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Abstract

The asymptotic behaviour of the eigenvalues of random block-matrices is investigated
with block sizes tending to infinity in the same order. In the proofs some extended version
of Wigner’s semi-circle law as well as perturbation results for symmetric matrices are used.
The paper also deals with the asymptotic distribution of the protruding eigenvalues and some
applications to random graphs.
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1. Introduction

Since Wigner [9] stated his famous semi-circle law, a variety of similar results
has appeared. Some authors weakened Wigner’s conditions (e.g., Arnold [1]), while
some others investigated the largest eigenvalue that does not obey the semi-circle
law. In fact, the weak convergence in probability of Wigner’s theorem allows for at
most one protruding eigenvalue (see [5]). In the sequel we shall use the following
results:
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Theorem FK 1 [5]. Let wij , i � j, be independent (not necessarily identically dis-
tributed) random variables bounded with a common bound K (i.e., there is a K > 0
such that |wij | � K, ∀i, j). Assume that for i > j, the wij ’s have a common expec-
tation µ and variance σ 2, further that Ewii = ν. Define wij for i < j by wij = wji.

The numbers K, µ, σ 2, ν will be kept fixed as the size n of the random symmetric
matrix W = (wij ) will tend to infinity. Let λ1 � λ2 � · · · � λn be the eigenvalues
of W.

If µ > 0 then the distribution of the largest eigenvalue λ1 can be approximated
in order 1/

√
n by a normal distribution of expectation

(n − 1)µ + ν + σ 2/µ

and variance 2σ 2. Further, with probability tending to 1,

max
i�2

|λi | < 2σ
√

n + O(n1/3 log n).

Theorem FK 2 [5]. Under the conditions of Theorem 1, if µ = 0 then

max
1�i�n

|λi | = 2σ
√

n + O(n1/3 log n),

with probability tending to 1.

In fact, the same statements could be proved under the conditions of the semi-
circle law (the entries in and above the main diagonal are independent, those above
are identically distributed and those in are also, possibly with another distribution,
moreover both have finite moments; otherwise the matrix is symmetric). For inde-
pendent, Bernoully distributed entries see [6]. Theorems FK1 and FK2 above do not
postulate the identical distribution.

Also, if all the entries in and above the main diagonal are independent and normally
distributed, the result of Theorem FK2 can be proved with the method of Mehta [7].
In this case, however, the entries in and those above the main diagonal have the same
mean and variance, so they are also identically distributed, but not uniformly bound-
ed. In the sequel, whenever we refer to the conditions of Theorem FK1 to hold for a
matrix, the conditions of normality or those of Wigner can be substituted for them.

Throughout the paper the following generalization of the above model is investi-
gated. The symmetric n × n matrix W is decomposed as the sum of the deterministic
matrix B and the stochastic matrix P. Here B is a block-diagonal matrix with diag-
onal blocks Bi , i = 1, . . . , k. The ni × ni symmetric matrix Bi has the positive real
numbers µi’s as entries, except in its main diagonal where it has entries νi’s. Here k is
a fixed positive integer and n = ∑k

i=1 ni . The entries in and above the main diagonal
of the n × n random matrix P are independent, uniformly bounded random variables
(their common bound is K) with zero expectation and with the same variance σ 2,
further, P is symmetric.

In this setup K , k, σ 2, µi , and νi (i = 1, . . . , k) will be kept fixed while n1, . . . , nk

will tend to infinity in the same order. Under these conditions, in Section 2 we give a
rough estimate for the eigenvalues of the n × n random symmetric block-matrix W
as n → ∞. Even from this rough characterization it turns out that there is a spectral
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gap between the k largest and the remaining eigenvalues of W (see Theorem 1).
In Section 3, we investigate the distance between the corresponding eigenspaces
(see Theorem 2). Using these results, in Section 4 we give a finer estimation of
the protruding eigenvalues. Namely, it is proved that they asymptotically follow a
k-variate normal distribution (see Theorem 4).

