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a b s t r a c t

The role of the normalized modularity matrix in finding homoge-
neous cuts will be presented. We also discuss the testability of the
structural eigenvalues and that of the subspace spanned by the cor-
responding eigenvectors of thismatrix. In the presence of a spectral
gap between the k − 1 largest absolute value eigenvalues and the
remainder of the spectrum, this in turn implies the testability of the
sum of the inner variances of the k clusters that are obtained by ap-
plying the k-means algorithm for the appropriately chosen vertex
representatives.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this paper is to summarize the spectral properties and testability of the spectrum
and spectral subspaces of the normalized modularity matrix introduced in [5] to find regular vertex
partitions. We will generalize the Laplacian based spectral clustering methods to recover so-called
volume regular cluster pairs such that the information flow between the pairs and within the clusters
is as homogeneous as possible. For this purpose, we take into consideration both ends of the normal-
ized Laplacian spectrum, i.e., large absolute value, so-called structural eigenvalues of our normalized
modularity matrix introduced just for this convenience.

In Theorem 3, we estimate the constant of volume regularity in terms of the gap between the
structural and other eigenvalues, and the k-variance of the optimal vertex representatives constructed
by the eigenvectors corresponding to the structural eigenvalues. Here we give a more detailed proof
of this statement than in [6]. This theorem implies that for a general edge-weighted graph, the
existence of k − 1 structural eigenvalues of the normalized modularity matrix, separated from 0,
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is indication of a k-cluster structure such that the cluster-pairs are volume regular with constant
depending on the spectral gap and the above k-variance. The clusters themselves can be recovered
by applying the k-means algorithm for the vertex representatives. Hence, Theorem 3 implies that
spectral clustering of the vertices into k parts gives satisfactory partition in the sense of volume
regularity.

Furthermore, in Theorems 8 and 10, we prove the testability of the structural eigenvalues and the
corresponding eigen-subspace of the normalized modularity matrix in the sense of [12]. In view of
this, spectral clustering methods can be performed on a smaller part of the underlying graph and give
good approximation for the cluster structure.

2. Preliminaries

Throughout the paper, we use the general framework of an edge-weighted graph. Let G = Gn =

(V ,W) be an edge-weighted graph on vertex-set V (|V | = n) and n × n symmetric weight-matrixW
of non-negative real entries and zero diagonal. We will call the numbers di =

n
j=1wij (i = 1, . . . , n)

generalized degrees, and the diagonal matrix D = diag (d1, . . . , dn) degree matrix. In this and the next
section, without loss of generality, Vol(V ) = 1 will be assumed, where the volume of the vertex-
subset U ⊆ V is Vol(U) =


i∈U di. In the sequel, we only consider connected graphs, which means

thatW is irreducible.
In [5], we defined the normalized version of the modularity matrix (introduced in [21]) as MD =

D−1/2WD−1/2
−

√
d
√
d
T
, where

√
d =

√
d1, . . . ,

√
dn
T , and we called it normalized modularity

matrix. The spectrum of this matrix is in the [−1, 1] interval, and 0 is always an eigenvalue with
unit-norm eigenvector

√
d. Indeed, in [11] we proved that 1 is a single eigenvalue of D−1/2WD−1/2

with corresponding unit-norm eigenvector
√
d, provided our graph is connected. This becomes a zero

eigenvalue ofMD with the same eigenvector,whence 1 cannot be an eigenvalue ofMD ifG is connected.
In fact, the introduction of this matrix is rather technical, the spectral gap, further, Lemma 1 and
Theorem 3 can better be formulated with it. It can also be obtained from the normalized Laplacian by
subtracting it from the identity and depriving of its trivial factor. The normalized Laplacian was used
for spectral clustering in several papers (e.g., [3,11,10,14,20]), the idea of which can be summarized by
means of the spectral decomposition of the normalizedmodularitymatrix.We introduce the following
notation: theweighted cut between the vertex-subsets X, Y ⊆ V isw(X, Y ) =


i∈X


j∈Y wij. Wewill
frequently refer to the following facts.

(a) The spectral decomposition of MD solves the following quadratic placement problem. For a given
positive integer k (1 < k < n), we want to minimize Qk =


i<jwij∥ri − rj∥2 on the conditions

n
i=1

dirirTi = Ik−1 and
n

i=1

diri = 0 (1)

where the vectors r1, . . . , rn are (k − 1)-dimensional representatives of the vertices, which form
the row vectors of the n × (k − 1) matrix X. Denote the eigenvalues of MD, in decreasing order,
by 1 > λ1 ≥ · · · ≥ λn ≥ −1 with corresponding unit-norm, pairwise orthogonal eigenvectors
u1, . . . ,un. In [11], we proved that the minimum of Qk subject to (1) is k − 1 −

k−1
i=1 λi and is

attained by the representation such that the optimum vertex representatives r∗1, . . . , r
∗
n are row

vectors of the matrix X∗
= (D−1/2u1, . . . ,D−1/2uk−1). Instead of X, the augmented n × k matrix

