and∆ of (8):

dist2(y, F) = O

(
m+ n
mn

)
(14)

almost surely. Applying (14) for the left-hand side singular vectors y1, . . . , yr , by the definition of an almost sure property,

P
{
∃m0i, n0i ∈ N such that form ≥ m0i and n ≥ n0i: dist2(yi, F) ≤ ε

2/(∆− ε)2
}
= 1

for i = 1, . . . , r . Hence,

P
{
∃m0, n0 ∈ N such that form ≥ m0 and n ≥ n0: dist2(yi, F) ≤ ε

2/(∆− ε)2, i = 1, . . . , r
}
= 1,
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and consequently,

P

{
∃m0, n0 ∈ N such that form ≥ m0 and n ≥ n0:

r∑
i=1

dist2(yi, F) ≤ rε
2/(∆− ε)2

}
= 1

also holds, and this finishes the proof of the first statement.
The estimate for the squared distance between G and a right-hand side singular vector x of A follows in the same way

starting with ATy = z · x and using the fact that AT has the same singular values as A. �

By Proposition 9, the individual distances between the original and the perturbed subspaces and also the sum of these
distances tend to zero almost surely asm, n→∞.
Now let A be a microarray onm genes and n conditions, with aij denoting the expression level of gene i under condition

j. We suppose that A is a noisy randommatrix obtained by adding a noise matrixW to the blown up matrix B. Let us denote
by A1, . . . , Aa the partition of the genes and by B1, . . . , Bb the partition of the conditions with respect to the blow up (they
can also be thought of as clusters of genes and conditions).
Proposition 9 also implies the well-clustering property of the representatives of the genes and conditions in the

following representation. Let Y be the m × r matrix containing the left-hand side singular vectors y1, . . . , yr of A in
its columns. Similarly, let X be the n × r matrix containing the right-hand side singular vectors x1, . . . , xr of A in
its columns. The r-dimensional representatives of the genes are the row vectors of Y: y1, . . . , ym ∈ Rr , while the
r-dimensional representatives of the conditions are the row vectors of X: x1, . . . , xn ∈ Rr . Let S2a (Y) denote the a-variance,
introduced in [20], of the genes’ representatives

S2a (Y) = min
{A′1,...,A

′
a}

a∑
i=1

∑
j∈A′i

‖yj − ȳi‖2, where ȳi =
1
mi

∑
j∈A′i

yj,

while S2b (X) denotes the b-variance of the conditions’ representatives

S2b (X) = min
{B′1,...,B

′
b}

b∑
i=1

∑
j∈B′i

‖xj − x̄i‖2, where x̄i =
1
ni

∑
j∈B′i

xj,

the partitions {A′1, . . . , A
′
a} and {B

′

1, . . . , B
′

b} varying over all a- and b-partitions of the genes and conditions, respectively.

Theorem 10. With the above notation, under GC1, for the a- and b-variances of the representation of the microarray A the
relations

S2a (Y) = O

(
m+ n
mn

)
and S2b (X) = O

(
m+ n
mn

)
hold almost surely.
Proof. By the proof of Theorem 3 of [20] it can be easily seen that S2a (Y) ≤

∑a
i=1
∑
j∈Ai
‖yj − ȳi‖2 and S2b (X) ≤∑b

i=1
∑
j∈Bi
‖xj − x̄i‖2, the right-hand sides being equal to the left-hand sides of (9) and (10), respectively; therefore they

are also of order m+nmn . �

Hence, the addition of any kind of a noise matrix to a rectangular matrix that has a blown up structure Bwill not change
the order of the outstanding singular values, and the block structure of B can be reconstructed from the representatives of
the row and column items of the noisy matrix A.
With an appropriate noise matrix, we can achieve that thematrix B+W in its (i, j)-th block contains 1’s with probability

pij, and 0’s otherwise. That is, for i = 1, . . . , a, j = 1, . . . , b, l ∈ Ai, k ∈ Bj, let

