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1. Introduction

Mostly we think of random matrices as completely random Wigner-type matrices
whose eigenvalues obey the semi-circle law. No matter how important this type
of a matrix in quantum mechanics was, in case of real-life matrices it is merely a
random noise added to the underlying linear structure of the matrix (if there is
any). Although, it is hard to recognize the structure concealed by the noise, in a
number of models it is possible by means of spectral techniques and large deviations
principles.

Usually, our matrix is the weight matrix of some random weighted graph G =
(V,A) with an n-element vertex set V and n × n symmetric weight matrix A,
where n → ∞. For example, some communication, social or biological networks can
be adequately described by a random graph model. Performing graph-embedding
techniques, it is a crucial question how many protruding eigenvalues – with corre-
sponding eigenvectors – to choose for the vertex-representation.

Also, the classical numerical algorithms for the spectral decomposition of a ma-
trix with size exceeding a million are not immediately applicable, and some newly
developed randomized algorithms are to be used instead, see [1]. These algorithms
exploit the randomness of our matrix, and rely on the fact that a random noise will
not change the order of magnitude of the relevant eigenvalues with large absolute
value. Sometimes – instead of depriving our matrix of the noise – a noise is added
(by digitalizing the entries of or making the underlying matrix sparse by an appro-
priate randomization) to make the matrix more easily decomposable by means of
the classical methods. E.g., the Lánczos method (see Section 9 of [11]) is applicable
to large, sparse, symmetric eigenproblems.

Both the number of eigenvalues to be kept and algorithmic questions can be –
at least partly – analyzed by means of the results in Sections 2 and 3. For an easy
discussion, in [6] we introduced the notion of Wigner-noise that is a generalization
of a random matrix investigated by E. Wigner [15] and the eigenvalues of which
obey the semi-circle law (if the order of the matrix tends to infinity). We cite the
definitions.

Definition 1.1. The n × n real matrix W is a Wigner-noise if it is symmetric,
its entries wij , 1 ≤ i ≤ j ≤ n, are independent random variables, E(wij) = 0,
Var (wij) ≤ σ2 with some 0 < σ < ∞ and either the wij ’s are uniformly bounded
(there is a constant K > 0 such that |wij | ≤ K) or they are Gaussian distributed.

For example, mutations in cellular networks as well as random effects in social
networks can be modelled by a Wigner-noise. By the method of Füredi and Komlós
[10] it can be proved (see [1]) that for the maximum absolute value eigenvalue of
W

max
1≤i≤n

|λi(W)| ≤ 2σ
√
n+O(n1/3 logn) (1.1)

holds with probability tending to 1, if n → ∞.

In the sequel, we put this noise on the following general deterministic structure.

Definition 1.2. The n × n matrix B is a blown up matrix, if there is a constant
k < n, a k × k symmetric so-called pattern matrix P with entries 0 ≤ pij ≤ 1,

and there are positive integers n1, . . . , nk,
∑k

i=1 ni = n such that B can be divided
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into k2 blocks, the block (i, j) being an ni × nj matrix with entries all equal to pij
(1 ≤ i, j ≤ k).

In particular, if n1 = · · · = nk = n/k, then B = P⊗F, where F is the n/k×n/k
all 1’s matrix and ⊗ is the Kronecker-product of matrices.

Now k will be kept fixed, while n1, . . . , nk will tend to infinity in the same order,
and we put a Wigner-noise on our blown up matrix.

Definition 1.3. Let B be a blown up matrix of Definition 1.2, and W be an n× n
Wigner-noise of Definition 1.1. We say that the property Tn holds almost surely for
the n × n random matrix A = B+W, if the probability that A has the property
Tn tends to 1, if n → ∞ in such a way that ni/n ≥ c with some constant c for
i = 1, . . . , k.

Under the above conditions, in [5] we thoroughly investigated a special case of a
block-matrix perturbed by Wigner-noise. Now similar results will be proved for a
general blown up matrix B. Under the notation of Definitions 1.1-3, in Section 2
we shall prove that B+W will have almost surely k protruding eigenvalues.

In the random graph setup, in Section 3 it will be shown that the k-dimensional
Euclidean representation of the vertices – via eigenvectors corresponding to the
protruding eigenvalues – also indicates the block structure. With an appropriate
Wigner-noise our perturbed graph is a usual random graph with weights 1 or 0
(indicating the presence or absence of the corresponding edge with certain proba-
bility).