X̃ can as well be used, which is obtained from X by inserting the column x0 = 1 of all 1’s. In
fact, x0 = D−1/2u0, where u0 =

√
d is the eigenvector corresponding to the eigenvalue 1 of

D−1/2WD−1/2. Then

Qk = tr (D1/2X̃)T (In − D−1/2WD−1/2)(D1/2X̃),

and minimizing Qk on the constraint (1) is equivalent to minimizing the above expression subject
to X̃TDX̃ = Ik. This problem is the continuous relaxation of minimizing

Qk(Pk) = tr (D1/2X̃(Pk))T (In − D−1/2WD−1/2)(D1/2X̃(Pk))
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over the set of k-partitions Pk = (V1, . . . , Vk) of the vertices such that Pk is planted into X̃ in the
way that the columns of X̃(Pk) are so-called normalized partition-vectors belonging to Pk. Namely,
the coordinates of the ith column are zeros, except those indexing vertices of Vi, which are equal
to 1

√
Vol(Vi)

(i = 1, . . . , k). In fact, this is the normalized cut problem, which is discussed in [20]
for k = 2, further, in [3,10] for a general k, and the solution is based on the above continuous
relaxation.

(b) Now, let us maximize the normalized Newman–Girvan modularity of G induced by Pk, defined in
[5] as

Mk(Pk) =

k
a=1

1
Vol(Va)


i,j∈Va

(wij − didj) =

k
a=1

w(Va, Va)

Vol(Va)
− 1

over the set Pk of the k-partitions of V . It is easy to see that Mk(Pk) = k − 1 − Qk(Pk),
and hence, the above task has the same spectral relaxation as the normalized cut problem. Let
Mk = maxPk∈Pk Mk(Pk) denote the maximum k-way normalized Newman–Girvan modularity of
the weighted graph G.

(c) Finally, from the above considerations it is straightforward that Mk ≤
k−1

i=1 λi, or equivalently,
the minimum normalized k-way cut is at least the sum of the k − 1 smallest positive normalized
Laplacian eigenvalues. As for the minimum normalized k-way cut, in [10] we also gave an
upper estimate by constant times the sum of the k − 1 smallest positive normalized Laplacian
eigenvalues, whose constant depends on the so-called k-variance of the vertex representatives
defined in the following way.

S2k (X) = min
Pk∈Pk

S2k (X, Pk) = min
Pk=(V1,...,Vk)

k
a=1


j∈Va

dj∥rj − ca∥2 (2)

where ca =
1

Vol(Va)


j∈Va djrj is theweighted center of clusterVa and r1, . . . , rn ∈ Rk−1 are rows of

X. (The augmented X̃ would give the same k-variance.) The constant of our estimation depended
on S2k (X

∗), and it was close to 1 if this k-variance of the optimum (k − 1)-dimensional vertex
representatives was small enough. Note that S2k (X, Pk) is the objective function of the weighted
k-means algorithm.

In this way, we showed that large positive eigenvalues of the normalized modularity matrix are
responsible for clusters with high intra- and low inter-cluster densities. Likewise, maximizing Qk(Pk)
instead of minimizing over Pk, small negative eigenvalues of the normalized modularity matrix are
responsible for clusterswith low intra- and high inter-cluster densities (see [5]). Our idea is that taking
into account eigenvalues from both ends of the normalized modularity spectrum, we can recover so-
called regular cluster pairs. For this purpose, we use the notion of volume regularity to be introduced
in the next section.

3. Normalized modularity and volume regularity

With the normalized modularity matrix, the well-known Expander Mixing Lemma (for simple
graphs see, e.g., [17]) is formulated for edge-weighted graphs in the following way (see [7]).

Lemma 1. Provided Vol(V ) = 1, for all X, Y ⊆ V ,

|w(X, Y )− Vol(X)Vol(Y )| ≤ ∥MD∥ ·


Vol(X)Vol(Y ),

where ∥MD∥ denotes the spectral norm of the normalized modularity matrix of G = (V ,W).
Since the spectral gap of G is 1 − ∥MD∥, a large spectral gap indicates small discrepancy as a quasi-
random property discussed in [15]. If there is a gap not at the ends of the spectrum, we want to
partition the vertices into clusters so that a relation similar to the above property for the edge-
densities between the cluster pairs would hold. For this purpose, we use a slightly modified version
of the volume regularity’s notion introduced in [2].
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Definition 2. LetG = (V ,W) be an edge-weighted graphwithVol(V ) = 1. The disjoint pair A, B ⊆ V
is α-volume regular if for all X ⊆ A, Y ⊆ Bwe have

|w(X, Y )− ρ(A, B)Vol(X)Vol(Y )| ≤ α

Vol(A)Vol(B),

where ρ(A, B) =
w(A,B)

Vol(A)Vol(B) is the relative inter-cluster density of (A, B).