wlk :=

{
1− pij, with probability pij
−pij with probability 1− pij

(15)

be independent random variables. ThisW satisfies the conditions of Definition 2 with entries uniformly bounded by 1 in
absolute value andof zero expectation. The noisymatrixAbecomes a 0–1matrix that can be regarded as the incidencematrix
of a hypergraph on m vertices and n edges. (Vertices correspond to the genes and edges correspond to the conditions. The
incidence relation depends on whether a specific gene is expressed or not under a specific condition.)
By the choice (15) ofW, vertices of the vertex set Ai appear in edges of the edge set Bj with probability pij (set i of genes

equally influences set j of conditions, like the chessboard pattern of [2]). It is a generalization of the classical Erdős–Rényi
model [21] for random hypergraphs and for several blocks. The question of how such a chessboard pattern behind a random
(especially 0–1) matrix can be found under specific conditions is discussed in Section 6.

5. Perturbation results for correspondence matrices

Now the pattern matrix P contains arbitrary non-negative entries, and so does the blown up matrix B. Let us suppose
that there are no identically zero rows or columns. We perform the correspondence transformation described below on B.
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We are interested in the order of singular values of matrix A = B +W when the same correspondence transformation is
applied to it. To this end, we introduce the following notation:

DBrow = diag (dBrow 1, . . . , dBrowm) := diag

(
n∑
j=1

b1j, . . . ,
n∑
j=1

bmj

)

DBcol = diag (dBcol 1, . . . , dBcol n) := diag

(
m∑
i=1

bi1, . . . ,
m∑
i=1

bin

)

DArow = diag (dArow 1, . . . , dArowm) := diag

(
n∑
j=1

a1j, . . . ,
n∑
j=1

amj

)

DAcol = diag (dAcol 1, . . . , dAcol n) := diag

(
m∑
i=1

ai1, . . . ,
m∑
i=1

ain

)
.

Further, set

Bcorr := D−1/2Brow BD−1/2Bcol and Acorr := D−1/2Arow AD−1/2Acol

for the transformed matrices obtained from B and A while carrying out correspondence analysis on B and the same
correspondence transformation on A. It is well known [6] that the leading singular value of Bcorr is equal to 1 and the
multiplicity of 1 as a singular value coincides with the number of irreducible blocks in B. Let si denote a non-zero singular
value of Bcorr with unit-norm singular vector pair vi, ui. With the transformations

vcorr i := D−1/2Brow vi and ucorr i := D−1/2Bcol ui
the so-called correspondence vector pairs are obtained. If the coordinates vcorr i(j), ucorr i(`) of such a pair are regarded
as possible values of two discrete random variables βi and αi (often called the ith correspondence factor pair) with the
prescribedmarginals, then, as in canonical analysis, their correlation is si, and this is the largest possible correlation under the
condition that they are uncorrelatedwith the first i−1 correspondence factorswithin their own sets (i = 2, . . . ,min{m, n}).
If s1 = 1 is a single singular value, then vcorr 1 and ucorr 1 are the all 1 vectors and the corresponding β1, α1 pair is regarded

as a trivial correspondence factor pair. This corresponds to the general case. Keeping k ≤ rank (Bcorr) = rank (B) = rank (P)
singular valueswith the coordinates of the corresponding k−1 non-trivial correspondence factor pairs, the following (k−1)-
dimensional representation of the jth and `th categories of the two underlying discrete variables is obtained:

vjcorr := (vcorr 2(j), . . . , vcorr k(j)) and u`corr := (ucorr 2(`), . . . , ucorr k(`)) .

This representation has the following optimum properties: the closeness of categories of the same variable reflects
the similarity between them, while the closeness of categories of different variables reflects their frequent simultaneous
occurrence. For example, B being a microarray, the representatives of similar function genes as well as representatives of
similar conditions are close to each other; also, representatives of genes that are responsible for a given condition are close
to the representatives of those conditions. Now we prove the following.