In summary, the Wigner-noise is sufficiently general to include a lot of random
matrices as special cases of adding such a noise. However, I do not mean that this
noise is negligible. In quantum mechanics it played an independent role, but if
added to a matrix with an effective linear structure it is not able to destroy that
structure. Probably, the Wigner-noise plays a similar role among random matrices,
as the white noise (Wiener-process) plays among stochastic processes.

In Section 4 the reversed question is investigated: how can we find a blown up
skeleton behind an arbitrary random matrix from everyday life? We shall prove that
an n× n random matrix under very general conditions has at least one eigenvalue
greater than

√
n in magnitude. Suppose, there are k eigenvalues of order greater

than
√
n. If the so-called k-variance of the representatives of the vertices – by means

of the corresponding eigenvectors – is “small enough”, we also give a construction
for a blown up structure. There are other approaches for clustering large graphs
via the singular value decomposition, see [9].

Section 5 is about the existence of a deterministic structure behind a random
graph, that is guaranteed by the Regularity Lemma of Szemerédi [13] under appro-
priate density conditions. Other kinds of random graphs are frequently investigated
nowadays, like random power law graphs. Such so-called scale-free networks – de-
veloped by preferential attachment – are frequently used to model the graph of the
internet, socal connections, or metabolic networks of cells [3]. Let β > 0 denote
the power in the distribution of the actual degrees of a random power law graph
introduced in [8]: the probability that a vertex has degree x is proportional to
1/xβ. Here the skeleton is a diadic product, and we shall prove that such graphs
burdened with a Wigner-noise are robust in the range of 1.5 ≤ β < 2. Cellular
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networks frequently are in this domain (see [2]), and – possibly just because of this
– they can tolerate random noise (like mutations) very well.

2. Spectral properties of blown up weighted matrices

By the notation of Definition 1.2 let B be an n × n blown up matrix of the k × k
symmetric pattern matrix P. Let V1, . . . , Vk denote the partition of the index set

{1, . . . , n} with respect to the blow-up, |Vi| = ni (i = 1, . . . , k),
∑k

i=1 ni = n.

Proposition 2.1. All the non-zero eigenvalues of the n × n blown up matrix B are
of order n in absolute value.

This statement is proved in [6]. To be self-contained, we include the proof, as
its ideas will be applied in the proof of the next proposition.

Proof. As there are at most k linearly independent rows in B, the zero is an eigen-
value of it with multiplicity at least n−k. It can easily be seen that any eigenvector
corresponding to a non-zero eigenvalue of B has equal coordinates within the blocks
V1, . . . , Vk. Let y be such an eigenvector with n1 coordinates being equal to y1, . . . ,
nk coordinates being equal to yk, and β be the corresponding eigenvalue. Then

k
∑

j=1

njpijyj = βyi (i = 1, . . . , k).

Observe that the same eigenvalue–eigenvector equation belongs to the matrixPD =
nPD̃, where

D = diag (n1, . . . , nk) and D̃ = diag
(n1

n
, . . . ,

nk

n

)

. (2.1)

We remark that PD and PD̃ are not symmetric matrices but – due to this co-
incidence of spectra – they also have real eigenvalues. Let γ1, . . . , γr denote the
non-zero eigenvalues of PD̃, r = rank (PD̃) ≤ k. As their absolute values are also

the singular values of PD̃,

0 < min
1≤i≤r

|γi| ≤ max
1≤i≤r

|γi| ≤ max
1≤i≤r

|λi(P)| · max
1≤i≤r

|λi(D̃)| ≤ max
1≤i≤r

|λi(P)| ≤ k

holds for γi’s, therefore the absolute values of the non-zero eigenvalues βi’s (βi =
nγi) of B are of order n, that is

|βi| = Θ(n), i = 1, . . . , r. (2.2)

If PD, and hence, PD̃ happens to be singular (r < k), this fact results in additional
zero eigenvalues of B, but the non-zero eigenvalues are still of order n. �

We remark that the symmetric matrix D̃1/2PD̃1/2 has the same eigenvalues
– γ1, . . . , γk – as PD̃, since D̃1/2PD̃1/2x = γx is equivalent to PD̃(D̃−1/2x) =

γ(D̃−1/2x). Though, the corresponding eigenvectors of PD̃ are not pairwise or-
thogonal.
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In the following special case we can prove a little bit more:

Proposition 2.2. Let the entries of the k×k pattern matrix be the following: pii = 0
(i = 1, . . . , k) and pij = pji = p ∈ [0, 1] (1 ≤ i < j ≤ k). Let B be the blown up

matrix of P with block sizes n1 ≤ n2 ≤ · · · ≤ nk, n :=
∑k

i=1 ni. Then B has
exactly n − k zero eigenvalues, the negative eigevalues of B are in the interval
[−pnk,−pn1], while the positive ones in [p(n− nk), p(n− n1)].