In Section 5, some applications and further remarks are included. Such random
block matrices frequently occur in the presence of large data structures when the
n observations come from, say, k loosely connected strata (k � n). E.g., the sociolo-
gist M.S. Granovetter investigated the strength of weak ties in the American Journal
of Sociology 78 (1973) 1360–1380. He proved that loose connections between
strongly connected strata can positively help in finding job.

Our data can also be viewed as a random graph G = (V , W), V = {v1, . . . , vn}
being the vertex set and the entries of the n × n symmetric matrix W being real
values assigned to the edges as random weights, the diagonal entries belong to the
loops. The model W = B + P gives rise to a k-partition, or equivalently, a coloring
of the vertices with k different colors in such a way that vi and vj have the same
color l if and only if the entry in the (i, j) position of B is also an entry of the block
Bl for some l, 1 � l � k. The edges are colored too, namely, we color an edge by
the colors of its endpoints. An edge is called monocolored if both endpoints have the
same color, and it is bicolored otherwise. In our model the monocolored edges have
weights of positive expectation, while the bicolored ones of zero expectation. Some-
times we have a digraph: for i � j , wij > 0 means an i → j edge, while wij < 0
stands for a j → i edge (wij = 0 if and only if there is no edge between i and j , in
the case of loops the sign is immaterial), otherwise W is symmetric.

For example, some special communication, biological, and sociological networks
satisfy the above conditions. In practice, to detect the latent block structure, we have
to investigate the spectral decomposition of the matrix W. The number of the pro-
truding eigenvalues gives the number of clusters, while on the basis of the corre-
sponding eigenvectors the vertices can be represented in k dimension (see Theorem
3 in Section 3), and a metric classification technique is applicable to them.

Some remarks concerning recent empirical results on the spectra of some “real-
world” and sparse graphs are also made (see [4]). In these models, the investigated
matrices do not satisfy the conditions of Wigner’s theorem as the entries above the
main diagonal are not independent, and even their distribution changes with n. In
these cases there is a high peak of the spectral density around zero. To the contrary, in
our model the eigenvalues follow the semi-circle law around zero, the only difference
is that we have k dominant eigenvalues.

2. Rough characterization of the spectrum

Theorem 1. Let the random matrix W be the sum of the n × n symmetric matrices
B and P defined in the following way. Let k be a positive integer, µi > 0, and νi
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(i = 1, . . . , k) be real numbers. The deterministic matrix B is the Kronecker-sum of
the matrices Bi , i = 1, . . . , k, where Bi is the ni × ni symmetric matrix with non-
diagonal entries µi’s and diagonal ones νi’s. The entries in and above the main
diagonal of the matrix P = (pij ) are independent (not necessarily identically dis-
tributed) random variables, uniformly bounded with the constant K, they have zero
expectation and variance σ 2, and pij = pji for i > j. The numbers k, K, σ, µi,

and νi (i = 1, . . . , k) will be kept fixed as n1, . . . , nk will tend to infinity in such
a way that n/ni � C0 (i = 1, . . . , k), with n = ∑k

i=1 ni and positive constant C0
(C0 � k).

Then, with probability tending to 1, for the eigenvalues λ1, . . . , λn of W the
following inequalities will hold. There is an ordering of the k largest eigenvalues
λ1, . . . , λk such that

|λi − [(ni − 1)µi + νi]| � 2σ
√

n + O(n1/3 log n), i = 1, . . . , k. (1)

Among the other eigenvalues, for i = 1, . . . , k there are ni − 1, λj ’s with

|λj − [νi − µi]| � 2σ
√

n + O(n1/3 log n). (2)

Proof. The set of the eigenvalues of the matrix B is the union of those of Bi’s. It
is known that the eigenvalues of Bi are βi := (ni − 1)µi + νi and ni − 1 numbers
equal to νi − µi , i = 1, . . . , k.

