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Abstract 

Bolla, M., Spectra, Euclidean representations and clusterings of hypergraphs, Discrete Mathematics 

117 (1993) 19-39. 

We would like to classify the vertices of a hypergraph in the way that ‘similar’ vertices (those having 

many incident edges in common) belong to the same cluster. The problem is formulated as follows: 

given a connected hypergraph on n vertices and fixing the integer k (I< k<n), we are looking for 

k-partition of the set of vertices such that the edges of the corresponding cut-set be as few as possible. 

We introduce some combinatorial measures characterizing this structural property and give upper 

and lower bounds for them by means of the k smallest eigenvalues of the hypergraph. For this 

purpose the notion of spectra ofhypergraphs - which is the generalization of C-spectra of graphs 

- is also introduced together with k-dimensional Euclidean representations. We shall show that the 

existence of k ‘small’ eigenvalues is a necessary but not sufficient condition for the existence of a good 

clustering. In addition the representatives of the vertices in an optimal k-dimensional Euclidean 

representation of the hypergraph should be well separated by means of their Euclidean distances. In 

this case the k-partition giving the optimal clustering is also obtained by this classification method. 

1. Introduction 

The C-spectrum of a graph G (e.g. in [12]) is defined by the eigenvalues of its 

Laplacian, C(G) = D(G)-_4 (G), A(G) being the adjacency matrix of G and D(G) 

denoting the valency matrix of the set of vertices. C(G) is symmetric, singular and 

positive semidefinite. Fiedler in [12] and [13] investigates the smallest positive 

eigenvalue of C(G) in relation to the vertex- and edge-connectivity and he calls it the 

algebraic connectivity of the graph G. 

In the present paper the notion of C-spectra of graphs is extended to hypergraphs 

and the notion of Euclidean representation of hypergraphs is also introduced in the 
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following way: given a hypergraph H on n vertices and fixing the integer k (1~ k < n), 

we are looking for representation 4: V(H)-tRk and $: E(H)+Rk such that 

c #(“)ddU)T=zk 

usV(H) 

and the cost function 

eoE(H) 

is minimized, where the cost K(e) of an edge e is defined by 

fW9:= 1 I14(~)-$(e)l12. 
“El? 

Minimizing the cost function Q means finding a ‘minimal variance placement’ of the 

vertices in the k-dimensional Euclidean space so that vertices having many incident 

edges in common be ‘close’ to each other in Euclidean metric. This gives rise to 

clustering the representatives of the vertices in a Euclidean space. 

Theorem 2.2 states that the minimum of the cost function Q conditioned on 

c vsVCH) 4(u)4(u)T=zk is the sum of the k smallest eigenvalues of the Laplacian B(H) 
defined by 

where A(H) is the vertex-edge incidence matrix of H, while D,(H) and D,(H) are 

diagonal matrices with the vertex- and edge-valencies of H in their main diagonals, 

respectively. The Laplacian is symmetric, singular and positive semidefinite. 

The above minimum is attained for any pair of representations @* and $* which 

assign the column vectors of matrices X*(H) and Y*(H) to the vertices and to the 

edges respectively, where the k x n matrix X*(H) contains k pairwise orthonormal 

eigenvectors corresponding to the k smallest eigenvalues of B(H) in its rows and 

Y*(H) = X*(H) A(H) 0, 1 (H). We speak of optimal k-dimensional Euclidean repre- 
sentation of the hypergraph H, if the vertices and edges are represented by an optimal 

4* and $* pair. 

Section 6 contains some remarks on spectra of hypergraphs and on Euclidean 

representations of some special graphs. In the sequel we indicate H in the spectral 

characteristics only if a hypergraph different from the underlying one is investigated. 

Similarly, if the dimension k is clear from the context, we simply speak of Euclidean 

representation. 

Our purpose is to relate spectral characteristics of a hypergraph to its structural 

properties. The investigated property is the following: for fixed k there exists a k- 
partition (k disjoint, non-empty subsets) of the set of vertices with many of their 

incident edges concentrated within these subsets. A k-partition is sometimes called 

k-coloring, while the edges of the corresponding cut-set are called multi-colored in this 
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coloring. In Section 3, we define combinatorial measures characterizing the number 

and color-distributions of the multi-colored edges. Their minima through all of the 

k-partitions are called cardinality of the minimal k-sector and minimal weighted cut, 

respectively. They are denoted by B,(H) and vk(H), respectively (more precise defini- 

tions are given in Section 3). 

Let 0 = A1 GE,, G ... <A, be the eigenvalues of W. Theorem 3.5 gives the following 

bounds for the sum of the k smallest eigenvalues by the above defined combinatorial 

measures: 

‘flektH)G i aj<V,(H), 

j=l 

where the constant c, merely depends on the number n of the vertices. The upper 

bound shows that existence of k small eigenvalues is a necessary condition for 

existence of a good clustering, and the spectrum can give us an idea about the number 

k of the clusters. But this condition is not sufficient, since there are graphs for which 

the lower bound is attained in order of magnitude of the constant c,, but they cannot 

be classified into k clusters in a sensible way. Therefore, in addition the representatives 

of the vertices in an optimal k-dimensional representation of H have to be investi- 

gated. Provided the representatives of the vertices can be classified into k well- 

separated clusters by means of their Euclidean distances (see Definition 3.7), the 

vertices of the hypergraph can be well classified into k clusters, such that the above 

defined combinatorial measures be ‘small’. In Theorem 3.8 it is stated that the 

diameters of the clusters being less than l/2&, the relation 

v/c(H)64 5 aj 
j=l 

holds. If there exists a well-separated k-partition of the set of vertices, it is 

uniquely determined. In this case, even the k-partition of the vertices giving the 

optimal classification is obtained by k-means clustering of their k-dimensional 

representatives. 