Proof. It is sufficient to prove for p = 1. In the case 0 < p < 1 the statement of the
proposition follows from this, as the pattern matrix is multiplied by p, therefore,
all the eigenvalues of P and consequently, those of B are also multiplied by p. In
the trivial case p = 0 all the eigenvalues are zeroes.

For a general blown up matrix we have already seen that its rank is at most
k. Now it is exactly k, as the rank of the matrix PD is exactly k. So zero is an
eigenvalue of B with multiplicity n− k and corresponding eigenspace

{x = (x1, . . . , xn) :
∑

j∈Vi

xj = 0, i = 1, . . . , k; x 6= 0} ⊂ R
n.

Due to the orthogonality, any eigenvector y belonging to an eigenvalue β 6= 0
of B has n1 coordinates equal to y1, . . . , and nk coordinates equal to yk. The
corresponding eigenvalue–eigenvector equation By = βy gives that

∑

l6=i

nlyl = βyi (i = 1, . . . , k), (2.3)

consequently
k

∑

l=1

nlyl = (ni + β)yi (i = 1, . . . , k), (2.4)

that is – with regard to the left-hand side – independent of i.

If β = −ni for some index i then β is in the desired range, and there is nothing
to prove. If βi 6= −ni (i = 1, . . . , k) then none of the yi’s can be zero (otherwise –
due to (2.4) – all the yi’s were zeroes, but the zero vector cannot be an eigenvector).
Let i be an arbitrary integer in {1, . . . , k}. As yi 6= 0, y can be scaled such that
yi = 1. Therefore (2.4) becomes

k
∑

l=1

nlyl = ni + β. (2.5)

Equating (2.5) with (2.4) applied for the other indices implies that

yj =
ni + β

nj + β
(j 6= i).

Summing up for j = 1, . . . , k

k
∑

j=1

njyj = (ni + β)
k

∑

j=1

nj

nj + β
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follows, and by (2.5) it is also equal to ni + β, therefore

k
∑

j=1

nj

nj + β
= 1. (2.6)

As trB = 0, there must be both negative and positive eigenvalues of B. Let
us suppose that there is an eigenvalue β < −nk. Then on the left-hand side of
(2.6) all the terms were negative, and their sum could not be 1. Consequently, all
the eigenvalues must be at least −nk. Now let us suppose that there is a negative
eigenvalue with −n1 < β < 0. Then for all the terms on the left-hand side of (2.6)

nj

nj + β
> 1 (j = 1, . . . , k)

holds, therefore their sum cannot be 1. So, for the negative eigenvalues

−nk ≤ β ≤ −n1

is proved.

For the positive eigenvalues we shall use that

0 < n1 + β ≤ nj + β ≤ nk + β (j = 1, . . . , k).

Taking the reciprocals, multiplying by nj , and summing up for j = 1, . . . , k we
obtain that

k
∑

j=1

nj

n1 + β
≥

k
∑

j=1

nj

nj + β
≥

k
∑

j=1

nj

nk + β
,

that is, in view of (2.6),
n

n1 + β
≥ 1 ≥ n

nk + β
,

which implies
n− nk ≤ β ≤ n− n1,

that was to be proved for the positive eigenvalues in the case of p = 1. �

Remarks.

1. In the special case n1 = · · · = nk = n/k all the negative eigenvalues of B are
equal to −pn/k, and all the positive ones to p(n − n/k). As the sum of the
eigenvalues of B is zero, −pn/k is an eigenvalue with multiplicity k − 1, while
p(n− n/k) is a single eigenvalue.

2. If ni is a block-size with multiplicity ki (
∑k

i=1 ki = k) then −pni is an eigenvalue
of B with multiplicity ki − 1. Accordingly, if ni is a single block-size then −pni

cannot be an eigenvalue of B. If especially k1 = k then −pn/k is an eigenvalue
with multiplicity k − 1, in accordance with the previous remark.