Proposition 11. Given the blown up matrix B, under GC1 there exists a constant δ ∈ (0, 1), independent of m and n, such that
all the r non-zero singular values of Bcorr are in the interval [δ, 1], where r = rank (B) = rank (P).

Proof. It is easy to see that Bcorr is the blown up matrix of the a× b pattern matrix P̃with entries

p̃ij =
pij√(

b∑̀
=1
pi`n`

)(
a∑
k=1
pkjmk

) .
Following the considerations of the proof of Proposition 6, the blown up matrix Bcorr has exactly r = rank (P) = rank (P̃)
non-zero singular values that are the singular values of the a× bmatrix P′ = D1/2m P̃D1/2n with entries

p′ij =
pij
√
mi
√
nj√(

b∑̀
=1
pi`n`

)(
a∑
k=1
pkjmk

) = pij√(
b∑̀
=1
pi`
n`
nj

)(
a∑
k=1
pkj
mk
mi

) .
Since the matrix P contains no identically zero rows or columns, the matrix P′ varies on a compact set of a × b matrices
determined by the inequalities (1). The range of the non-zero singular values depends continuously on the matrix, which
does not depend on m and n. Therefore, the minimum non-zero singular value does not depend on m or n. Because the
largest singular value is 1, this finishes the proof. �
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Theorem 12. Under GC1 and GC2, there exists a positive number δ (independent of m and n) such that for every 0 < τ < 1/2
the following statement holds almost surely: the r largest singular values of Acorr are in the interval [δ − max{n−τ ,m−τ }, 1 +
max{n−τ ,m−τ }], while all the others are at most max{n−τ ,m−τ }.

Proof. First notice that

Acorr = D−1/2Arow AD−1/2Acol = D−1/2Arow BD−1/2Acol + D−1/2ArowWD−1/2Acol . (16)

The entries of DBrow and those of DBcol are of orderΘ(n) andΘ(m), respectively. Now we prove that for every i = 1, . . . ,m
and j = 1, . . . , n, |dArow i− dBrow i| < n · n−τ and |dAcol j− dBcol j| < m ·m−τ hold almost surely. To this end, we use Chernoff’s
inequality for large deviations (cf. [1, Lemma 4.2]):

P
(
|dArow i − dBrow i| > n · n−τ

)
= P

(∣∣∣∣∣ n∑
j=1

wij

∣∣∣∣∣ > n1−τ
)

< exp

−
n2−2τ

2

(
Var

(
n∑
j=1
wij

)
+ Kn1−τ/3

)
 ≤ exp

{
−

n2−2τ

2(nσ 2 + Kn1−τ/3)

}

= exp
{
−

n1−2τ

2(σ 2 + Kn−τ/3)

}
(i = 1, . . . ,m),

where the constant K is the uniform bound for |wij|’s and σ 2 is the bound for their variances. By virtue of GC2 the following
estimate holds with some C0 > 0 and C ≥ 1 (constants of GC2) and large enough n:

P
(
|dArow i − dBrow i| > n1−τ for alli ∈ {1, . . . ,m}

)
≤ m · exp

{
−

n1−2τ

2(σ 2 + Kn−τ/3)

}
≤ C0 · nC · exp

{
−

n1−2τ

2(σ 2 + Kn−τ/3)

}
= exp

{
ln C0 + C ln n−

n1−2τ

2(σ 2 + Kn−τ/3)

}
. (17)

The estimation of probability

P
(
|dAcol j − dBcol j| > m1−τ for all j ∈ {1, . . . , n}

)
can be treated analogously (with D0 > 0 and D ≥ 1 of GC2). The right-hand side of (17) forms a convergent series; therefore

min
i∈{1,...,m}

|dArow i| = Θ(n), min
j∈{1,...,n}

|dAcol j| = Θ(m) (18)

hold almost surely.
Now it is straightforward to bound the norm of the second term of (16) by

‖D−1/2Arow ‖ · ‖W‖ · ‖D
−1/2
Acol ‖. (19)