Of course, these bounds can be reached for special hypergraphs and for specific 

k but in general, approximate results can only be obtained by means of these spectral 

techniques. However, these results are useful and well-adopted to automatic computa- 

tion in case of large hypergraphs when one is not interested in strict structural 

properties. 

Large hypergraphs often arise in statistical analysis of several mutually dependent 

binary variables where the vertices correspond to the variables, the edges to the 

objects and the incidence relation depends on, whether an object possesses the 

property represented by the variable in question or not. The iterative algorithm 
- introduced in Chapter 5 - applies the spectral technique in one of the steps of the 

iteration, in the other steps the partitions and the dimensions are determined. 
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2. Optimal Euclidean representations 

Let H=(V,E) be a hypergraph with vertex-set V={u, ..eu,} and edge-set 

M. Bolla 

E={el . ..e.,,}. H is given by its n x m vertex-edge incidence matrix A with entries 

aji=9(ujEei), where 

4(vEe)= 
1 if aEe, 

0 otherwise, 

and the relation vEe denotes that the vertex u is incident with the edge e. 

Let k (1~ k < n) be a fixed integer. We are looking for k-dimensional representatives 

Xj := 4(uj) and yi := $(ci) of the vertices and edges respectively such that 

i XjXJ=Zk 
j=l 

and the sum of the costs of edges 

(2.1) 

(2.4 

is minimized, where the cost K(ei) of the edge ei is defined by 

K(ei):= f ajiIIXj-Yil12. 

j=l 

(2.3) 

Let i(e) denote the center of gravity of the representatives of those vertices the edge 

e is incident with: 

i(e) :=A ,$ Y(UjEe) Xj. 

J 1 
(2.4) 

Let the k x n and k x m matrices X:=(x1 . ..x.,) and Y:=(y, . ..y.,,) contain the vectors 

Xl, ..’ 2 x, and yl, . . . ,y,,, as their columns respectively. Let D, and D, be n x n and 

m x m diagonal matrices with the vertex-valencies s r, . . , s, and the edge-valencies 

zl, . . . , z, in their main diagonals, where 

sj=f aji and zi=i aji. 
i=l j=l 

We can suppose that D, is not singular. 

With these notations the cost K(e) of an edge e is decreased, if x(e) is substituted 

for $(e): 

K(e)> i y(Ujse) Ilxj--f(e)l12, eEE. 
j= 1 
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Denoting the right-hand side by L(e,X) - by means of a simple 

argument - it can be written as 

eEE. 

23 

geometrical 

(2.5) 

Sometimes we shall refer to L(e, X) as the variance of the edge e in the k-dimensional 

Euclidean representation X of the vertices. By setting L(X):=C,,,L(e, X), the in- 

equality Q 3 L(X) always holds. But L(X) is a quadratic form, since 

W)=~ 2 [; 1 1 

i=l j=l eEE 

4(UiEe)9(Uj”)w IIXi-XjJJ2 1 
n n 

=cc b,jxTxj 
i=l j=l 

with 

- c 1 
if i#j, 

bij= I esE 

.~(Ui~e)Y(Uj~e)~ 

(2.6) 

(2.7) 

where s:= # {eEE: viEe, lel> 1). 

Definition 2.1. The matrix of the quadratic form (2.6) is called the LapIacian of the 

hypergraph H, and it is denoted by B. 

In matrix notation, B can be written as D,-AD;’ AT. 

The quadratic form L(X) is equal to tr XBXT, and it is to be minimized on 

XX’=Z,. As the n x n matrix B is symmetric and positive semidefinite, by means of 

a theorem for the extrema of quadratic forms (see e.g. [21, p. 511) the following 

Representation Theorem is arrived at. 

Theorem 2.2. The minimum of the cost function (2.2) conditioned on (2.1) is 

i Aj, (2.8) 

j=l 

whereO=AIdA2<... < A,, are the eigenualues of the Laplacian Band it is attained, when 

the k-dimensional Euclidean representation Xof the vertices contains pairwise orthonor- 

ma1 eigenvectors corresponding to the k smallest eigenvalues of B in its rows. If such an 

X is denoted by X*, the optimal choice for the k-dimensional Euclidean representation 
Y of the edges is Y* =X* AD, ‘. 
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Let R be a k x k orthogonal matrix ( RRT = Zk). Then neither the objective function 

nor the constraint is effected by the substitution X’= RX. Thus, together with an 

optimal X*, the matrix RX* is optimal too. But apart from k-dimensional rotations, 

in case of distinct eigenvalues the optimal X* is uniquely determined by the Laplacian 

B. Otherwise their rows can be chosen appropriately within the eigenspaces belonging 

to the multiple eigenvalues. 

Definition 2.3. If k-dimensional representatives x* = 4 *(v) and y* = $ * (e), which are 

the column vectors of an optimal X* and Y* pair are assigned to the vertices and 

to the edges respectively, we speak of optimal k-dimensional Euclidean representation of 

the hypergraph H. 