3. In the case p = 1 our matrix B is the adjacency matrix of Kn1,...,nk
, the complete

k-partite graph on disjoint, edge-free vertex sets V1, . . . , Vk with |Vi| = ni (i =
1, . . . , k).
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Theorem 2.3. Let B be a blown up matrix of Definition 1.2 with non-zero eigen-
values β1, . . . , βr (r ≤ k), and W be an n × n Wigner-noise. Then there are r
eigenvalues λ1, . . . , λr of the noisy random matrix A = B+W such that

|λi − βi| ≤ 2σ
√
n+O(n1/3 logn), i = 1, . . . , r (2.7)

and for the other n− r eigenvalues

|λj | ≤ 2σ
√
n+O(n1/3 logn), j = r + 1, . . . , n (2.8)

holds almost surely.

Proof. The statement immediately follows by applying the Weyl’s perturbation
theorem [16] for the spectrum of B characterized in Proposition 2.1, where the
spectral norm of the perturbation W is estimated by (1.1). �

Consequently, taking into account the order Θ(n) of the non-zero eigenvalues
of B, there is a spectral gap between the r largest absolute value and the other
eigenvalues of A, this is of order ∆− 2ε, where

ε := 2σ
√
n+O(n1/3 logn) and ∆ := min

1≤i≤r
|βi|. (2.9)

In general, r = rankB = k, and Theorem 2.3 guarantees the existence of k
protruding eigenvalues of A.

3. Euclidean representation of blown up weighted graphs

Suppose that rankB = k. With the help of Theorem 2.3 we can also estimate
the distances between the corresponding eigenspaces of the matrices B and A =
B + W. Let us denote the unit norm eigenvectors belonging to the eigenvalues
β1, . . . , βk of B by y1, . . . ,yk and those belonging to the eigenvalues λ1, . . . , λk of
A by x1, . . . ,xk. Let F := Span {y1, . . . ,yk} ⊂ R

n be k-dimensional subset, and
let dist(x, F ) denote the Euclidean distance between the vector x ∈ R

n and the
subspace F .

Proposition 3.1. With the above notation the following estimate holds almost surely
for the sum of the squared distances between x1, . . . ,xk and F :

k
∑

i=1

dist2(xi, F ) ≤ k
ε2

(∆− ε)2
= O(

1

n
), (3.1)

where the order of the estimate follows from the order of ε and ∆ of (2.9).

Proof. Let us choose one of the eigenvectors x1, . . . ,xk of A = B+W and denote
it simply by x with corresponding eigenvalue λ. We shall estimate the distance
between x and F . For this purpose we expand x in the basis y1, . . . ,yn with
coefficients t1, . . . , tn ∈ R:

x =

n
∑

i=1

tiyi.
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The eigenvalues of the matrixB corresponding to y1, . . . ,yn are denoted by β1, . . . , βn,
where the k largest eigenvalues β1, . . . , βk are those defined in the proof of Propo-
sition 2.1 (we can assume that they are in non-increasing order with the proper
reordering of the blocks), and there is a sudden drop following these eigenvalues in
the spectrum of B, as βk+1 = · · · = βn = 0. Then, on the one hand

Ax = (B+W)x =
n
∑

i=1

tiβiyi +Wx, (3.2)

and on the other hand

Ax = λx =

n
∑

i=1

tiλyi. (3.3)

Equating the right-hand sides of (3.2) and (3.3) we get that

k
∑

i=1

ti(λ− βi)yi +

n
∑

i=k+1

tiλyi = Wx.

Applying the Pythagorean Theorem

k
∑

i=1

t2i (λ− βi)
2 +

n
∑

i=k+1

t2iλ
2 = ‖Wx‖2 = xTWTWx ≤ ε2, (3.4)

as ‖x‖ = 1 and the largest eigenvalue of WTW is ε2.

The squared distance between x and F is dist2(x, F ) =
∑n

i=k+1 t
2
i . As |λ| ≥

∆− ε,

(∆−ε)2dist2(x, F ) = (∆−ε)2
n
∑

i=k+1

t2i ≤
n
∑

i=k+1

t2iλ
2 ≤

k
∑

i=1

t2i (λ−βi)
2+

n
∑

i=k+1

t2iλ
2 ≤ ε2,

where in the last inequality we used (3.4). From here

dist2(x, F ) ≤ ε2

(∆− ε)2
= O(

1

n
) (3.5)

follows.