We can use Weyl’s perturbation theorem for the eigenvalues of Hermitian (in our
case symmetric) matrices with perturbation P (see [10]). According to this, if the ei-
genvalues of W and B are matched in descending order, then the difference between
the corresponding ones is at most the largest absolute value eigenvalue of P. Since
the random matrix P satisfies the conditions of Theorem FK2, for the eigenvalues of
P we have

ε := maxn
i=1|λi(P)| = 2σ

√
n + O(n1/3 log n), (3)

with probability tending to 1. This finishes the proof. �

Note that the last n − k eigenvalues of W are much smaller than the k large ones,
the gap between the two groups being � − 2ε, where

� := mink
i=1[(ni − 1)µi + νi] − maxk

i=1(νi − µi). (4)

Especially, if n1 = · · · = nk = n/k, µ1 = · · · = µk = µ, and ν1 = · · · = νk =
ν, then the k largest eigenvalues are around (n/k − 1)µ + ν within a strip of width ε,
while the other ones are around ν − µ within also an ε-strip, and the gap is (n/k)µ −
2ε → ∞ as n → ∞, with probability tending to 1. In the generic case, the spectral
gap, � − 2ε is also of order n. That is, due to the conditions imposed on ni the
relation n/C0 � ni � n holds, therefore ni is of the same order as n (we shall de-
note it by ni � n), and ε is asymptotically equal to 2σ

√
n (we shall denote it by

ε ∼ 2σ
√

n).
No matter how small ε is compared to �, it can cause a huge fluctuation (of

order
√

n) in the k largest eigenvalues of W. In Theorem 4 it will be shown that in
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fact, this fluctuation is finite with high probability. To this end, the behaviour of the
corresponding eigenvectors will be investigated.

3. Eigenvectors, eigenspaces, and representation

Theorem 2. Let the random matrix W = B + P be the same as in Theorem 1.

Let y1, . . . , yn and u1, . . . , un be sets of orthonormal eigenvectors corresponding
to the eigenvalues (in descending order) of W and B, respectively, further F :=
Span{u1, . . . , uk} ⊂ Rn k-dimensional subspace. Now, n1, . . . , nk and, of course,
n = ∑k

i=1 will tend to infinity under the conditions of Theorem 1. (Hence, it can be
supposed that � is a great deal larger than ε, where ε and � are as introduced in (3)

and (4), respectively. Consequently, F is well defined.) Then

k∑
i=1

d2(yi , F ) � k
ε2

(� − ε)2
(5)

holds with probability tending to 1, where d denotes the Euclidean distance between
a vector and a subspace.

Proof. Let us choose one from the eigenvectors y1, . . . , yk of W. Let us denote
it simply by y, and the corresponding eigenvalue by λ. We shall estimate the dis-
tance between y and F . For this purpose we expand y in the basis u1, . . . , un with
appropriate real numbers t1, . . . , tn:

y =
n∑

i=1

tiui .

The eigenvalues of the matrix B corresponding to u1, . . . , un are denoted by
β1, . . . , βn, where the k largest eigenvalues β1, . . . , βk are those defined in the proof
of Theorem 1 (we can assume that they are in non-increasing order with the proper
reordering of the blocks), and there is a sudden drop following these eigenvalues in
the spectrum of B. Then, on the one hand

Wy = (B + P)y =
n∑

i=1

tiβiui + Py, (6)

and on the other hand

Wy = λy =
n∑

i=1

tiλui . (7)

Equating the right-hand sides of (6) and (7) we get that
n∑

i=1

ti (λ − βi)ui = Py.
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Applying the Pythagorean theorem
n∑

i=1

t2
i (λ − βi)

2 = ‖Py‖2 = yTPTPy � ε2, (8)

as ‖y‖ = 1 and the largest eigenvalue of PTP is ε2.
The distance between y and F is d2(y, F ) = ∑n

i=k+1 t2
i . According to Theorem

1 the distance between λ and any βi (k + 1 � i � n) can be estimated from below
by � − ε, provided n1, . . . , nk are large enough so that � > ε holds. Therefore,

(� − ε)2d2(y, F ) = (� − ε)2
n∑

i=k+1

t2
i

�
n∑

i=k+1

t2
i (λ − βi)

2

�
n∑

i=1

t2
i (λ − βi)

