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Abstract

This article gives a double-cycle algorithm to estimate the parameters of
the dynamic factor model with given number of factors and order of the
autoregressive process of the factors. In the inner cycle compromise factor
decomposition, a generalization of the eigenvalue–eigenvector decomposition
of principal component analysis is used to find extrema of sums of hetero-
geneous quadratic forms that has not been used before. Application of the
algorithm for macroeconomic indicators of the Hungarian economy since the
1990s is also discussed.

Keywords: Multivariate time series, Dynamic factor model, Parameter
estimation, Compromise system, Macroeconomic indicators

1. Introduction

Since Geweke (1977) generalized the classical factor model to a dynamic
one, a lot of various dynamic factor models have been developed and studied
from the point of view of parameter estimation. The problem of describing
comovements in multivariate time series by means of some nearly indepen-
dent factors becomes more and more important when facing economic crises
and looking for predictions.

In our model the components of a multivariate time series, e.g., finan-
cial or economic data observed at regular time intervals, are described by
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a relatively small number of uncorrelated factors. The usual factor model
of multivariate analysis cannot be applied immediately as the factor process
also varies in time. Hence, there is a dynamic part, added to the usual linear
factor model, the autoregressive process of the factors. The main point of
the model is that the components of the underlying multivariate stochastic
process are, apart from noise, linear functions of the same dynamic factors
that can be identified with some latent driving forces of the whole process.
Based on factor loadings, factors can be identified by an expert and forecasts
for the components can be made.

Methods for parameter estimation were also developed. Geweke and
Singleton (1981) gave maximum likelihood estimates of the factors, while
Deistler and Hamann (2005); Deistler and Zinner (2007) used linear alge-
braic methods, further low-order autoregressive dynamics for the factors and
idiosyncratic terms for the errors. Bánkövi et al. (1981, 1983) introduced an
iteration that uses regression methods and principal components to find the
factors one by one; they applied their results for Hungarian macroeconomic
data spanning 1953-1979. (Their method is based on the work of Box and
Tiao (1977) using canonical transformations of multiple time series.) Here
we improve this algorithm so that we are able to extract dynamic factors
simultaneously, rather than sequentially. As the input of the algorithm, we
have observations for an n-dimensional random vector in equidistant dates
between t1 and t2. We remark that n is not necessarily larger than t2−t1 +1,
cf. Stock and Watson (2002). For a given positive integer k < n (k is usually
much less than n) we are looking for uncorrelated factors satisfying both
a linear and an autoregressive model. The model equations are set up in
Section 2. The lag length, that is the order of the autoregressive process is
the same for each factor and is in the range from one to four. To estimate
the model’s parameters we minimize a quadratic cost function on conditions
concerning the orthogonality of the factors, the variances of the factors, and
the weights balancing between the dynamic and the static parts.

The main contribution of the paper is that we use a linar algebraic method
particularly developed for this purpose to find a so-called compromise system
of distinct symmetric matrices of the same size. This makes it possible to
find factors simultaneously by minimizing the nonnegative objective function
step by step in an outer and inner cycle. The algorithm is described in
Section 3. The inner cycle is discussed in Section 4, where an algorithm
based on SVDs is introduced for finding minima of sums of heterogeneous
quadratic forms. The method first introduced in Bolla et al. (1998) for finding
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maxima is interesting for its own right and makes it possible to obtain the
factors by an exact compromise decomposition of several matrices, and hence,
extends the method of principal components, without using time consuming
and sometimes computationally prohibitive numerical algorithms.

Eventually, in Section 5 we extract 3 factors out of 10 yearly observed
Hungarian macroeconomic indicators spanning 1993-2007, and try to explain
the factor processes based on their loadings; further, we make predictions for
1-2 years ahead.

2. The model

The input data are n-dimensional observations y(t) = (y1(t), . . . , yn(t)),
where t is the time and the process is observed at equidistant dates between
two limits (t = t1, . . . , t2). For a given positive integer k < n we are looking
for (at all leads) uncorrelated factors f1(t), . . . , fk(t) such that they satisfy
the following model equations.

1. The first one is the linear model

fm(t) =

n∑

i=1

bimyi(t), t = t1, . . . , t2; m = 1, . . . , k. (1)

2. The second one is the dynamic equation of the factors

f̂m(t) = cm0 +

ℓ∑

j=1

cmjfm(t− j), t = t1 + ℓ, . . . , t2; m = 1, . . . , k, (2)

where the lag length ℓ is a given positive integer and f̂m(t) is the ℓth-
order autoregressive prediction of the mth factor at date t (the white-
noise term is omitted, therefore we use f̂m instead of fm).