As by Remark 5, ‖W‖ = O(
√
m+ n) holds almost surely, the quantity (19) is at most of order

√
m+n
mn almost surely. Hence,

it is almost surely less than max{n−τ ,m−τ }.
To estimate the norm of the first term of (16) let us write it in the form

D−1/2Arow BD−1/2Acol = D−1/2Brow BD−1/2Bcol +

[
D−1/2Arow − D−1/2Brow

]
BD−1/2Bcol +D

−1/2
Arow B

[
D−1/2Acol − D−1/2Bcol

]
. (20)

The first term is just Bcorr , so due to Proposition 11, we should prove only that the norms of both remainder terms are
almost surely less than max{n−τ ,m−τ }. These two terms have a similar appearance; therefore it is enough to estimate one
of them. For example, the second term can be bounded by

‖D−1/2Arow − D−1/2Brow ‖ · ‖B‖ · ‖D
−1/2
Bcol ‖. (21)

The estimation of the first factor in (21) is as follows:

‖D−1/2Arow − D−1/2Brow ‖ = max
i∈{1,...,m}

(
1

√
dArow i

−
1

√
dBrow i

)
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= max
i∈{1,...,m}

|dArow i − dBrow i|
√
dArow i · dBrow i(

√
dArow i +

√
dBrow i)

≤ max
i∈{1,...,m}

|dArow i − dBrow i|
√
dArow i · dBrow i

· max
i∈{1,...,m}

1
(
√
dArow i +

√
dBrow i)

. (22)

By relations (18),
√
dArow i · dBrowi = Θ(n) for any i = 1, . . . ,m, and hence,

|dArow i − dBrow i|
√
dArow i · dBrow i

≤ n−τ

almost surely; further maxi∈{1,...,m} 1
√
dArowi+

√
dBrowi
= Θ( 1√n ) almost surely.

Therefore the left-hand side of (22) can be estimated by n−τ−1/2 from above almost surely. For the further factors in (21)
we obtain ‖B‖ = Θ(

√
mn) (see Proposition 6), while ‖D−1/2Bcol ‖ = Θ(

1
√
m ) almost surely. These together imply that

n−τ−1/2 · n1/2m1/2 ·m−1/2 ≤ n−τ ≤ max{n−τ ,m−τ }.

This finishes the estimation of the first term in (16), and by Weyl’s perturbation theorem the proof, too. �

Remark 13. In the Gaussian case the large deviation principle can be replaced by the simple estimation of the Gaussian
probabilities with any κ > 0:

P

(∣∣∣∣∣1n
n∑
j=1

wij

∣∣∣∣∣ > κ

)
< min

(
1,

4σ

κ
√
2πn

exp
{
−
n
2σ 2

κ2
})
.

Setting κ = n−τ we get an estimate analogous to (17).

Suppose that the blown up matrix B is irreducible and its non-negative entries sum up to 1. This restriction does not
affect the result of the correspondence analysis, that is the SVD of the matrix Bcorr . Remember that the non-zero singular
values of Bcorr are the numbers 1 = s1 > s2 ≥ . . . ≥ sr > 0 with unit-norm singular vector pairs vi, ui having piecewise
constant structure (i = 1, . . . , r). Set

F := Span {v1, . . . , vr} and G := Span {u1, . . . ,ur}.

Let 0 < τ < 1/2 be arbitrary and ε := max{n−τ ,m−τ }. Let us also denote the unit-norm, pairwise orthogonal left- and
right-hand side singular vectors corresponding to the r singular values z1, . . . , zr ∈ [δ − ε, 1+ ε] of Acorr — guaranteed by
Theorem 12 under GC2 – by y1, . . . , yr ∈ Rm and x1, . . . , xr ∈ Rn, respectively.