Applying (3.5) for the eigenvectors x1, . . . ,xk of A and adding the k inequal-
ities together we obtain the same order of magnitude for the sum of the squared
distances. �

Now let G = (V,A) be a random weighted graph on an n-element vertex set
V and with n × n symmetric weight matrix A that is a noisy random matrix
obtained by adding a Wigner-noise W to the blown up matrix B. Let us denote
by V1, . . . , Vk the partition of V with respect to the blow-up (it also defines a
clustering of the vertices). Proposition 3.1 implies the well-clustering property of
the representatives of the vertices of G in the following representation. Let X be
the n × k matrix containing the eigenvectors x1, . . . ,xk in its columns. Let the k-
dimensional representatives of the vertices be the row vectors of X: x(1), . . . ,x(n) ∈
R

k. Let S2
k(X) denote the k-variance – introduced in [4] – of these representatives

in the clustering V1, . . . , Vk:

S2
k(X) =

k
∑

i=1

∑

j∈Vi

‖x(j) − x̄(i)‖2, where x̄(i) =
1

ni

∑

j∈Vi

x(j). (3.6)
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Theorem 3.2. With the above notation for the k-variance of the representation of
the noisy weighted graph G = (V,A) the relation

S2
k(X) = O(

1

n
)

holds true almost surely.

Proof. By Theorem 3 of [5] it can easily be seen that S2
k(X) is equal to the left-hand

side of (3.1), therefore it is also of order O(1/n). �

Hence, the addition of any kind of a Wigner-noise to a weight matrix that has
a blown up structure B will not change the order of the protruding eigenvalues of
the noisy weight matrix, and the block structure of B can be concluded from the
representatives of the vertices (where the representation is performed by means of
the corresponding eigenvectors).

With an appropriate Wigner-noise we can also reach that our matrix B + W

contains 1’s in the (i, j)-th block with probability pij , and 0’s otherwise. I.e., for
indices 1 ≤ i < j ≤ k and l ∈ Vi, m ∈ Vj let

wlm :=

{

1− pij with probability pij

−pij with probability 1− pij

be independent random variables, and for i = 1, . . . , k and l,m ∈ Vi (l ≤ m) let

wlm :=

{

1− pii with probability pii

−pii with probability 1− pii

be also independent, otherwise W is symmetric. This W satisfies the conditions of
Definition 1.1 with entries of zero expectation and bounded variance

σ2 = max
1≤i≤j≤k

pij(1− pij) ≤
1

4
.

So, the noisy weighted graph G = (V,B+W) becomes a usual random graph that
has an edge between vertices of Vi and Vj with probability pij , 1 ≤ i ≤ j ≤ k. In
particular, the noisy graph with underlying structure B of Proposition 2.2 has no
edges within Vi (i = 1, . . . , k), and it has an edge between vertices of Vi and Vj with
the same probability p = pij (i 6= j). In this case Theorems 2.3 and 3.2 guarantee
the existence of k protruding eigenvalues of the incidence matrix of this random
graph, while the corresponding eigenvectors give rise to a Euclidean representation
of the vertices revealing the vertex sets V1, . . . , Vk.
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4. Can the skeleton be recognized?

At the end of the previous section we saw that a seemingly completely random
0-1 matrix can have an easily describable linear structure behind it. The question
naturally arises: what kind of random matrices have a blown up matrix as a skeleton
with a “small” perturbation? The following theorem proves that under very general
conditions a random matrix has at least one eigenvalue greater than of order

√
n.

Theorem 4.1. Let A be an n×n random symmetric matrix such that 0 ≤ aij ≤ 1
and the entries are independent for i ≤ j. Further let us suppose that there are
positive constants c1 and c2 and 0 < δ ≤ ∆ ≤ 1/2 such that with the notation
Xi =

∑n
j=1 aij

E(Xi) ≥ c1n
1
2+δ, Var (Xi) ≤ c2n

1
2+∆ (i = 1, . . . , n).

Then for any 0 < ε < δ:

lim
n→∞

P

(

λmax(A) ≥ c1n
1
2+ε

)

= 1,

where the constants δ and ∆ are only responsible for the speed of the convergence.

Remark that the above conditions automatically hold true if there is a constant
0 < µ0 < 1 such that E(aij) ≥ µ0 for all i, j pairs. This is the case in the theorems
of Juhász [12] and Füredi–Komlós [10]. In our case there can be a lot of zero
entries, we require only that in each row there are at least c1n

1/2+δ entries with
expectation greater than or equal to any small fixed positive constant µ0. As the
matrix is symmetric it also holds for the columns. Therefore among the n2 entries
there must be at least Θ(n1+2δ) ones (but not anyhow) with expectation at least a
fixed 0 < µ0 < 1, all the others can be zeroes.