In the ideal k-cluster case, let us consider the following generalized random simple graph model:
given the partition (V1, . . . , Vk) of V (|V | = n), vertices i ∈ Va and j ∈ Vb are connected with
probability pab, independently of each other, 1 ≤ a, b ≤ k. We can think of the probability pab as
the inter-cluster density of the pair (Va, Vb). Since generalized random graphs can be viewed as edge-
weighted graphs with a special block-structure burdened with random noise, based on [8], we are
able to give the following spectral characterization of them. Fixing k, and tending with n to infinity
in such a way that the cluster sizes grow at the same rate, there exists a positive number θ < 1,
independent of n, such that for every 0 < τ < 1/2 there are exactly k − 1 eigenvalues of MD greater
than θ−n−τ , while all the others are atmost n−τ in absolute value. Further, the k-variance of the vertex
representatives constructed by the k − 1 transformed structural eigenvectors is O(n−2τ ), and the
cluster pairs areα-volume regularwith any smallα, almost surely. Note that generalized quasirandom
graphs defined in [19] are deterministic counterparts of generalized random graphs with the same
spectral properties.

Theorem 3. Let G = (V ,W) be a connected edge-weighted graph on n vertices, with generalized degrees
d1, . . . , dn and degree matrix D. Assume that Vol(V ) = 1, and there are no dominant vertices, i.e.,
di = Θ(1/n), i = 1, . . . , n, as n → ∞. Let the eigenvalues of MD, enumerated in decreasing absolute
values, be

1 ≥ |µ1| ≥ · · · ≥ |µk−1| > ε ≥ |µk| ≥ · · · ≥ |µn| = 0.

The partition (V1, . . . , Vk) of V is defined so that it minimizes the weighted k-variance S2k (X
∗) of the

optimum vertex representatives – defined in (2) – obtained as row vectors of the n × (k − 1) matrix X∗

of column vectors D−1/2ui, where ui is the unit-norm eigenvector corresponding toµi (i = 1, . . . , k− 1).
Assume that there is a constant 0 < K ≤

1
k such that |Vi| ≥ Kn, i = 1, . . . , k. With the notation

s =


S2k (X∗), the (Vi, Vj) pairs are O

√
2ks + ε


-volume regular (i ≠ j) and for the clusters Vi (i =

1, . . . , k) the following holds: for all X, Y ⊂ Vi,

|w(X, Y )− ρ(Vi)Vol(X)Vol(Y )| = O
√

2ks + ε

Vol(Vi),

where ρ(Vi) =
w(Vi,Vi)
Vol2(Vi)

is the relative intra-cluster density of Vi.

Note that, in Section 2, we indexed the eigenvalues of MD in non-increasing order and denoted them
by λ’s. The set of all λi’s is the same as that of allµi’s. Nonetheless, we need a different notation for the
eigenvalues indexed in decreasing order of their absolute values. Recall that 1 cannot be an eigenvalue
ofMD if G is connected. Consequently, |µ1| = 1 can be if and only ifµ1 = −1, i.e., if G is bipartite. For
example, if the conditions of the above theorem hold with k = 2 andµ1 = −1 (|µi| ≤ ε, i ≥ 2), then
our graph is a bipartite expander discussed in [1] in details.

For the proof we need the definition of the cut norm of a matrix (see e.g., [16]) and the relation
between it and the spectral norm.

Definition 4. The cut norm of the real matrix A with row-set Row and column-set Col is

∥A∥� = max
R⊂Row, C⊂Col


i∈R


j∈C

aij

 .
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Lemma 5. For every m × n real matrix A,

∥A∥� ≤
√
mn∥A∥,

where the right hand side contains the spectral norm, i.e. the largest singular value of A.

Proof.

∥A∥� = max
x∈{0,1}m, y∈{0,1}n

|xTAy| = max
x∈{0,1}m, y∈{0,1}n




x
∥x∥

T

A


y
∥y∥

 · ∥x∥ · ∥y∥|

≤
√
mn max

∥x∥=1, ∥y∥=1
|xTAy| =

√
mn∥A∥,

since for x ∈ {0, 1}m, ∥x∥ ≤
√
m, and for y ∈ {0, 1}n, ∥y∥ ≤

√
n. �

The definition of the cut norm and the result of the above lemma naturally extends to symmetric
matrices with m = n, the spectral norm of which is the maximum of absolute values of their
eigenvalues.