We remark that the dimension k does not play an important role here yet, since for 

any k (1 d k <n) an optimal (k + 1)-dimensional Euclidean representation is obtained 

from an optimal k-dimensional one by introducing a subsequent eigenvector in the 

rows of X. 

It can be seen from formula (2.7) that the loops (edges with 1 et = 1) do not contribute 

to the entries of the Laplacian, therefore in the future only hypergraphs without loops 

will be investigated. 

Let us also notice that the Laplacian is always singular since all row sums are 0. The 

eigenvector corresponding to a single zero eigenvalue is a multiple of e, where e is the 

n-dimensional vector of 1s. In this case a k-dimensional Euclidean representation is 

realized in the (k - I)-dimensional subspace of Rk orthogonal to the vector e. It is well 

known that the multiplicity of the zero as an eigenvalue of a hypergraph without loops 

and isolated vertices is equal to the number of its connected components. In this case 

the spectrum consists of the spectra of its components, so only spectra of connected 

hypergraphs are of interest. But in case of connected hypergraphs one can ask how 

many edges must be removed so that the hypergraph be not connected or consist of 

k components. How the strongly connected sub-hypergraphs can be recognized on the 

basis of optimal Euclidean representations? Some of these problems are discussed in 

the subsequent sections. 

3. Relations between spectral and structural properties of hypergraphs 

Let H = ( V, E), 1 VI = n, 1 E / = m be a hypergraph without loops and multiple edges, 

its eigenvalues being 0 = Jwl < iZ < ... < 1, in increasing order. Now we shall give upper 

and lower bounds for combinatorial measures characterizing k-partitions of the 

vertex-set of H by means of the k smallest eigenvalues, where k is any natural number 

between 1 and n. First of all let us introduce the following notions. 

Definition 3.1. A k-tuple ( V1, . . . , vk) of non-empty subsets of Vis called a k-partition 

of the set of vertices, if I’in Vj =8 for i #j and U f= 1 Vi = V. Sometimes a k-partition is 
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denoted by Pk, while the set of all k-partitions is denoted by Pk. The uolume v(PL) of 

the k-partition Pk=( VI, . . . , V,) is defined by 

u(P.):=e;Eh C, ai(e)aj(e) 
lQl<j<k 

and its weighted volume u(Pk) by 

where ai(e)=lcnViI and ni=l Vii. 

The minimal k-cut of H is defined by 

pk(H)= min u(pk), 

PI, E ipk 

while the minimal weighted k-cut by 

(3.1) 

Vk(H)= min u(Pk). 
PI, E.Yk 

(3.4 

Definition 3.2. The cut-set of the k-partition Pk = ( VI, . . . , vk) consists of those edges 

e for which (en Vi1 #@ holds for at least two different parts of Pk, and it is denoted by 

H(Pk). The k-partition Pk defines a coloring c of the vertices in the following way: 

c(u) := i, if DE Vi. An edge e is said to be multi-colored in this coloring, if it contains two 

different vertices u, u’ such that c(v)#c(u’). Thus the cut-set H(P,) consists of the 

multi-colored edges. H(P:) is called a minimal k-sector of H, if 

and its cardinality is denoted by B,(H). 

Remark 3.3. 

~~(H)~~3(H)~...~~n_1(H)~~~(H), 

v~(H)~v~(H)~...~v,-~(H)~v~(H), 

O,(H)<Q,(H)d ...<Q,_l(H)<O,(H)=m. 

Proposition 3.4. Let pk(H):=z. Then 
k 

(3.3) 

(3.4) 

Proof. To obtain the upper bound, let PC :=( VT,. . , V$) be a k-partition with 

H(P,$)=Q,(H). Then by setting uF(e):=IenV?I we get 
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To obtain the lower bound, let P; :=( Vr, . . . , Vh) be a k-partition for which 

u(P;)=pLk(H). Then with any a:(e):=lenViI we have: 

Theorem 3.5. For the sum of the k smallest eigenvalues of the hypergraph H the 
following upper and lower bounds can be given: 

(3.5) 
j=l 

where c, = 6/n(n2 - 1). 

From the upper estimation it follows that the existence of k relatively small eigen- 

values is a necessary condition for the existence of a good classification (with a small 

minimal weighted cut). Thus the spectrum can give us some idea about the choice of 

the number k of the clusters. But the spectrum itself does not say anything about the 

optimal k-partition, moreover it does not give a sufficient condition for the existence 

of a good clustering. The lower estimate in (3.5) depends on the constant c,, and there 

are graphs for which the lower bound is attained in order of magnitude. E.g. for lattices 

and spiders (see Section 6, Examples 6.12 and 6.13), which cannot be classified into 

k clusters in a sensible way. For k=2 a more precise lower bound can be obtained. 

Theorem 3.6. Let the hypergraph H be connected, and let A2 denote its smallest positive 
eigenvalue. Then 

I 2 
223 ( 1 

I-cos; /42(H) iif Od~2(ff)~3%3,, 

Clp2(~)-C2&nax if 4 hax <PLZ(W, 

(3.6) 

where cl= ~(COS x/n - cos 271/n), ~2 = 2 cos z/n (1 - cos z/n) and s,,, = maxj Sj. 
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For a graph G it is the same estimate than that given by Fiedler in [12]. He has also 

given an upper bound for & by the edge-connectivity e(G) of the graph G. As 

v2( H) <(n/n - 1) pZ (H) and p2 (H) = 3 e(G), for the smallest positive eigenvalue of 

ordinary graphs the upper bound v2(G) is sharper than ie(G). 