Proposition 14. With the above notation, under GC1 and GC2 the following estimate holds almost surely for the distance between
yi and F:

dist(yi, F) ≤
ε

(δ − ε)
=

1
( δ
ε
− 1)

(i = 1, . . . , r) (23)

and analogously, for the distance between xi and G:

dist(xi,G) ≤
ε

(δ − ε)
=

1
( δ
ε
− 1)

(i = 1, . . . , r). (24)

Proof. Follow the method of proving Proposition 9 — under GC1 — with δ instead of ∆ and ε instead of ε. Here GC2 is
necessary only for Acorr to have r outstanding singular values. �

Remark 15. The left-hand sides of (23) and (24) are almost surely of order max{n−τ ,m−τ }, tending to zero as m, n → ∞
under GC1 and GC2.

Proposition 14 implies the well-clustering property of the representatives of the two discrete variables by means of the
noisy correspondence vector pairs

ycorr i := D−1/2Arow yi, xcorr i := D−1/2Acol xi (i = 1, . . . , r).

Let Ycorr denote the m × r matrix that contains the left-hand side vectors ycorr 1, . . . , ycorr r in its columns. Similarly, let
Xcorr denote the n × r matrix that contains the right-hand side vectors xcorr 1, . . . , xcorr r in its columns. The r-dimensional
representatives of α are the row vectors of Ycorr denoted by y1corr , . . . , y

m
corr ∈ Rr , while the r-dimensional representatives
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of β are the row vectors of Xcorr denoted by x1corr , . . . , x
n
corr ∈ Rr . With respect to the marginal distributions, let the a- and

b-variances of these representatives be defined by

S2a (Ycorr) = min
{A′1,...,A

′
a}

a∑
i=1

∑
j∈A′i

dArow j‖yjcorr − ȳicorr‖
2 ,

S2b (Xcorr) = min
{B′1,...,B

′
b}

b∑
i=1

∑
j∈B′i

dAcol j‖x(j)corr − x̄icorr‖
2,

where {A′1, . . . , A
′
a} and {B

′

1, . . . , B
′

b} are a- and b-partitions of the genes and conditions, respectively,

ȳicorr =
∑
j∈A′i

dArow jyjcorr and x̄icorr =
∑
j∈B′i

dAcol jxjcorr .

Theorem 16. With the above notation, under GC1 and GC2,

S2a (Ycorr) ≤
r

( δ
ε
− 1)2

and S2b (Xcorr) ≤
r

( δ
ε
− 1)2

hold almost surely, where ε = max{n−τ ,m−τ } with every 0 < τ < 1/2.

Proof. An easy calculation shows that

S2a (Ycorr) ≤
a∑
i=1

∑
j∈Ai

dArow j‖yjcorr − ȳicorr‖
2
=

r∑
i=1

dist2(yi, F),

S2b (Xcorr) ≤
b∑
i=1

∑
j∈Bi

dAcol j‖x(j)corr − x̄icorr‖
2
=

r∑
i=1

dist2(xi,G),

and hence the result of Proposition 14 can be used. �

Under GC1 and GC2 with m, n large enough, Theorem 16 implies that after performing correspondence analysis on the
noisymatrix A, the representation through the correspondence vectors belonging to Acorr will also reveal the block structure
behind A.

6. Recognizing the structure

Onemight wonder where the singular values of anm×nmatrix A = (aij) are located if a := maxi,j |aij| is independent of

m and n. On one hand, the maximum singular value cannot exceed O(
√
mn), as it is at most

√∑m
i=1
∑n
j=1 a

2
ij. On the other

hand, let Q be anm× n randommatrix with entries a or−a (independently of each other). Consider the spectral norm of all
such matrices and take the minimum of them: minQ∈{−a,+a}m×n ‖Q‖. This quantity measures the minimum linear structure
that a matrix of the same size andmagnitude as A can possess. As the Frobenius norm ofQ is a

√
mn, by virtue of inequalities

between spectral and Frobenius norms, the aboveminimum is at least a√
2

√
m+ n, which is exactly the order of the spectral

norm of a noise matrix.
In summary, an m × n random matrix – whose entries are independent and uniformly bounded – under very general

conditions has at least one singular value of order greater than
√
m+ n. Suppose there are k such singular values and the

representatives by means of the corresponding singular vector pairs can be well classified in the sense of Theorem 10 (cf.
the introduction to that theorem). Under these conditions we can reconstruct a blown up structure behind our matrix.