To prove the theorem we will need the following lemma.

Lemma 4.2 (Chernoff inequality for large deviations). Let X1, . . . , Xn be indepen-
dent random variables, |Xi| ≤ K, X :=

∑n
i=1 Xi. Then for any a > 0:

P (|X − E(X)| > a) ≤ e−
a2

2(Var (X)+Ka/3) .

Proof of Theorem 4.1. As a consequence of the Perron–Frobenius theorem λmax(A) ≥
mini Xi, hence

P

(

λmax(A) ≥ c1n
1
2+ε

)

≥ P

(

min
i

Xi ≥ c1n
1
2+ε

)

,

and it is enough to prove that the latter probability tends to 1 (n → ∞). We shall
prove that the probability of the complement event tends to 0:

P

(

for at least one i : Xi < c1n
1
2+ε

)

≤ nP
(

for a general i : Xi < c1n
1
2+ε

)

. (4.1)
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From now on we shall drop the suffix i and X denotes the sum of the entries in an
arbitrary row of A. As X is the sum of n independent random variables satisfying
the conditions of Lemma 4.2 with K = 1,

P

(

X < c1n
1
2+ε

)

= P

(

E(X)−X > E(X)− c1n
1
2+ε

)

≤ P

(

|X − E(X)| > E(X)− c1n
1
2+ε

)

≤ P

(

|X − E(X | > c1n
1
2 (nδ − nε)

)

≤ e
−

c2
1
n(nδ−nε)2

2(c2n
1
2
+∆

+n
1
2 (nδ−nε)/3)

≤ e−c3n
1
2

(nδ−nε)2

n∆

= e−c3n
1
2
−∆(nδ−nε)2

with some positive constant c3, in view of the inequalities 0 < ε < δ ≤ ∆ ≤ 1/2.
Thus the right-hand side of (4.1) can be estimated from above by

n

ec3n
1
2
−∆(nδ−nε)2

≤ n

ec4nγ

with some c4 > 0 and γ > 0 because of the previous inequalities for ε, δ,∆. The
last term above tends to 0 (n → ∞) that finishes the proof. �

Theorem 4.3. If the n×n random weight matrix A – with properties in Theorem
4.1 – of the random graph G = (V,A) has exactly k eigenvalues of order greater
than

√
n, and there is a k-partition of the vertices such that the k-variance of the

representatives is O(1/n) – in the representation with the corresponding eigenvec-
tors – then almost surely there is a blown up matrix B such that A = B + E with
‖E‖ = O(

√
n).

Proof. Let x1, . . . ,xk denote the eigenvectors corresponding to λ1, . . . , λk, the k
largest (of order larger than

√
n) eigenvalues of A. The representatives – that are

row vectors of the n×k matrixX = (x1, . . . ,xk) – by the supposition of the theorem
form k clusters in R

k with k-variance less than c/n with some constant c. Let
V1, . . . , Vk denote the clusters (properly reordering the rows ofX, together they give
the index set {1, . . . , n}). Let x(1), . . . ,x(n) ∈ R

k be the Euclidean representatives
of the vertices (the rows of X), and let x̄(1), . . . , x̄(k) denote the cluster centers,
see (3.6). Now let us choose the following representation of the vertices. The

representatives are row vectors of the n × k matrix X̃ such that the first n1 rows
of X̃ be equal to x̄(1), . . . , and the last nk rows of X̃ be equal to x̄(k). Finally, let
y1, . . . ,yk ∈ R

n be the column vectors of X̃. By the considerations of Theorem 3.2

S2
k(X) =

k
∑

i=1

dist2(xi, F ) < c/n,

where the k-dimensional subspace F is spanned by the vectors y1, . . . ,yk.
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Then a set v1, . . . ,vk of orthonormal vectors within F can be found such that

k
∑

i=1

‖xi − vi‖2 ≤ 2
c

n

holds almost surely, see Proposition 2 of [5]. (We shall use that vi’s also have equal
coordinates within the blocks.) For them

xi =
k

∑

j=1

tijvj + ri,

‖xi − vi‖2 = ‖xi‖2 + ‖vi‖2 − 2xT
i vi = 2(1− tii) = O(1/n),

therefore
‖xi − tiivi‖2 = 1− t2ii = O(1/n),

that implies |tij | = O(1/
√
n), j 6= i and ‖ri‖2 = O(1/n).