2 � ε2,

where in the last inequality we used (8). From here

d2(y, F ) � ε2

(� − ε)2
(9)

follows.
Applying (9) for the eigenvectors y1, . . . , yk of W and adding the k inequalities

together we obtain the upper bound kε2/(� − ε)2 for the sum of the distances. �

The practical meaning of Theorem 2 is that the eigenvectors of the perturbed
matrix are “close” to the corresponding eigenvectors of the original one. In fact,
the sum of the squared distances between the eigenvectors corresponding to the k

largest eigenvalues of W and the subspace of the eigenvectors spanned by the k

largest eigenvalues of B can be estimated from above by

k
ε2

(� − ε)2
= k

1

(�/ε − 1)2
� k

a

n

(with some constant a), that tends to zero in order O(1/n) as n1, . . . , nk and n tends
to infinity in the prescribed way, with probability tending to 1. That is, by the defini-
tion of ε and � the ratio �/ε is of order

√
n.

The next theorem is formulated for random graphs and finds a Euclidean repre-
sentation of the vertices in such a way that the representatives of vertices of the same
color are close to each other. First, we introduce some notation.

Let G = (V , W) be a weighted graph with set of vertices V and weight matrix
of edges W. Now W is a random matrix, the same as in Theorem 1, and y1, . . . , yk

form a set of orthonormal eigenvectors corresponding to the k largest eigenvalues
of it (cf. Theorem 2). Further, let Y denote the n × k matrix with column vectors
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yi’s and let x1, . . . , xn ∈ Rk denote the rows of Y. The vectors xi’s will be called
k-dimensional representatives of the vertices, briefly, X := (x1, . . . , xn) is k-dimen-
sional representation of the random graph. Let c denote the coloring of the vertices
induced by the block-matrix B (see Section 1), where c(j) is the color of vertex j ,
i.e., c(j) = i, if and only if

∑i−1
l=1 nl < j �

∑i
l=1 nl , i = 1, . . . , k.

The k-variance of the representation X in the coloring c is defined in [3] as

S2
k (c, X) =

k∑
i=1

∑
j :c(j)=i

∥∥xj − x̄i

∥∥2
, (10)

where x̄i = ∑
j :c(j)=i xj /ni is the gravity center of the representatives of color (clus-

ter) i.

Theorem 3. With the above notation and under the conditions of Theorem 1, the
upper estimate

S2
k (c, X) � k

ε2

(� − ε)2

holds with probability tending to 1, if n1, . . . , nk tends to infinity (in the same way
as in Theorem 1).

Proof. First of all, it can be easily verified that the eigenvectors of B corresponding
to its k largest eigenvalues are the following

ui(j) =
{

1/
√

ni, if c(j) = i,

0, otherwise,

where c denotes the coloring induced by B and ui(j) denotes the j th coordinate of
the eigenvector ui , i = 1, . . . , k.

It is easy to see the vectors of F––as linear combinations of u1, . . . , uk––have
equal coordinates for vertices with the same color (such vectors are called c-consis-
tent, see [3]). The projection of any y onto F is a c-consistent vector u, and their
distance is

d2(y, F ) = min
u c-consistent

d2(y, u)

= min
u c-consistent

k∑
i=1

∑
j :c(j)=i

(y(j) − u(i))2, (11)

where y(j) denotes the j th coordinate of y and u(i) is the coordinate of u belonging
to the entries of the ith color. Applying Steiner’s Theorem we derive that the different
coordinates of the optimum c-consistent u∗ are

u∗(i) =
∑

j :c(j)=i y(j)

ni

, i = 1, . . . , k. (12)
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Let us assign such a c-consistent vector u∗
i to each yi that realizes its distance

from F . Summing up the distances for i = 1, . . . , k, moreover taking into account
the relations (5), (11) and (12), and the coordinatewise expansion in the definition
(10) of S2

k (c, X), we get that

S2
k (c, X) =

k∑
i=1

‖yi − u∗
i ‖2 =

k∑
i=1

d2(yi , F ) � k
ε2

(� − ε)2

holds with probability tending to 1, where in the last inequality we used the result of
Theorem 2. �

From Theorem 3, we can arrive at the following conclusion: if the edge-weights
of a random graph are randomized in such a way that edges connecting vertices
of the same color (cluster) have large weights with positive expectation and those
connecting different color-clusters have weights of zero expectation, then in this col-
oring (clustering) the k-variance of the representatives tends to zero, n → ∞. In this
situation any metric classification method applied for the representatives will result
in the clusters defined by c. In other words, the well classifiable property of the
representatives is a necessary condition of the existence of a latent block-structure.