Theorem 17. Let Am×n be a sequence of m×nmatrices, where m and n tend to infinity. Assume that Am×n has exactly k singular
values of order greater than

√
m+ n (k is fixed). If there are integers a ≥ k and b ≥ k such that the a- and b-variances of

the row- and column-representatives are O(m+nmn ), then there is an explicit construction for a blown up matrix Bm×n such that
Am×n = Bm×n + Em×n, with ‖Em×n‖ = O(

√
m+ n).

Proof. In the sequel the subscriptsm and nwill be dropped. We shall speak in terms of microarrays (genes and conditions).
Let y1, . . . , yk ∈ Rm and x1, . . . , xk ∈ Rn denote the left- and right-hand side unit-norm singular vectors corresponding

to z1, . . . , zk, the singular values of A of order larger than
√
m+ n. The k-dimensional representatives of the genes and

conditions — that are row vectors of the m × k matrix Y = (y1, . . . , yk) and those of the n × k matrix X = (x1, . . . , xk),
respectively — by the condition of the theorem form a and b clusters in Rk, respectively, with sums of inner variances
O(m+nmn ). Reorder the rows and columns of A according to their respective cluster memberships. Denote by y

1, . . . , ym ∈ Rk

and x1, . . . , xn ∈ Rk the Euclidean representatives of the genes and conditions (the rows of the reordered Y and X), and
let ȳ1, . . . , ȳa ∈ Rk and x̄1, . . . , x̄b ∈ Rk denote the cluster centers, respectively. Now let us choose the following new
representation of the genes and conditions. The genes’ representatives are row vectors of them× kmatrix Ỹ such that the
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firstm1 rows of Ỹ are equal to ȳ1, the nextm2 rows to ȳ2, and so on; the lastma rows of Ỹ are equal to ȳa. And similarly, the
conditions’ representatives are row vectors of the n× kmatrix X̃ such that the first n1 rows of X̃ are equal to x̄1, and so on;
the last nb rows of X̃ are equal to x̄b.
By the considerations of Theorem 10 and the assumption for the clusters,

k∑
i=1

dist2(yi, F) = S
2
a (Y) = O

(
m+ n
mn

)
(25)

and
k∑
i=1

dist2(xi,G) = S2b (X) = O

(
m+ n
mn

)
(26)

hold respectively,where the k-dimensional subspace F ⊂ Rm is spanned by the columnvectors of Ỹ, while the k-dimensional
subspace G ⊂ Rn is spanned by the column vectors of X̃. We follow the construction given in [20] (see Proposition 2) of a
set v1, . . . , vk of orthonormal vectors within F and another set u1, . . . ,uk of orthonormal vectors within G such that

k∑
i=1

‖yi − vi‖2 = min
v′1,...,v

′
k

k∑
i=1

‖yi − v′i‖
2
≤ 2

k∑
i=1

dist2(yi, F) (27)

and
k∑
i=1

‖xi − ui‖2 = min
u′1,...,u

′
k

k∑
i=1

‖xi − u′i‖
2
≤ 2

k∑
i=1

dist2(xi,G) (28)

hold, where the minimum is taken over orthonormal sets of vectors v′1, . . . , v
′

k ∈ F and u′1, . . . ,u
′

k ∈ G, respectively. The
construction of the vectors v1, . . . , vk is as follows (u1, . . . ,uk can be constructed in the sameway). Let v′1, . . . , v

′

k ∈ F be an
arbitrary orthonormal system (obtained, e.g., by the Schmidt orthogonalization method). Let V′ = (v′1, . . . , v