Now we want to recognize optimal k-partitions by means of classification of 

k-dimensional representatives of the vertices in an optimal k-dimensional Euclidean 

representation of the hypergraph. The classification is performed by k-means method 

(introduced by Mac Queen in [19]). We shall be confined to the case, when a ‘very’ 

well-separated k-partition of the above k-dimensional points exists. 

Definition 3.7. A k-partition Pk = ( VI, . , Vk) is called a well-separated k-partition of 

the vertex-set V in the k-dimensional Euclidean representation X=(x1, . . . , x,) of the 

vertices, if for the coloring c belonging to Pk the relation tx(Pk)> 1 holds, where 

min JJXi-Xjll 

a( Pk) := 
C(h)#C(U,) 

max IIXi-Xjll 

C(Uz)=C(Uj) 

(3.7) 

(In the case when there exists a well-separated k-partition of the k-dimensional 

points xr,...,x,, Dunn in [7-91 proved its uniqueness and gave an algorithm to 

determine the k well-separated clusters Of Xj-S. He also proved, that the larger c((Pk) is, 

the better the separation and the quicker the algorithm is.) 

Theorem 3.8. Assume that for some k < n there exists a well-separated k-partition of the 

vertex set V in an optimal k-dimensional Euclidean representation of the vertices, for the 

clusters of which the diameters are at most E, where E < l/2$ is a small positive number. 

Then 

Vk(H)Gq2 i /lj, (3.8) 
j=l 

where q = 1 + &a/( 1 - ,,&E). 

Comparing the results of Theorems 3.5 and 3.8, under the constraints of Theorem 

3.8 we obtain that 

i J*jdvk(H)<q* 5 /zj, where 1 <q<2. 
j=l j=l 

Provided E is less than l/2&, then q is at most 2 and the combinatorial and analytical 

measures of H, vk( H) and xi= 1 E,j differ at most by a factor 4. Under the assumptions 

of Theorem 3.8 

k+l 

vk+l-vk> c l-j-q2 c /zj 
j=l j=l 
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also holds. Therefore the larger the gap in the spectrum between & and ,&+ 1 is and the 

better the representatives of the vertices in an optimal k-dimensional Euclidean 

representation are separated, the bigger the difference between vk+i and vk is. 

Tusnady and Bolla have found an upper bound for the sum of the inner variances of 

the representatives of the vertices in terms of the gap in the spectrum (see [3]). 

The proofs of the theorems are contained in the next section. 

4. Proofs of theorems 

Lemma 4.1. Let the real number A > 0 and the integers n and k (1 <k < n) be fixed. 

Then any n-tuples of points x1, . . . ,x,ER~ satisfying the property F can be colored 

with k+ 1 different colors in such a way that the minimal distance between points 
of diflerent colors is at least A, where the property F is the following: projecting 

the points onto any line of Rk, on this line there are at least two consecutive points, whose 

distance is at least A. 

Proof. By induction, for k= 1 the statement is straightforward. Let us suppose that 

for k- 1 the lemma is proved. For k: according to the property Y the points can 

be colored with 2 different colors in the requested way. On the one hand let us 

choose one-one points from both color-classes. Let us connect them and project 

the k-dimensional points onto the (k - 1)-dimensional subspace orthogonal to 

this line. 

On the other hand let us consider the A-level graph of the points x1, . . . , x, (the ones, 

whose distance is less than A, are connected). We have to show that this graph consists 

of k+ 1 connected components. Since the points can be colored with two colors, we 

have at least two components. After the above projection these two components will 

be connected by an edge. Therefore the number of connected components is decreased 

by one with this projection. But according to the inductive supposition even after the 

projection there will be k components, which form connected components in Rk too. 

Therefore the number of connected components is exactly k+ 1. q 

Lemma 4.2. Let x1, x2,. . . ,x,eRk be arbitrary points subject to the constraints 

Cs=lxj=O and CJ= 1 XjXl=zk. Then they can be colored with k+ 1 diflerent colors in 
such a way that the minimal distance between points of different colors is at least 

d,=2$/,/m. 

Proof. Due to the constraints the property Y of Lemma 4.1 is satisfied with A = d,. 
Indeed, projecting the point xj onto the line with direction vector f( llfll= 1) let us 

denote its projected copy by xj :=fT Xj, for which 
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and 

C x~~j~l.fT(xjx~)f'T~lIfl12~1~ 
j= 1 

Let us denote by xT<xZ$<..-<x,* the ordered set of the one-dimensional points 

x1, . . . ,x, and let 6 be defined by 

6:= max (x:+,-x*). 
lQi<n 

Then 

2n=2n 2 xT2=T 2 (x*-x:)” 
i=l izzl j=l 

n-l n n-l n 

=2 C 1 (~j*-xx*)~<2 1 C d’(j-i)‘=Gn2(n’-I). 
i=l j=i+l i=l j=i+l 

Hence 6’>,di, which implies the choice of A. 0 

Proof of Theorem 3.5. Upper bound: Let ( VT, . . . , V:) be a k-partition giving the 

minimal weighted k-cut of H, where I VF I = ni (i = 1, . , n). Let us define the following 

k-dimensional Euclidean representation of the vertices: 

Xj(i) = 
l/J$ if vjfzV*, 

0 otherwise, 

where xj(i) denotes the ith coordinate of the k-dimensional representative Xj of the 

vertex Uj. With this choice C’jEI xjxT= Z, also holds. 