Proof of Theorem 3. Recall that the spectrum of D−1/2WD−1/2 differs from that of MD only in the
following: it contains the eigenvalue µ0 = 1 with corresponding unit-norm eigenvector u0 =

√
d

instead of the eigenvalue 0 ofMD with the same eigenvector. IfG is connected, 1 is a simple eigenvalue.
The optimum (k − 1)-dimensional representatives of the vertices are row vectors of the matrix
X∗

= (x∗

1, . . . , x
∗

k−1), where x∗

i = D−1/2ui (i = 1, . . . , k − 1). The representatives can as well
be regarded as k-dimensional ones, as inserting the vector x∗

0 = D−1/2u0 = 1 will not change the
k-variance s2 = S2k (X

∗). Assume that the minimum k-variance is attained on the k-partition
(V1, . . . , Vk) of the vertices. By an easy analysis of variance argument (see [11]) it follows that

s2 =

k−1
i=0

dist2(ui, F), (3)

where F = Span {D1/2z1, . . . ,D1/2zk} with the so-called normalized partition vectors z1, . . . , zk
of coordinates zji =

1
√
Vol(Vi)

if j ∈ Vi and 0, otherwise (i = 1, . . . , k). Note that the vectors
D1/2z1, . . . ,D1/2zk form an orthonormal system. By considerations proved in [11],we can find another
orthonormal system v0, . . . , vk−1 ∈ F such that

s2 ≤

k−1
i=0

∥ui − vi∥2
≤ 2s2 (4)

(v0 = u0, since u0 ∈ F ). We approximate the matrix D−1/2WD−1/2
=
n−1

i=0 µiuiuT
i by the rank k

matrix
k−1

i=0 µivivTi with the following accuracy (in spectral norm):n−1
i=0

µiuiuT
i −

k−1
i=0

µivivTi

 ≤

k−1
i=0

|µi| ·
uiuT

i − vivTi
+

n−1
i=k

µiuiuT
i

 (5)

which can be estimated from above with
k−1

i=0 sinαi + ε ≤
k−1

i=0 ∥ui − vi∥ + ε ≤
√
2ks + ε, where

αi is the angle between ui and vi, and for it, sin αi
2 =

1
2∥ui − vi∥ holds, i = 0, . . . , k − 1.

Based on these considerations and the relation between the cut norm and the spectral norm (see
Lemma 5), the densities to be estimated in the defining formula of volume regularity can be written
in terms of stepwise constant vectors in the following way. The vectors yi := D−1/2vi are stepwise
constants on the partition (V1, . . . , Vk), i = 0, . . . , k − 1. The matrix

k−1
i=0 λiyiy

T
i is therefore a

symmetric block-matrix on k×k blocks belonging to the above partition of the vertices. Let ŵab denote



110 M. Bolla / European Journal of Combinatorics 35 (2014) 105–116

its entries in the (a, b) block (a, b = 1, . . . , k). Using (5), the rank k approximation of the matrixW is
performed with the following accuracy of the perturbation E:

∥E∥ =

W − D


k−1
i=0

µiyiyTi


D

 =

D1/2(D−1/2WD−1/2
−

k−1
i=0

µivivTi )D
1/2

 .
Therefore, the entries ofW— for i ∈ Va, j ∈ Vb — can be decomposed aswij = didjŵab +ηij, where the
cut norm of the n × n symmetric error matrix E = (ηij) restricted to Va × Vb (otherwise it contains
entries all zeros) and denoted by Eab, is estimated as follows:

∥Eab∥� ≤ n∥Eab∥ ≤ n · ∥D1/2
a ∥ ·

√
2ks + ε


· ∥D1/2

b ∥

≤ n ·


c1
Vol(Va)

|Va|
·


c1
Vol(Vb)

|Vb|
·

√
2ks + ε


= c1 ·


n

|Va|
·


n

|Vb|
·


Vol(Va)


Vol(Vb)

√
2ks + ε


≤ c1 ·

1
K


Vol(Va)


Vol(Vb)

√
2ks + ε


= c


Vol(Va)


Vol(Vb)

√
2ks + ε


.

Here the diagonal matrix Da contains the diagonal part of D restricted to Va, otherwise zeros, and the
constant c does not depend on n. Consequently, for a, b = 1, . . . , k and X ⊆ Va, Y ⊆ Vb:

|w(X, Y )− ρ(Va, Vb)Vol(X)Vol(Y )|

=


i∈X


j∈Y

(didjŵab + ηij)−
Vol(X)Vol(Y )
Vol(Va)Vol(Vb)


i∈Va


j∈Vb

(didjŵab + ηij)


=


i∈X


j∈Y

ηij −
Vol(X)Vol(Y )
Vol(Va)Vol(Vb)


i∈Va


j∈Vb

ηij

 ≤ 2c
√

2ks + ε


Vol(Va)Vol(Vb),

that gives the required statement both in the a ≠ b and a = b case. �

Note that in the k = 2 special case, due to a theorem proved in [11], the 2-variance of the optimum
1-dimensional representatives can be directly estimated from above by the gap between the two
largest absolute value eigenvalues of MD, and hence, the statement of Theorem 3 simplifies, see [7].
For a general k, we can make the following considerations.