′

k) be anm× k
matrix and

YTV′ = QSZT

be a SVD, where the matrix S contains the singular values of the k× kmatrix YTV′ in its main diagonal and zeros otherwise,
whileQ and Z are k×k orthogonalmatrices (containing the corresponding unit-norm singular vector pairs in their columns).
The orthogonal matrix R = ZQT will give the convenient orthogonal rotation of the vectors v′1, . . . , v

′

k. That is, the column
vectors of the matrix V = V′R form also an orthonormal set that is the desired set v1, . . . , vk.
Define the error terms ri and qi, respectively:

ri = yi − vi and qi = xi − ui (i = 1, . . . , k).

In view of (25)–(28),

k∑
i=1

‖ri‖2 = O

(
m+ n
mn

)
and

k∑
i=1

‖qi‖
2
= O

(
m+ n
mn

)
. (29)

Consider the following decomposition:

A =
k∑
i=1

ziyix
T
i +

min{m,n}∑
i=k+1

ziyix
T
i .

The spectral norm of the second term is at most of order
√
m+ n. Now consider the first term,

k∑
i=1

ziyix
T
i =

k∑
i=1

zi(vi + ri)(uTi + qTi ) =
k∑
i=1

ziviuTi +
k∑
i=1

ziviqTi +
k∑
i=1

ziriuTi +
k∑
i=1

ziriqTi . (30)

Since v1, . . . , vk and u1, . . . ,uk are unit vectors, the last three terms in (30) can be estimated by means of the relations

‖viuTi ‖ =
√
‖viuTi uiv

T
i ‖ = 1 (i = 1, . . . , k),

‖viqTi ‖ =
√
‖qivTi viq

T
i ‖ = ‖qi‖ (i = 1, . . . , k),

‖riuTi ‖ =
√
‖riuTi uir

T
i ‖ = ‖ri‖ (i = 1, . . . , k),

‖riqTi ‖ =
√
‖riqTi qir

T
i ‖ = ‖qi‖ · ‖ri‖ (i = 1, . . . , k).
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Taking into account that zi cannot exceedΘ(
√
mn) and k is fixed, due to (29) we get that the spectral norms of the last three

terms in (30) – for their finitely many subterms the triangle inequality is applicable – are at most of order
√
m+ n. Let B be

the first term, i.e.,

B =
k∑
i=1

ziviuTi .

Then ‖A− B‖ = O(
√
m+ n).

By definition, the vectors v1, . . . , vk and the vectors u1, . . . ,uk are in the subspaces F and G, respectively. Both spaces
consist of piecewise constant vectors; thus the matrix B is a blown up matrix containing a× b blocks. The noise matrix is

E =
k∑
i=1

ziviqTi +
k∑
i=1

ziriuTi +
k∑
i=1

ziriqTj +
min{m,n}∑
i=k+1

ziyix
T
i

which finishes the proof. �

Then, provided the conditions of Theorem 17 hold, by the construction given in the proof above, an algorithm can
be written that uses several SVD’s and produces the blown up matrix B. This B can be regarded as the best blown up
approximation of the microarray A. At the same time clusters of the genes and conditions are also obtained. More precisely,
first we conclude the clusters from the SVD of A, rearrange the rows and columns of A accordingly, and afterwards we use
the above construction. If we decide to perform correspondence analysis on A then by (16) and (20), Bcorr will give a good
approximation to Acorr and similarly, the correspondence vectors obtained by the SVD of Bcorr will give representatives of
the genes and conditions.
To find the SVD for large rectangular matrices randomized algorithms are favored, e.g., [22]. In the case of random

matrices with an underlying linear structure (outstanding singular values), the random noise of the algorithm is just added
to the noise in our data, but their sum is also a noise matrix, so it does not change the effect of our algorithm in finding the
clusters. Under the conditions of Theorem 17, the separated error matrix is comparable with the noise matrix, and this fact
guarantees that the underlying block structure can be extracted.
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