3. The third one is the linear prediction of the variables by the factors as
in the usual factor model

ŷi(t) = d0i +

k∑

m=1

dmifm(t), t = t1, . . . , t2; i = 1, . . . , n. (3)

(The idiosyncratic disturbances are also omitted, that is why we use
the notation ŷi instead of yi.)
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We want to estimate the parameters of te model: B = (bim), C = (cmj),
D = (dmi) (m = 1, . . . , k; i = 1, . . . , n; j = 1, . . . ℓ) in matrix notation
(estimates of the parameters cm0, d0i can be expressed in terms of these)
such that the objective function

w0 ·
k∑

m=1

Var (fm − f̂m)ℓ +

n∑

i=1

wi · Var (yi − ŷi) (4)

is minimum on the conditions for the orthogonality and variance of the fac-
tors:

Cov (fm, fh) = 0, m 6= h; Var (fm) = vm, m = 1, . . . , k. (5)

In (4), the subscript ℓ indicates that the time variation is restricted to dates
t1 +ℓ, . . . , t2 only; w0, w1, . . . , wn are given non-negative constants (balancing
between the dynamic and static parts), while the positive numbers vm’s are
the variances of the individual factors indicating their relative importance.

Theoretically, the time series are supposed to be weakly stationary, but in
practice, many time series exhibit nonstationary behaviour; especially in our
example, where each macroeconomic indicator might be represented as some
aggregate of one or more common inputs. Nonstationarity can be helped by
preliminary filtering, whitening, or correction for seasonality, see Deistler and
Zinner (2007). However, we do not use these techniques as it would destroy
the so-called adding-up property of Bánkövi et al. (1981), except if all the
n time series had the same trend and seasonality that is rarely the case.
Note that Box and Tiao (1977) prove that the most predictable components
often approach nonstationarity and the least predictable ones are stationary
or independent; they decompose the space of observations into independent,
stationary and nonstationary subspaces. We do not subtract the means; in
fact, the means are not intrinsic as we merely use the covariances of the
components. Thus, the factors will not have zero means either.

3. Parameter estimation

First we introduce some notation.

ȳi =
1

t2 − t1 + 1

t2∑

t=t1

yi(t)
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is the sample mean of the ith component, while

Cov (yi, yj) =
1

t2 − t1 + 1

t2∑

t=t1

(yi(t) − ȳi) · (yj(t) − ȳj)

stands for the sample covariance and

Cov ∗(yi, yj) =
1

t2 − t1

t2∑

t=t1

(yi(t) − ȳi) · (yj(t) − ȳj)

for the corrected empirical covariance between the ith and jth components.
By the notation

Yij = Cov (yi, yj), i, j = 1, . . . n,

let Y = (Yij) be the n×n symmetric, positive semidefinite sample covariance
matrix (sometimes we use the corrected one).

Observe, that the parameters cm0’s and d0i’s can be written in terms of
the other parameters:

cm0 =
1

t2 − t1 − ℓ + 1

t2∑

t=t1+ℓ

(fm(t) −
ℓ∑

j=1

cmjfm(t − j)), m = 1, . . . , k

and

d0i = ȳi −
k∑

m=1

dmif̄m, i = 1, . . . , n.

Thus, the parameters to be really estimated are entries of the n×k matrix
B, the k × n matrix D, and the k × ℓ matrix C. Let us denote by bm ∈ R

n

the mth column of the matrix B.
We also define the lagged time series

zm
i (t) = yi(t)−

ℓ∑

j=1

cmjyi(t−j), t = t1 +ℓ, . . . , t2; i = 1, . . . , n; m = 1, . . . , k

(6)
and the lagged empirical covariance matrices of corresponding entries

Zm
ij := Cov (zm

i , zm
j ) =

1

t2 − t1 − ℓ + 1

t2∑

t=t1+ℓ

(zm
i (t) − z̄m

i ) · (zm
j (t) − z̄m

j ), (7)
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m = 1, . . . , k, where z̄m
i = 1

t2−t1−ℓ+1

∑t2
t=t1+ℓ zm

i (t), i = 1, . . . , n. Let us
denote by Zm = (Zm

ij ) the n × n symmetric, positive semidefinite empirical
covariance matrix of the m-lagged variables, m = 1, . . . , k.