Assume that the normalizedmodularity spectrum (with decreasing absolute values) ofG = (V ,W)
satisfies

1 ≥ |µ1| ≥ · · · ≥ |µk−1| ≥ θ > ε ≥ |µk| ≥ · · · ≥ |µn| = 0.

Our purpose is to estimate swith the gap δ := θ−ε.Wewill use the notation of the proof of Theorem3
and apply the results of [4] for the perturbation of spectral subspaces of the symmetric matrices

A =

n−1
i=0

µiuiuT
i and B =

k−1
i=0

µivivTi

in the following situation. The subsets S1 = {µk, . . . , µn−1} and S2 = {µ0, . . . , µk−1} of the
eigenvalues of D−1/2WD−1/2 are separated by an annulus, where dist(S1, S2) = δ > 0. Denote
by PA and PB the projections onto the spectral subspaces of A and B spanned by the eigenvectors
corresponding to the eigenvalues in S1 and S2, respectively:

PA(S1) =

n−1
j=k

ujuT
j , PB(S2) =

k−1
i=0

vivTi .
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Then Theorem VII.3.4 of [4] implies that

∥PAPB∥F ≤
1
δ
∥PA(A − B)PB∥F , (6)

where ∥.∥F denotes the Frobenius norm. On the left hand side, ∥PAPB∥F =

k−1
i=0 sin2 αi, and in view

of ∥ui − vi∥ = 2 sin αi
2 and (4), this is between

√
3
2 s and s. On the right hand side,

PAAPB − PABPB = (PAA)PB − PA(PBB) =

k−1
i=0

n−1
j=k

(µj − µi)uT
j (ui − vi)ujvTi ,

where the Frobenius norm of the rank 1 matrices ujvTi is 1, and the inner product uT
j (ui − vi) is the

smaller if the ui’s and the vi’s are the closer (i = 1, . . . , k − 1). Therefore, by the inequality (6), s is
the smaller if δ is the larger and the |µj − µi| differences for i = 0, . . . , k − 1; j = k, . . . , n − 1 are
closer to δ. If |µk| = ε is small, then |µ1|, . . . , |µk−1| should be close to each other (µ0 = 1 does not
play an important role because of u0 = v0).

4. Testability of the normalized modularity spectrum and eigen-subspaces

The authors of [12] defined the testability of simple graph parameters and proved equivalent
notions of this testability. They also anticipated that their results remain valid if they consider
weighted graph sequences (Gn) with edge-weights in the [0, 1] interval and no dominant vertex-
weights αi(Gn) > 0 (i = 1, . . . , n), i.e., maxi

αi(Gn)
αGn

→ 0 as n → ∞, where αGn =
n

i=1 αi(Gn). To
this end, in [9], we slightly modified the definition of a testable graph parameter for weighted graphs
in the following way.

Definition 6. A weighted graph parameter f is testable if for every ε > 0 there is a positive integer
m < n such that if Gn satisfies maxi

αi(Gn)
αGn

≤
1
m , then

P(|f (Gn)− f (η(m,Gn))| > ε) ≤ ε,

where η(m,Gn) is a random simple graph on m vertices selected randomly from Gn in the following
manner: m vertices of Gn are selected with replacement, with respective probabilities proportional
to the vertex-weights; given the selected vertex-subset, the edges come into existence conditionally
independently, with probabilities of the edge-weights.

By the above definition, a testable weighted graph parameter can be consistently estimated based on
a fairly large sample. Based on the results of [12] for simple graphs, in [9], we established equivalent
statements of this testability, from among which we will use the following.

Fact 7. Let f be a testable weighted graph parameter. Then for every convergent weighted graph sequence
(Gn), with no dominant vertex-weights, f (Gn) is also convergent as n → ∞.

The notion of the convergence of a weighted graph sequence is defined in [12], where the authors
also describe the limit object as a symmetric, measurable functionW : [0, 1]× [0, 1] → [0, 1], called
graphon. The so-called cut distance between the graphons W and U is δ�(W ,U) = infν ∥W − Uν∥�,
where the cut norm of the graphonW is defined by

∥W∥� = sup
S,T⊂[0,1]


S×T

W (x, y) dx dy
 ,

and the above infimum is taken over all measure preserving bijections ν : [0, 1] → [0, 1], while Uν
denotes the transformed U after performing the samemeasure preserving bijection ν on both sides of
the unit square. Graphons are considered modulo measure preserving maps, and under graphon the
whole equivalence class is understood. In this way, to a convergent weighted graph sequence (Gn),
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there is a unique limit graphon W such that δ�(Gn,W ) → 0 as n → ∞, where δ�(Gn,W ) is defined
as δ�(WGn ,W ) with the step-function graphon WGn assigned to Gn in the following way: the sides of
the unit square are divided into intervals I1, . . . , In of lengths α1(Gn)/αGn , . . . , αn(Gn)/αGn , and over
the rectangle Ii × Ij the stepfunction takes on the valuewij(Gn).