Hence

k
∑

i=1

λixix
T
i =

k
∑

i=1

λi(

k
∑

j=1

tijvj + ri)(

k
∑

j=1

tijv
T
j + rTi ) =

=

k
∑

i=1

λiviv
T
i −

k
∑

i=1

λi(1− t2ii)viv
T
i +

k
∑

i=1

λi

∑

j 6=i

t2ijvjv
T
j +

+
k

∑

i=1

λi





∑

j 6=i

(tiitijviv
T
j + tijtjjvjv

T
i ) +

∑

j 6=i

∑

l6=i

tijtilvjv
T
l



+

+

k
∑

i=1

λi





k
∑

j=1

tijriv
T
j +

k
∑

j=1

tjivjr
T
i + rir

T
i



 . (4.2)

With the triangle inequality the norm of the left-hand side matrix can be estimated
from above with the sum of the norms of the individual terms. First we estimate the
squared norms and use that λ2

i = O(n1+2ε), 1− t2ii = O(1/n) and ‖ri‖2 = O(1/n),
further

‖viv
T
j ‖2 = ‖viv

T
j (viv

T
j )

T ‖ = ‖viv
T
i ‖ = vT

i vi = 1

and similarly,

‖rivT
j ‖2 = ‖rivT

j (riv
T
j )

T ‖ = ‖rirTi ‖ = rTi ri ≤
a

n

with some constant a. For details, see the proof of Theorem 4 in [5].

Summarizing, asA =
∑n

i=1 λixix
T
i and the spectral norm of the part

∑n
i=k+1 λixix

T
i

is at most
√
n, we can choose B =

∑k
i=1 λiviv

T
i – the first term in (4.2) – for the

blown up matrix, while the norm of the remaining terms – they, together with
∑n

i=k+1 λixix
T
i , will form E – is estimated from above by nε with ε < 1/2, that

finishes the proof. �
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5. Conclusions and other directions

In the models discussed in Sections 2 and 3 a special kind of a random noise was
added to a fairly general underlying structure. We have shown that if the adja-
cency matrix of our underlying graph on n vertices has some protruding eigenvalues
(of order n in absolute value), then a Wigner-noise cannot disturb essentially this
structure: the adjacency matrix of the noisy graph will have the same number of
protruding eigenvalues with corresponding eigenvectors revealing the structure of
the graph. Vice versa, if the representation with them shows well metric classifica-
tion properties, in Section 4 we have shown, how to find the clusters themselves.

Theoretically, for any graph on n vertices, the Regularity Lemma of Szemerédi
guarantees the existence of a partition V0, V1, . . . , Vk of the vertices (here V0 is a
“small” exceptional set) such that the edge-densities between most of the Vi, Vj

pairs (1 ≤ i < j ≤ k) are homogeneous in the following sense. We say that a pair
Vi, Vj (i 6= j) is ε-regular, if for any A ⊂ Vi, B ⊂ Vj with |A| > ε|Vi|, |B| > ε|Vj |
|dens (A,B)− dens (Vi, Vj)| < ε holds, where dens (A,B) denotes the edge-density
between the disjoint vertex-sets A and B. In fact, denoting by cut (A,B) the cut-set
between A and B,

dens (A,B) =
|cut (A,B)|
|A| · |B| .

If the graph is sparse – the number of edges e = o(n2) – then k = 1, otherwise k
can be arbitrarily large (but it depends only on ε).

If our random graph has a blown up skeleton, then |cut (Vi, Vj)| is the sum of
|Vi| · |Vj| independent, identically distributed Bernoulli variables with parameter pij
(1 ≤ i, j ≤ k), where pij ’s are entries of the pattern matrix P. Hence |cut (A,B)| is
a binomially distributed random variable with expectation |A| · |B| ·pij and variance
|A| · |B| · pij(1− pij). Therefore by Lemma 4.2 (with the choice K = 1) and with
A ⊂ Vi, B ⊂ Vj , |A| > ε|Vi|, |B| > ε|Vj | we have that

P (|dens (A,B)− pij | > ε) = P (||cut (A,B)| − |A| · |B| · pij | > ε · |A| · |B|)

≤ e
−

ε2|A|2|B|2

2[|A||B|pij(1−pij)+ε|A||B|/3]