By formula (2.5) the variance of the edge e in this representation is 

where aT(e)=IenV*I (i=l,...,k). Since CeeEL(e,X)=u( V:,..., V:)=v,(H) and 

xi= 1 Ij=L(X*) - where the k x n matrix X* is an optimal k-dimensional Euclidean 

representation of H - as a simple consequence of the Representation Theorem we 

have that 

j=l 

Lower bound: (i) The cost is monotone: e’Ge implies L(e’, X)<L(e, X) in any 

Euclidean representation X, since by the Steiner formula: 
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(ii) If c= {Vi, Uj}, th en by formula (2.5) L(e,X)=~I(xi-xj112 in any Euclidean 

representation X. 

(iii) Let us take the vectors IT, . . , xz E Rk giving an optimal k-dimensional Euclid- 

ean representation. Let ZTER k-1 be the vector obtained by discarding the first 

coordinate Ofxj(j=l,..., n). As the discarded first coordinates constitute a vector, 

which is a multiple of the vector e = (1, . . , l)T~R” (corresponding to the eigenvalue 

,?i = 0), and the other eigenvectors are orthogonal to it, ES= i z; = 0 and from the side 

conditions for XTS the relation I;= 1 zJT zTT = zk _ 1 also follows. Then according to 

Lemma 4.2 z;s can be colored with k different colors in such a way that the minimal 

distance between the vectors of different colors is at least d,. This also holds for XTS. 

Letusdenoteby(V/,,..., vk) the k-partition formed by this coloring, and let us choose 

an edge from its cut-set H( Vr, . . . , vk). Such an edge e contains an edge e’= {Ui, Uj}, 

where the vertices Vi and Uj are of different colors. Thus by applying the results of(i) 

and (ii) for the variance of the edge e in the Euclidean representation X* we obtain 

that 

L(e,X*)>L(e’,X*)= 
lb*-~~l12,~ 

2 , 2 , 

whence c,=df/2= 6/(n(n2 - 1)). But X* was an optimal 

representation, therefore by the Representation Theorem, 

k-dimensional Euclidean 

k 

1 lj= 1 L(e,X*)3 1 L(e,X*) 
j=l t?SE eEH(~l,..,,Vk) 

ac,lH( VI, . . . , f$k)l >&ok(H). 0 

Lemma 4.3. Let p(B) denote the measure of irreducibility of the Laplacian B dejined by 

min Cis,x,je./r lbijI> where N={1,2, . . . . n}. Then pz(H)=p(B). 
@I#./( c”,- 

Proof. Let J&’ c N be a fixed non-empty subset, V1 := (Vj: j~&j and I’, := V\ V, . 

Then by an easy counting argument, 
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By taking the minima of the two sides through all pairs (VI, V2)~Y2, the equality 

p2(H)=p(B) is obtained. 0 

Proof of Theorem 3.6. Let B be the Laplacian of H and G= Z,, - (l/s,,,) B. As all row 

sums of B are 0 and B is symmetric, G is doubly stochastic. Because of bjj < Sj d s,,,, all 

of the entries in G are nonnegative. Then by functional calculus the largest eigenvalue 

of G is 1, while the second largest one is 1 -(l/s,,,) %, . Let ,u( B) denote the measure of 

irreducibility of H. As p(B) only depends on the nondiagonal entries of B, 

p(G) = ( l/smaX) ,IX( B) = (l/s_) pL2( H), where the last equality follows from Lemma 4.3. 

Applying a theorem of Fiedler [ll], for the second largest eigenvalue of G the 

inequality 

holds. where 

4nw = 
2(1 -cos7c/n)X if Odx<+, 

1-2(1-x)cos7r/n-(2x-l)cos27r/n if i<xbl. 

The function C&(X) is defined on the interval [0, 11. But (l/s,,,) ,u~ (H) is an element of 

this interval, since p2 (H) is nonnegative and for any fixed j 

p,(H)=p(B)< 1 Ibijl=bjj<sj, 

i#j 

consequently pz (H) d minj Sj 6 s,,, . If p2 (H) d $ s,,,, the lower bound for A2 depends 

only on p2( H). E.g. in case of minj sj <) s,,, 0 

Proof of Theorem 3.8. Let E be less than l/2& and let Pk= ( VI, . . . , Vn) be a well- 

separated k-partition of V in the optimal k-dimensional Euclidean representation 

X*=(X;, .,. ,x,*) such that the diameters of the clusters are less than E. Because of the 

continuity of the outer product we can suppose that under the conditions of Theorem 

3.8 there are k ‘centers’ of the clusters such that the representative XT is allocated 

within one of the k-dimensional spheres with radius E around these ‘centers’, and 

denoting by y(xT) the nearest ‘center’ to XT, the relation I;= 1 y(xr )yT(xJ) = Z, also 

holds. As amongst the ‘centers’ there are exactly k different ones (let them denote by 

yl, . . . ,yk) C:= 1 niu,v: = Zk holds, where n, = 1 Vi 1) If= 1 ni = n, furthermore this condi- 

tion determines the yis uniquely (apart from a k x k rotation): 

r 1 
__ if i= 1, 

y,(l)= 6 

I 0 otherwise. 
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Here yi( 1) denotes the Ith coordinate of the vector yi. Let L(e, X*) denote the variance 

of the edge e in an optimal Euclidean representation X* (the representative of uj being 