In [9], we proved the testability of some normalized and unnormalized balanced multiway cut
densities such thatwe imposed balancing conditions on the cluster volumes. Under similar conditions,
for fixed number of clusters k, the unnormalized and normalized multiway cuts and modularities
are also testable, provided our edge-weighted graph has no dominant vertices. The proofs rely
on statistical physics notions of [13], utilizing the fact that the graph convergence implies the
convergence of the ground state energy (minimum of the energy function over the set of k-partitions
of vertices). In [22], the authors showed that the Newman–Girvan modularity is an energy function
(Hamiltonian), and hence, testability of the maximum/minimum normalized modularities, under
appropriate balancing conditions, can be shown analogously. Here we rather discuss the testability
of spectra and k-variances, because in spectral clustering methods these provide us with polynomial
time algorithms, though only approximate solutions are obtained as analyzed in Section 2.

In Theorem 6.6 of [13], the authors prove that the normalized spectrum of a convergent graph
sequence also converges in the following sense. Let W be a graphon and (Gn) be a sequence of
weighted graphs with uniformly bounded edge-weights tending to W . (For simplicity, we assume
that |V (Gn)| = n). Let |λn,1| ≥ |λn,2| ≥ · · · ≥ |λn,n| be the adjacency eigenvalues of Gn indexed by
their decreasing absolute values, and let µn,i = λn,i/n (i = 1, . . . , n) be the normalized eigenvalues.
Further, let TW be the L2[0, 1] → L2[0, 1] integral operator corresponding toW :

TW f (x) =

 1

0
W (x, y)f (y) dy.

It is well-known that his operator is self-adjoint and compact, and hence, it has a discrete real
spectrum,whose only possible point of accumulation is the 0. Letµi(W )denote the ith largest absolute
value eigenvalue of TW . Then for every i ≥ 1, µn,i → µi(W ) as n → ∞. In fact, the authors prove a
bit more (see Theorem 6.7 of [13]): if a sequence Wn of uniformly bounded graphons converges to a
graphon W , then for every i ≥ 1, µi(Wn) → µi(W ) as n → ∞. Note that the spectrum of WG is the
normalized spectrum of G, together with countably infinitely many 0’s. Therefore, the convergence of
the spectrum of (Gn) is the consequence of that of (WGn).

We will prove that in the absence of dominant vertices, the normalized modularity spectrum is
testable. To this end, both the modularity matrix and the graphon are related to kernels of special
integral operators, described herein. Let (ξ , ξ ′) be a pair of identically distributed real-valued random
variables defined over the product space X × X having a symmetric joint distribution W with equal
margins P. Assume that the dependence between ξ and ξ ′ is regular, i.e., their joint distribution W is
absolutely continuouswith respect to the productmeasureP×P, and letw denote its Radon–Nikodym
derivative, see [23]. Let H = L2(ξ) and H ′

= L2(ξ ′) be the Hilbert spaces of random variables which
are functions of ξ and ξ ′ and have zero expectation and finite variance with respect to P. Observe
that H and H ′ are isomorphic Hilbert spaces with the covariance as inner product; further, they are
embedded as subspaces into the L2-space defined similarly over the product space. (Here H and H ′

are also isomorphic in the sense that for anyψ ∈ H there exists aψ ′
∈ H ′ and vice versa, such thatψ

and ψ ′ are identically distributed.)
Consider the linear operator taking conditional expectation between H ′ and H with respect to

the joint distribution. It is an integral operator and will be denoted by PW : H ′
→ H as it is a

projection restricted to H ′ and projects onto H . To ψ ′
∈ H ′ the operator PW assigns ψ ∈ H such

that ψ = EW(ψ
′
| ξ), i.e.,

ψ(x) =


Y

w(x, y)ψ ′(y) P(dy), x ∈ X.

If 
X


X

w2(x, y)P(dx)P(dy) < ∞,
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then PW is a Hilbert–Schmidt operator, therefore compact and has spectral decomposition

PW =

∞
i=1

λi⟨·, ψ
′

i ⟩H ′ψi,

where for the eigenvalues |λi| ≤ 1 holds and the eigenvalue–eigenfunction equation looks like

PWψ
′

i = λiψi (i = 1, 2, . . .),

whereψi andψ ′

i are identically distributed, whereas their joint distribution is W. It is easy to see that
PW is self-adjoint and it takes the constantly 1 random variable of H ′ into the constantly 1 random
variable of H; however, the ψ0 = 1, ψ ′

0 = 1 pair is not regarded as a function pair with eigenvalue
λ0 = 1, since they have no zero expectation. More precisely, the kernel is reduced tow(x, y)− 1.