= e
−

ε2|A||B|
2[pij(1−pij)+ε/3]

≤ e
−

ε4|Vi||Vj |

2[pij(1−pij)+ε/3] ,

that tends to 0, as |Vi| = ni → ∞ and |Vj | = nj → ∞. Hence, any pair Vi, Vj is
almost surely ε-regular. In this case our random graph turns out to be a so-called
generalized random graph of [13], that is the sum of a blown-up skeleton and a noise.
We note, however, that the Regularity Lemma does not give a construction for the
clusters. Provided the conditions of Theorem 4.3 hold, by the cluster centers a
similar construction is given in the proof of the theorem. Some algorithmic aspects
of the Regularity Lemma are also discussed in [9].

In fact, there are other kind of real-world graphs that are more or less vulnerable
to random noise, e.g. scale-free graphs introduced in [3]. Bollobás and Riordan
[7] investigate the vulnerability of this graph under the effect of removing edges,
if n → ∞. In the sequel I shall use the definition of Chung, Lu, Vu [8] for a
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graph on n vertices with given positive expected degree sequence d1, . . . , dn. Let
dij := didj/

∑n
l=1 dl be the weight of the connection between the ith and jth

vertices, where loops are also present and we suppose that maxi d
2
i ≤ ∑n

i=1 di. So
our weight matrix D = (dij)

n
i,j=1 is a diadic product, having the eigenvalue zero

with multiplicity n− 1, further the only positive eigenvalue is equal to

∑n
i=1 d

2
i

∑n
i=1 di

, (5.1)

the second order average degree introduced in [8]. In my approach the random
noise means the addition of a Wigner-noise to D, the effect of which depends on
the asymptotic order of the quantity (5.1).

The random power law graph is a special case of this model. Let β > 0 denote
the power in the distribution of the actual degrees: the probability that a vertex has
degree x is proportional to 1/xβ (x is not necessarily an integer). The maximum
eigenvalue of our graph is proportional to the square root of the maximum degree,
see [8]. Móri [14] proves that in case of trees the maximum degree is asymptotically
of order n1/(β−1), if n is “large”, and this asymptotic order is also valid for other
power law graphs with β > 1. Hence, with 1/2(β − 1) > 1/2, that is with β < 2
the largest eigenvalue has order greater than

√
n that is not changed significantly

after a Wigner-noise is added.

In view of [8] the following degree sequence gives a power law graph with pa-
rameters β (the power) and i0 (specifies the support of the distribution):

di = c · i− 1
β−1 , i = i0, . . . , i0 + n,

where c is a normalizing constant.

In order to have a real graph the following two inequalities must hold:

i0+n
∑

i=i0

di = 2e ≤ 2

(

n+ 1

2

)

= (n+ 1)n ∼ n2, (5.2)

where e denotes the number of edges, and for the minimum degree

dmin = di0+n = c · (i0 + n)−
1

β−1 ≥ 1. (5.3)

For large n the sum
∑i0+n

i=i0
di is bounded by means of integration, hence the left-

hand side of (5.2) is estimated as

i0+n
∑

i=i0

di = c

i0+n
∑

i=i0

i−
1

β−1 ≥ c

∫ i0+n−1

i=i0

x− 1
β−1 dx

= c
β − 1

2− β

[

i
−β−1

2−β

0 − (i0 + n− 1)−
β−1
2−β

]

, (5.4)

where 1 < β < 2.
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Relations (5.2) – (5.4) give upper and lower estimatates for c:

(i0 + n)
1

β−1 ≤ c ≤ n2

β−1
2−β

[

i
− β−1

2−β

0 − (i0 + n− 1)−
β−1
2−β

] = O(n2)

for large n’s. This surely holds, if 1/(β − 1) ≤ 2, that is, if β ≥ 1.5. If, in addition,
β < 2 holds, the largest eigenvalue is greater than

√
n in magnitude. Consequently,

for β ∈ [1.5, 2) c can be chosen such that the number of edges e = Θ(n2), so our
graph is dense enough to have more than one cluster by the Regularity Lemma. In
other words, our graph has a blown up skeleton and, therefore, it is robust enough.
For example, β is 1.5 in the flux distribution examined in [2]. Scale-free graphs
with β ∈ [1.5, 2) frequently occur in case of cellular networks. Perhaps, because of
this, such metabolic networks can better tolerate a Wigner-noise – that more or
less affects each of the edges – than those with β ≥ 2, usual in case of social and
communication networks.
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