To write the objective function (4) in terms of these quantities, we make
the following arguments:

fm(t) − f̂m(t) =

n∑

j=1

bjmzm
j (t) − cm0

and
Var (Fm − F̂m)ℓ = bT

mZmbm. (8)

In view of (1),
Var (fm) = bT

mYbm, m = 1, . . . , k

and

Cov (yi, fm) =

n∑

j=1

bjmYij, i = 1, . . . , n; m = 1, . . . , k.

Further, due to the orthogonality of the factors, and due to equation (3)

Var (yi − ŷi) = Yii − 2
k∑

m=1

dmiCov (yi, fm) +
k∑

m=1

d2
mivm

= Yii − 2

k∑

m=1

dmi

n∑

j=1

bjmYij +

k∑

m=1

d2
mivm.

With these, the objective function (4) to be minimized is

G(B,C,D) = w0

k∑

m=1

bT
mZmbm +

n∑

i=1

wiYii − 2

n∑

i=1

wi

k∑

m=1

dmi

n∑

j=1

bjmYij

+

n∑

i=1

wi

M∑

m=1

d2
mivm,

where the minimum is taken on the constraints

bT
mYbh = δmh · vm, m, h = 1, . . . , k. (9)

The procedure finding the minimum is based on the following iteration
that consists of an outer and an inner cycle. Choosing an initial B(0) of
columns satisfying (9), the following three steps are alternated in the tth
outer iteration.
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Step 1. Starting with B(t) we calculate the fm’s based on (1), then we fit a
linear model to estimate the parameters of the autoregressive model
(2). Hence, the current value of C(t) is determined .

Step 2. Based on this C(t), we find matrices Zm using (6) and (7) (actually, to
obtain Zm, the mth row of C is needed only), m = 1, . . . , k. This Zm

also depends on t, however, to simplify notation, we do not indicate
this dependence. Putting this auxiliary variable into G(B(t),C(t),D),
we take its minimum with respect to D, while keeping B and C fixed.
The minimum is taken at D(t).

Step 3. Now keeping C and D fixed, we minimize G(B,C(t),D(t)) with respect
to B. This minimization needs an inner cycle. The minimum is taken
at B(t+1).

With this new B we return to Step 1 of the outer cycle (t := t + 1) and
proceed until convergence. As the value of the nonnegative objective function
is in each step decreased we might expect its value stabilized, but only the
convergence to a local minimum can be guaranteed.

The inner cycle is described in the next section; here we discuss Step 2
and preparation of Step 3 in details.

Step 2: Fixing C, the part of the objective function to be minimized in
B and D is

g(B,D) = w0

k∑

m=1

bT
mZmbm +

n∑

i=1

wi

k∑

m=1

d2
mivm − 2

n∑

i=1

wi

k∑

m=1

dmi

n∑

j=1

bjmYij

that is first optimized in D. To this end, we solve the equations

∂f(B,D)

∂dmi
= 2wivmdmi − 2wi

n∑

j=1

bmjYij = 0

separately for the entries of D. It is easy to see that the matrix Dopt of
entries

dopt
mi =

1

vm

n∑

j=1

bjmYij, m = 1, . . . , k; i = 1, . . . , n

gives a local minimum of g(B,D) for fixed B.
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Step 3: Plugging the so obtained Dopt into g(B,D), it will have the
following form:

g(B,Dopt) = w0

k∑

m=1

bT
mZmbm −

k∑

m=1

1

vm

n∑

i=1

wi(
n∑

j=1

bjmYij)
2.

From this, by introducing the n × n symmetric matrix V = (Vjh) of entries
Vjh =

∑n
i=1 wiYijYih and the n × n symmetric matrix

Sm = w0Z
m − 1

vm
V, m = 1, . . . , k,

we have

g(B,Dopt) =
k∑

m=1

bT
mSmbm (10)

that is to be minimized on the constraints for bm’s.
To apply the algorithm to be introduced in Section 4, we have to trans-

form the vectors b1, . . . ,bm into an orthonormal set. Because of the con-
straints, the transformations

xm :=
1√
vm

Y1/2bm, Am := vmY−1/2SmY−1/2, m = 1, . . . , k (11)

will result in an orthonormal set x1, . . . ,xk ∈ R
n; further

bT
mSmbm = xT

mAmxm, m = 1, . . . , k,

and hence,

F (B,Dopt) =

k∑

m=1

xT
mAmxm. (12)