Theorem 8. Let Gn = (Vn,Wn) be the general entry of a convergent sequence of connected edge-weighted
graphs whose edge-weights are in [0, 1] and the vertex-weights are the generalized degrees. Assume that
there are no dominant vertices. Let W denote the limit graphon of the sequence (Gn), and let

1 ≥ |µn,1| ≥ |µn,2| ≥ · · · ≥ |µn,n| = 0

be the normalized modularity spectrum of Gn (the eigenvalues are indexed by their decreasing absolute
values). Further, let µi(PW) be the ith largest absolute value eigenvalue of the integral operator PW :

L2(ξ ′) → L2(ξ) taking conditional expectation with respect to the joint measure W embodied by the
normalized limit graphon W, and ξ, ξ ′ are identically distributed random variables with the marginal
distribution of their symmetric joint distribution W. Then for every i ≥ 1,

µn,i → µi(PW) as n → ∞.

Proof. In case of a finiteX (vertex set) we have a weighted graph, andwewill show that the operator
taking conditional expectation with respect to the joint distribution determined by the edge-weights
corresponds to its normalized modularity matrix.

Indeed, let X = V , |V | = n, and Gn = (V ,W) be an edge-weighted graph on the n × n weight
matrix of the edges W with entries Wij’s; now, they do not necessarily sum up to 1. (For the time
being, n is kept fixed, so — for the sake of simplicity — we do not denote the dependence of W on
n). Let the vertices be also weighted with special weights αi(Gn) :=

n
j=1 Wij, i = 1, . . . , n. Then

the step-function graphon WGn is such that WGn(x, y) = Wij whenever x ∈ Ii and y ∈ Ij, where the
(not necessarily contiguous) intervals I1, . . . , In form a partition of [0, 1] such that the length of Ii is
αi(Gn)/αGn (i = 1, . . . , n).

Let us transform W into a symmetric joint distribution Wn over V × V . The entries wij =

Wij/αGn (i, j = 1, . . . , n) embody this discrete joint distribution of random variables ξ and ξ ′

which are identically distributed with marginal distribution d1, . . . , dn, where di = αi(Gn)/αGn (i =

1, . . . , n). With the previous notation H = L2(ξ),H ′
= L2(ξ ′), the operator PWn : H ′

→ H taking
conditional expectation is an integral operator with now discrete kernel Kij =

wij
didj

. The fact thatψ,ψ ′

is an eigenfunction pair of PWn with eigenvalue λmeans that

1
di

n
j=1

wijψ
′(j) =

n
j=1

wij

didj
ψ ′(j)dj = λψ(i), (7)

where ψ(j) = ψ ′(j) denotes the value of ψ or ψ ′ taken on with probability di (recall that ψ and ψ ′

are identically distributed). The above equation is equivalent to
n

j=1

wij
√
di

dj


djψ(j) = λ


diψ(i),

therefore the vector of coordinates
√
diψ(i) (i = 1, . . . , n) is a unit-norm eigenvector of the

normalized modularity matrix with eigenvalue λ (note that the normalized modularity spectrum
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does not depend on the scale of the edge-weights, it is the same whether we use Wij’s or wij’s
as edge-weights). Consequently, the eigenvalues of the conditional expectation operator are the
same as the eigenvalues of the normalized modularity matrix, and the possible values taken on by
the eigenfunctions of the conditional expectation operator are the same as the coordinates of the
transformed eigenvectors of the normalized modularity matrix forming the column vectors of the
matrix X∗ of the optimal (k − 1)-dimensional representatives, see Section 2(a).

Let f be a stepwise constant function on [0, 1], taking on value ψ(i) on Ii. Then Varψ = 1 is
equivalent to

 1
0 f 2(x) dx = 1. Let KGn be the stepwise constant graphon defined as KGn(x, y) = Kij for

x ∈ Ii and y ∈ Ij. With this, the eigenvalue–eigenvector equation (7) looks like

λf (x) =

 1

0
KGn(x, y)f (y) dy.

The spectrum of KGn is the normalized modularity spectrum of Gn together with countably infinitely
many 0’s (it is of finite rank, and therefore, trivially compact), and because of the convergence
of the weighted graph sequence Gn, in lack of dominant vertices, the sequence of graphons KGn
also converges. Indeed, the WGn → W convergence in the cut metric means the convergence of
the induced discrete distributions Wn’s to the continuous W. Since KGn and K are so-called copula
transformations of those distributions, in lack of dominant vertices (this causes the convergence of
the margins) they also converge, which in turn implies the KGn → K convergence in the cut metric.