XT) and L(e, Y(X*)) be the variance of it in the Euclidean representation, where the 

representative of Oj is y(xy). Then using the equation CeeE L(e, Y(X*))=u(P,), and 

applying twice the formula (2.5) we arrive at the following argument: 

b.(WGC W, Y(X*))= C Ue, Y(X*)) 
eEE eeH(P*) 

since 

=4 
2 

C L(e,X*)6q2 C L(e,X*)=q2 i Aj, 

ecHW*) C?eE j=l 

where the constant q is determined from the fact that the smallest distance between the 

‘centers’ YiS is 

6= min 
C 

‘,‘>I 

x;= ,nI=” 
4 nj’& 

and XT and XT are within the sphere with radius E around the ‘centers’ y(x*) and 

y(xT), respectively. Therefore 

ii 2E 
-=l+-- 

q=&2E d-28 

5. A heuristic classification algorithm based on Euclidean representations 

Let u1,u2, . . . , v, be binary random variables taking the values 0- 1 and e, , e2, . . , e, 

be a sample for them (n 4 m). They form a hypergraph H = ( V, E) with vertex-set 

V={u1,u2,... , v, > and edge-set E = {el, e2, . . , e,}, where $(vce) = v(e), u(e) being the 

observed value of the variable u on the object e. (When u represents some property, 

u(e) = 1 means the presence, while u(e) = 0 the absence of this property on the object e.) 

Let E’c E be a sub-sample. The sub-hypergraph H’ =( V, E’) is called the hyper- 

graph of the edge-cluster E’. Let us denote by O=~,(H’)<~,(H’)<~~~<~,,(H’) the 

spectrum of H’, while the n x n matrix X’(H’) contains a whole system of pairwise 

orthonormal eigenvectors of the Laplacian of H’. According to the Representation 
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Theorem of Section 2, for any integer d (1 <d Q n) the d x n matrix X: (H’) - 

obtained from X*(H’) by retaining the eigenvectors corresponding to ill (H’), 

&(H’), . . , A,(H’) ~ defines an optimal d-dimensional Euclidean representation of H’. 

Furthermore, the sum of the variances of the edges of E’ in this representation is 

minimal, and it is equal to 

L(X,*(H’))= C L(e,X,*(H’))= t ~j(H'). 
eeE’ j=l 

Put K(H’):=min;=, [c~“-~+L(X~*(H’))], where c >O is a constant (chosen pre- 

viously according to the size of problem). The dimension d * giving the minimum is 

called the dimension of the edge-cluster E’. 
Let Y denote the set of all partitions of E into nonempty disjoint sub-samples. Our 

purpose is to find a partition SEY consisting of sub-samples Ei for which the objective 

function K=Ci K(H,) is minimal, where Hi=( V, Ei) is the hypergraph of the edge- 

cluster Ei. 
Now let k be a fixed integer (1 <k d n). We shall define a numerical algorithm 

converging to a local minimum of the objective function, when the minimization takes 

place over the set of all k-partitions Ypk. Let (E,, . . . , Ek)~Yk be a k-partition of the 

edge-set of H. Applying the previous notations for the hypergraphs Hi=( V, Ei) 
(i = 1, . . , k) the following cost function is constructed: Q = Cf= 1 Qdi( Hi), where 

Qdi(Hi):=C2”-d’+L(X~~(Hi)) (i=l,...,k). 

To minimize the cost function Q - with respect to k-partitions of the edges and 

dimensions of the edge-clusters - the following iteration is introduced. First let 

us choose k disjoint clusters El, . . . , Ek of the objects (e.g. by the k-means method, 

see in [19]). 

(i) Fixing the clusters E,, . . . , E,: the spectra and optimal Euclidean representa- 

tions of the sub-hypergraphs of the edge-clusters are calculated. 

(ii) The function Qdi(Hi) is minimized with respect to the dimension di (1 <di<n) 
for each i separately. A unique dT giving the ith minimum always exists. As for that d* 

Qdf(Hi)=c2”-d’+ : ;Ij(Hi) (i=l,....k) 
j=l 

holds, in this step the cost function Q is decreased. Until this moment the minimi- 

zation took place within the clusters. In the next step the objects are relocated between 

the clusters. 

(iii) Fixing the d*-dimensional optimal Euclidean representations X:; (Hi): an 

object e is replaced into the cluster Eiy for which L(e, X::(Hi)) is minimal. If the 

minimum is attained for more than one i, let us replace e into the cluster Ei with the 

smallest index i. In this step Q is also decreased. In this way a new disjoint classifica- 

tion ET, . . . , Ef of the objects is obtained. From now on we go back to step (i) with 

starting classification ET, . . , Ez, etc. 
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As the cost function Q is in each step decreased and in steps (ii) and (iii) discrete 

minimizations are performed the algorithm must converge to a local minimum of Q in 

finite steps. It is easy to see that for fixed k the k-partition, to which the iteration 

converges gives a local minimum of the objective function K too. As a new step of the 

iteration, a minimization with respect to k could be introduced, but it would be very 

time-demanding. (The optimal value of k also depends on the constant c.) 