The sum of the heterogeneous quadratic forms of (12) is minimized by the
algorithm of the next section (inner cycle). Let x

opt
1 , . . . ,xopt

k denote the
orthonormal set giving the minimum. Inverting the first transformation of
(11), the vectors

bopt
m =

√
vmY−1/2xopt

m , m = 1, . . . , k

will give the column vectors of Bopt, minimizing F (B,Dopt).
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4. Compromise system of symmetric matrices

Given the n×n symmetric, positive definite matrices A1, . . . ,Ak (k ≤ n)
we are looking for an orthonormal set of vectors x1, . . . ,xk ∈ R

n for which

k∑

i=1

xT
i Aixi

is maximum.
The theoretical solution is obtained by Lagrange’s multipliers: the xi’s

giving the optimum satisfy the system of linear equations

A(X) = XS (13)

with some k × k symmetric matrix S (its entries are the multipliers), where
the n × k matrices X and A(X) consist of the following columns:

X = (x1, . . . ,xk), A(X) = (A1x1, . . . ,Akxk).

Due to the constraints imposed on x1, . . . ,xk, the non-linear system of equa-
tions

XTX = Ik (14)

must also hold. As X and the symmetric matrix S contain alltogether nk +
k(k + 1)/2 free parameters, while (13) and (14) contain the same number of
equations, a solution of the problem is expected. Transforming (13) into a
homogeneous system of linear equations, a non-trivial solution of it exists, if

|A− In ⊗ S| = 0, (15)

where the nk × nk matrix A is a Kronecker-sum A = A1 ⊕ · · · ⊕ Ak and ⊗
denotes the Kronecker-product.

Equation (15) is reminescent of the charasteristic equation, being a poly-
nomial of degree k(k+1)/2 of the in- and upper-diagonal entries of the “com-
promise matrix” S. The exact solution is not known, numerical methods are
to be applied. Instead, in Bolla et al. (1998) an iteration was introuced. Start-
ing with a suborthogonal matrix X(0) (of orthonormal columns), the mth step
of the iteration based on the (m−1)th one is as follows (m = 1, 2, . . . ). Take
the polar decomposition of A(X(m−1)) into an n × k suborthogonal matrix
X(m) and a k × k symmetric matrix S(m). Let the first factor be the next
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X(m), and continue until convergence. The polar decomposition is obtained
by SVD. In Bolla et al. (1998) the convergence of the algorithm was also
proved. We remark that the trace of the second factor S(m) converges to the
optimum of the objective function.

The above iteration is easily adopted to positive/negative semidefinite or
indefinite matrices and to minima instead of maxima in the following way.
Find the minimum of

k∑

i=1

xT
i Aixi

on the constraints (14), where A1, . . . ,An are n×n symmetric matrices. Let
λmax

i denote the largest eigenvalue os Ai (i = 1, . . . , k), and set

λ := max
i∈{1,...,k}

λmax(Ai) + ε,

where ε is an arbitrarily small positive constant. The matrices

Ãi := λIn −Ai, i = 1, . . . , k

are positive definite and

min

k∑

i=1

xT
i Aixi = −max

k∑

i=1

xT
i (−Ai)xi = λk − max

k∑

i=1

xT
i Ãixi;

furthermore, the minimum of the first sum is taken on the same xi’s as the
maximum of the last one in terms of Ãi’s.

5. Application to macroeconomic data

We used aggregate data of the Hungarian Statistical Office. We consider
10 highly correlated macroeconomic time series of the Hungarian Republic,
registered yearly, spanning 1993–2007. Note that in macroeconomic forecast-
ing, the number of predictor series (n) can be very large, often larger than
the time series observations (t2 − t1 + 1), see Stock and Watson (2002).

Names and mnemonics of the components are as follows.

• Gross Domestic Product (1000 million HUF) – GDP

• Number of Students in Higher Education – EDU
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• Number of Hospital Beds – HEALTH

• Industrial Production (1000 million HUF) – IND

• Agricultural Area (1000 ha) – AGR

• Energy Production (petajoule) – ENERGY

• Energy Import (petajoule) – IMP

• Energy Export (petajoule) – EXP

• National Economic Investments (1000 million HUF) – INV

• Number of Publications – INNOV

We extracted 3 factors out of the data, using lag length 4. As the vari-
ables were measured in different units we normalized them such that we made
adjustments, where necessary, so as to produce numbers of comparable mag-
nitude in the different series; later we used the reciprocals of their standard
deviations as weights w1, . . . , wn in the objective function (4). In Bánkövi
et al. (1981), the authors use the same weights vm = t2−t1+1 (m = 1, . . . , k)
for the factors. We also used these weights; furthermore, we used the sug-
gested choice w0 = n/kvm ensuring the equilibrium between the dynamic
and static parts.