Let K denote the limit graphon of KGn (n → ∞). This will be the kernel of the integral operator
taking conditional expectation with respect to the joint distribution W. It is easy to see that this
operator is also a Hilbert–Schmidt operator, and therefore, compact. With these considerations the
remainder of the proof is analogous to the proof of Theorem6.7 of [13], where the authors prove that if
the sequence (WGn) of graphons converges to the limit graphonW , then both ends of the spectra of the
integral operators, induced by WGn ’s as kernels, converge to the ends of the spectrum of the integral
operator induced by W as kernel. We apply this argument for the spectra of the integral operators
induced by the kernels KGn ’s and K . �

Note that in [18], kernel operators are also discussed, but not with our normalization.

Remark 9. By Fact 7, provided there are no dominant vertices, Theorem 8 implies that for any fixed
positive integer k, the (k − 1)-tuple of the largest absolute value eigenvalues of the normalized
modularity matrix is testable.

Theorem 10. Assume that there are constants 0 < ε < θ ≤ 1 such that the normalized modularity
spectrum (with decreasing absolute values) of any Gn satisfies

1 ≥ |µn,1| ≥ · · · ≥ |µn,k−1| ≥ θ > ε ≥ |µn,k| ≥ · · · ≥ |µn,n| = 0.

With the notions of Theorem 8, and assuming that there are no dominant vertices of Gn’s, the subspace
spanned by the transformed eigenvectors D−1/2u1, . . . ,D−1/2uk−1 belonging to the k−1 largest absolute
value eigenvalues of the normalized modularity matrix of Gn also converges to the corresponding (k−1)-
dimensional subspace of PW. More precisely, if Pn,k−1 denotes the projection onto the subspace spanned
by the transformed eigenvectors belonging to k − 1 largest absolute value eigenvalues of the normalized
modularity matrix of Gn, and Pk−1 denotes the projection onto the corresponding eigen-subspace of PW,
then ∥Pn,k−1 − Pk−1∥ → 0 as n → ∞ (in spectral norm).

Proof. If we apply the convergence fact µn,i → µi(PW) for indices i = k − 1 and k, we get that there
will be a gap of order θ − ε − o(1) between |µk−1(PW)| and |µk(PW)| too.

Let PW,n denote the n-rank approximation of PW (keeping its n largest absolute value eigenvalues,
together with the corresponding eigenfunctions) in spectral norm. The projection Pk−1 (k < n)
operates on the eigen-subspace spanned by the eigenfunctions belonging to the k−1 largest absolute
value eigenvalues of PW,n in the same way as on the corresponding (k − 1)-dimensional subspace
determined by PW. With these considerations, we apply the perturbation theory of eigen-subspaces
with the following unitary invariant norm: the Schatten 4-norm of the Hilbert–Schmidt operator A
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is ∥A∥4 =


∞

i=1 λ
4
i (A)

1/4. Our argument with the finite (k − 1) rank projections is the following.
Denoting by PWn the integral operator belonging to the normalized modularity matrix of Gn (with
kernel KGn introduced in the proof of Theorem 8),

∥Pn,k−1 − Pk−1∥ = ∥P⊥

n,k−1Pk−1∥ ≤ ∥P⊥

n,k−1Pk−1∥4

≤
c

θ − ε − o(1)
∥PWn − PW,n∥4

with constant c that is at most π/2 (Theorem VII.3.2 of [4]). But

∥PWn − PW,n∥4 ≤ ∥PWn − PW∥4 + ∥PW − PW,n∥4,

where the last term tends to 0 as n → ∞, since the tail of the spectrum (taking the fourth power of
the eigenvalues) of a Hilbert–Schmidt operator converges. For the convergence of the first term we
use Lemma 7.1 of [12], which states that the Schatten 4-norm of an integral operator can be estimated
from above by four times the cut norm of the corresponding kernel. But the convergence in the cut
distance of the corresponding kernels to zero follows from the considerations made in the proof of
Theorem 8. This finishes the proof. �

Remark 11. As the k-variance depends continuously on the above subspaces (see the expansion (3)
of s2 in the proof of Theorem 3), Theorem 10 implies the testability of the k-variance as well.

5. Summary

The above results suggest that in the absence of dominant vertices, even the normalizedmodularity
matrix of a smaller part of the underlying weighted graph, selected at random with an appropriate
procedure, is able to reveal its cluster structure. Hence, the gain regarding the computational time of
this spectral clustering algorithm is twofold: we only use a smaller part of the graph and the spectral
decomposition of its normalized modularity matrix runs in polynomial time in the reduced number
of the vertices. Under the vertex- and cluster-balance conditions this method can give quite good
approximations for the multiway cuts and helps us to find the number of clusters and identify the
cluster structure. In addition, taking into account both the positive and negative, large absolute value
eigenvalues together with eigenvectors, regular cuts can also be detected, as the investigated spectral
characteristics give good estimates for the volume regularity’s constant, so-called discrepancy, of the
cluster pairs by Theorem 3. Such regular cuts are of importance in social or biological networks, e.g., if
we want to find equally functioning synapses of the brain.
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