During the iteration some edge-clusters may become empty. Usually the hypergraph 

Hi = ( V, Ei) contains isolated vertices (this results in additional zero eigenvalues). Let us 

denote by K the set of the nonisolated vertices of Hi. Provided H has no isolated 

vertices, then u f= 1 v = I/ holds but V1, . . . , V, are in general not disjoint subsets of the 

vertices. K is called the characteristic property-association of the sub-sample Ei. 

6. Some remarks concerning spectra of hypergraphs 

Finally, we introduce some simple propositions on spectra of hypergraphs and on 

Euclidean representations of some special hypergraphs (sometimes without proofs). 

Unless otherwise stated, the propositions refer to the spectral characteristics of the 

hypergraph H = ( V, E) with 1 V/I = n and 1 E I= m. 

Assertion 6.1. 

i Ij=trB= C (ICI-l)= 2 lel-m. 
j=l t?eE L?eE 

Proposition 6.2. 

and 
An Q max Sj 

Corollary 6.3. 

where s>= #{GEE: ujEe, lel>l) and tj=maxvj,.Iel. 

Assertion 6.4. If Hi = ( V, Ei) (i = 1, . . . , k) are edge-disjoint hypergraphs, and 
where E = U f= 1 Ei, EinEj= 0 (i #j), then for their Laplacians the relation 

B(H)= i B(Hi) 
i=l 

holds. 

(6.1) 

(6.4 

(6.3) 

H=(f,‘,E), 

(6.4) 
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Proposition 6.5. Let H=(V,E) be a hypergraph, E=E~uEZ, E,nE,=& Hi=(l/,Ei), 

i= 1,2. Then 

i: ~j3 ~ us”+ ~ ~~’ (ldkdn), 
j= 1 j=l j=l 

where iy’ denotes the jth eigenvalue of Hi in increasing order (i = 1,2). 

(6.5) 

Proof. Let L(e, X*) denote the variance of the edge e in the optimal k-dimensional 

Euclidean representation X* of H. Then according to the Representation Theorem, 

i Aj= C Lkx*)= 1 L(e,X*)+ C L(e,X*) 
j=l esE t?EE, esE2 

Proposition 6.6. With the notations of the previous proposition: 

ij-,,<l~<ij (j=l,..., n), 

where ri =rank Bi, Bi being the Laplacian of Hi (i= 1, 2) and Al=O, if1 < 1. 

(6.6) 

Proof. According to the Poincark separation theorem (see [21, Theorem 2.11): if C is 

an n x n symmetric, positive semidefinite matrix of rank r and D is symmetric, positive 

semidefinite, for which rank D < k (< r), then 

;li(c?~ni(C-D)~~.i_~(~ (i= 1, . . . , n) . 

As B= B1 + B,, where B, B, , B2 are n x n symmetric, positive semidefinite matrices 

respectively, the statement follows. q 

Corollary 6.7. Let H = ( V, E) be a hypergraph, and let e be an edge of it with I el =z. 
Then by setting E’:=E\{e}, H’:=( V, E’) and denoting by II’ the eigenualues of H’, the 

relations 

k-r+1 

1 ijGji, i;Gjil ij (l<k<n-1) 
j= 1 

hold, where the first sum be zero, if k<z. 

(6.7) 

Proof, Let B2 denote the Laplacian of the hypergraph H2 := ( V, {e}). Then the rank 

r2 of the matrix B, is equal to z- 1, its eigenvalues being 

2’2’: . . . = A”’ 1 n z+l = 0, 3 ‘2’ ‘II 2+2 
= . = ] (2) = 1 

‘n . 
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The second inequality follows immediately from the second inequality of (6.6), 

while the first inequality from the first one. The lower bound is 0, if k <z. 

Otherwise: 

k-z+1 

i n(i2 i Aj-(z-l)), C /Ii. 0 

j=l j=l i=l 

We remark that the result of Corollary 6.7 remains valid, if H’ =( V, E’), where the 

rank of the Laplacian of the hypergraph ( V, E \ E’) is z- 1. 

Corollary 6.8. For z = 2, by the successive and alternating application of the two sides of 
(6.6) we obtain that 

Example 6.9. Let C, denote the complete hypergraph with n vertices and without loops 

(it has 2’-n- 1 hyperedges). Its spectrum consists of one zero and the number 

(n2”- 1 - 2” + l)/(n - 1) with multiplicity n - 1. Any n - 1 pairwise orthogonal vectors 

within the subspace orthogonal to the vector eER” are eigenvectors belonging to the 

multiple eigenvalue. 

Example 6.10. The smallest positive eigenvalue of the path graph P, having n = 2Z+ 1 

vertices is 1 -cos rc/n. Labelling the vertices as u_~, . . . , vo, . . . , vl, the second coordi- 

nates of their representatives in an optimal 2-dimensional Euclidean representation 

of P, are 

x.=b!?sin j? , G c J , n j=-l,..., 0, . . . . 1 (6.9) 

while the first coordinates are all equal to l/J%. 

Example 6.11. Let S,, denote the star graph with n=d+ 1 vertices. The smallest 

positive eigenvalue of Sd is i with multiplicity d- 1. An optimal d-dimensional 

Euclidean representation of Sd is a d-simplex in the (d - 1)-dimensional subspace of Rd 
orthogonal to the vector eeRd. The center of gravity of the simplex is in the origin. The 

representatives of the vertices of valency 1 are the vertices, while the representative of 

the vertex of valency d is the center of gravity of the simplex. 