In Figure 1, the first factor demonstrates a decrease, then an increase,
and reaches its peak in 1996 (when restrictions on goverment spendings and
social benefits were introduced and investments started). Since 1997 this
factor has made slight periodic movements. Based on Table 1, variables
GDP, ENERGY, and HEALTH are mainly responsible for this factor (in the
middle of the 1990s there were also reforms in the health care system).

In Figure 2, the second factor slowly increases, then decreases, with high-
est values around the turn of the century. The variables EDU, ENERGY,
and AGR have the highest coefficients in it. Note that the number of stu-
dents in higher education steadily increased in the 1990’s, however, since the
beginning of the century the interest in some areas of study has dropped as
people with higher degrees had difficulties finding jobs.

As Figure 3 demonstrates, the third factor is somewhat antipodal to the
first one, with highest absolute value coefficients in GDP, ENERGY, and
HEALTH; further, it shows smaller fluctuations. Future analysis is required
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Figure 1: Dynamic Factor 1

Figure 2: Dynamic Factor 2
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Figure 3: Dynamic Factor 3

to obtain a reasonable explanation for this phenomenon. Possibly, only the
first two factors are significant, while the next ones are dampened dummies
of them. We remark that in our model k is, in fact, the maximum number
of factors, which does not contradict to certain rank conditions, see e.g.,
Deistler and coauthors (2005, 2007). The actual number of factors can be
less, depending on the least square errors and practical considerations; it is
an expert’s job to decide how many factors to retain.

The coefficients of matrices B, D, and C are shown in Tables 1, 2, and
3, respectively. The relatively high constant terms in the linear prediction
of the variables by the factors (see Table 2) refer to “small” communalities.
However, the constant coefficients in the autoregressive model are small (see
Table 3) and the coefficient belonging to lag 2 is the largest in all the three
factors. Notice that since 1990, different goverments have changed each other
in every 4 years, and lag 2 corresponds to the mid-period, when the measures
introduced by the new goverment probably had the higher impact on the
economy.

We also made predictions for the factors for 2 years ahead by means of
matrix C. The predicted factor values for 2008 and 2009 are illustrated by
dashed lines and they show decline in all the three factors, possibly indicating
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Factor 1 Factor 2 Factor 3

GDP 38.324 -2.541 -6.116
EDU -1.775 5.725 0.015
HEALTH 10.166 0.837 -1.650
IND -0.261 0.255 -0.107
AGR 6.146 2.919 -1.124
ENERGY 24.082 4.592 -4.054
IMP 1.560 -1.209 -0.213
EXP -3.907 -0.233 0.615
INV 2.864 0.038 -0.510
INNOV -0.608 0.197 0.089

Table 1: Factor Expressed in Terms of the Components (matrix B)

Factor 1 Factor 2 Factor 3 Constant

GDP -0.108 -0.025 -0.677 -0.670
EDU -0.142 0.145 -0.877 -8.637
HEALTH 0.115 -0.132 0.656 16.250
IND -0.898 -0.187 -5.784 -14.690
AGR 0.021 0.005 0.137 6.809
ENERGY 0.085 -0.038 0.543 10.055
IMP -0.098 -0.152 -0.868 0.311
EXP -0.516 -0.931 -1.840 109.915
INV -0.209 0.026 -1.341 -6.779
INNOV -0.061 0.121 -0.484 -9.867

Table 2: Components Estimated by the Factors (matrix D)

Lag Factor 1 Factor 2 Factor 3

0 -0.000 0.001 -0.000
1 0.069 0.283 0.117
2 0.473 1.644 0.495
3 0.205 0.229 0.141
4 0.251 -1.168 0.258

Table 3: Dynamic Equations of the Factors (matrix C)
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the evolving economic crisis. Based on matrix D, we predicted the variables
by the factors for the period 1993-2007 and calculated the static part of
the objective function, which represents one possible source of the error in
the algorithm. We also forecasted the components for 2008 and 2009 based
on the predicted values of the factors. Data for 2009 are not available yet,
however, the 2008’s estimates showed a good fit to the factual data in case
of most variables. We found that the squared error 1.16 of this only year is
comparable to the cumulated error 11.54 of 15 years.

Bánkövi et al. (1981) prove that the least square estimates based on model
equations (1)–(3) are linearly syntonic, and hence, the adding-up constraints
of Denton (1978) are satisfied. This justifies the correctness of the above way
of forecasting via the factors.
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