Example 6.12. Let Gd,[ denote the subdivision graph of Sd, where each of the edges of 

Sd is divided into 1 parts. We call Gd,I spider with d feet and 1 sections. The number of 

its vertices is n = dl + 1. The smallest positive eigenvalue of G,, I is of multiplicity d - 1 

and it is equal to 1 - cos (rc/(21+ 1)). An optimal d-dimensional Euclidean representa- 

tion of the spider Gd,I is obtained from those of Sd and Pzl+ 1, where the feet of the 

spider are divided according to the sine rhythm of (6.9). 
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Example 6.13. Let Ld,, denote the d-dimensional lattice whose vertices are all d-tuples 

ofnumbers -l,...,O , . . , 1, where two d-tuples are adjacent if and only if they differ in 

exactly one coordinate. The number of its vertices is n = (21+ l)d. The smallest positive 

eigenvalue of Ld,I is 1 - cos (7r/(21+ 1)) with multiplicity d. An optimal (d + l)-dimen- 

sional Euclidean representation of L d,l is realized in the d-dimensional subspace of 

Rd+’ orthogonal to the eERd+’ vector. It is a d-dimensional lattice, its center of 

gravity being in the origin, and the distances between the representatives of adjacent 

vertices follow the sine rhythm of (6.9). 

Example 6.14. Let K,,, ,,,IIL be the complete k-partite graph, where n = If= I ni (n being 

the number of vertices). Let ( VI, . . . , V,) denote the disjoint non-empty independent 

sets of the vertices, where ni=) Vi( (i= 1, . . . , k). The spectrum of K, ,,,,,, nk contains 

a single 0, the numbers )(n - ni) with multiplicity ni - 1 (i = 1, . . . , k) and k - 1 numbers 

equal to f n. If we regard the (k - 1)-dimensional Euclidean representation correspond- 

ing to the largest eigenvalue in, the representatives of the vertices in this representa- 

tion constitute k different points in the (k- 1)-dimensional Euclidean space, where the 

representatives of vertices of the same color coincide. 

Proof. Assume that the labelling of the vertices is such that V, contains the first 

n, vertices, VZ the next n2 ones, etc... As the graph is connected, 0 is a single 

eigenvalue. Let us regard the Laplacian B of K,,,,. ,nk multiplied by 2. It contains 

k diagonal blocks in its main diagonal. The ith block is of size Izi x ni and it is diagonal 

with positive entries n--ni (i= 1, . . . , k). Outsides of these diagonal blocks all entries 

areequalto -l.Forx=(xi,..., x,)~E R the equation 2Bx = KC results in the system of 

equations 

where the ith equation holds for any j such that UjE vi. Therefore the system of 

equations 

nixj+ 1 xl=0 (i=l,..., k and OjGK) 
Ui@V, 

has to be solved for the coordinates of the vector x, as unknowns. Any solution has the 

following form: 

xj=Yi, if UjE Vi, (6.10) 

where the numbers y,, . . . , y, satisfy the equation Cp= i niyi=O, which assures the 

orthogonality to the vector e = (1, . . . , ~)ER”. As such vectors x constitute a (k- l)- 

dimensional subspace within R”, the eigenspace belonging to the eigenvalue )n is of 

dimension k - 1, therefore this eigenvalue is of multiplicity k- 1. Since any (k- l)- 

dimensional Euclidean representation formed by a (k - 1)-tuple of pairwise orthonor- 

ma1 eigenvectors belonging to the largest eigenvalue $n is of the form (6.10), the 
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representatives of the vertices in any of these representations constitute exactly 

k different points in the (k- 1)-dimensional Euclidean space such that the representa- 

tives of vertices of the same color coincide. 

For any i (i = 1, . . . , k) the matrix equation 2Bx = (n - ni) x implies 

(n-ni)Xj- C Xl=(?l-?li)Xj ("jEvi), 

Vl$Vi 

whence for any solution n, xj =0 holds, if vj4 I$ and CvrCVi x, =0 because of the 

orthogonality to the vector ecR”. These conditions determine an (ni - 1)-dimensional 

subspace of R”, as the eigenspace belonging to the eigenvalue f(n-ni). 0 

In this way we can characterize the complete k-partite graph on the basis of its 

optimal (k - 1)-dimensional Euclidean representation belonging to the largest eigen- 

value with multiplicity k - 1. But how can we recognize a k-partition, the members of 

which are independent sets of the vertices (i.e. k-colorable hypergraphs), we do not 

know exactly. Recently it has turned out that these spectral techniques are not always 

capable for the recognition of the chromatic number. 

Analogously to the derivation of the Representation Theorem the maximum of the 

quadratic form L(X) = tr XBXT on XXT = Z, is the sum of the k largest eigenvalues of 

the hypergraph in question and the k x IZ matrix X giving the maximum contains the 

corresponding eigenvectors in its rows. In this kind of representation the sum of 

the variances of the edges is maximized. As a k-colorable graph has no edges within 

the subsets of color-partition ( I’, , . . . , V,), the (k - 1)-dimensional representatives of 

vertices of the same color tend to be near to each other, while the representatives of 

vertices of the multi-colored edges tend to be far away. Consequently, the color- 

partition frequently results in well-separated clusters of the representatives of vertices 

in this representation. 
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