For the time being we focused on the gap between the k largest and the remaining
eigenvalues of W. In fact, the gap was due to the gap between the corresponding
eigenvalues of B. We learned that the k largest eigenvalues of B are the numbers
βi = (ni − 1)µi + νi (i = 1, . . . , k), they tend to infinity and because of ni � n,
they usually differ from each other in order n.

We shall discuss in details the two extreme cases:

(i) all the pairwise distances between the k largest βi’s are of order n,
(ii) β1 = · · · = βk is a multiple eigenvalue. (∗)

The intermediate cases when there are some multiple eigenvalues and all the oth-
ers differ from them and each other in order n can be traced back to these ones. Only
the cases when βi − βj is a non-zero constant for some i /= j are the problematic
ones, our statements will not apply to them. To begin with, we need two propositions
that are proved similarly to Theorem 2.

Proposition 1. Let the random matrix W be the same as in Theorem 1. Let y1, . . . , yk

and u1, . . . , uk be sets of orthonormal eigenvectors corresponding to the k larg-
est eigenvalues (in decreasing order) of W and B, respectively, latter ones being
β1, . . . , βk. Suppose that βi is an isolated eigenvalue, that is

|βi − βj | � δi > ε for all j /= i.

Then

‖yi − tiiui‖2 � ε2

(δi − ε)2

holds with probability tending to 1, where tii = yT
i ui .
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Proof. As in the proof of Theorem 2, we expand yi in the basis u1, . . . , un with
appropriate real numbers ti1, . . . , tin:

yi =
n∑

i=1

tij uj .

Comparing the right-hand sides of equations

Wyi = (B + P)yi =
n∑

j=1

tij βj uj + Pyi

and

Wyi = λiyi =
n∑

j=1

tij λiuj ,

we get that
n∑

j=1

tij (λi − βj )uj = Pyi .

By the Pythagorean theorem

t2
ii (λi − βi)

2 +
∑
j /=i

t2
ij (λi − βj )

2 = ‖Pyi‖2 = yT
i PTPyi � ε2.

Since ‖yi − tiiui‖2 = ∑n
j /=i t2

ij and |λi − βj | � δi − ε, (j /= i),

(δi − ε)2‖yi − tiiui‖2 �
∑
j /=i

t2
ij (λi − βj )

2 �
n∑

j=1

t2
ij (λi − βj )

2 � ε2,

which implies our statement. �

In the Case (i) discussed above the following statement applies to βi with δi of
order n, i = 1, . . . , k.

Corollary 1. If δi is of order n then 1 − tii = O(1/n), |tij | = O(1/
√

n), j /= i, and
‖yi − ui‖2 = O(1/n), with probability tending to 1.

Proof. By Proposition 1, in case of δi � n

‖yi − tiiui‖2 � ε2

(δi − ε)2
= 1

(δi/ε − 1)2
� ai/n

holds with an appropriate constant ai . Hence,

‖yi − tiiui‖2 = ‖yi‖2 − 2tiiyT
i ui + t2

ii‖ui‖2 = 1 − t2
ii � ai/n,

with probability tending to 1. This implies that t2
ii � 1 − ai/n, or equivalently, as

tii > 0, tii �
√

1 − ai/n. Via Taylor’s expansion it follows that 1 − tii � ai/2n.



228 M. Bolla / Linear Algebra and its Applications 377 (2004) 219–240

To prove the second part of the statement, remember that by Theorem 2 the rela-
tion d2(yi , F ) = O(1/n) holds. Then

yi =
k∑

j=1

tij uj + ri , (13)

where the first term is in F , while the last one is orthogonal to F , therefore ‖ri‖ =
O(1/

√
n).

Denote the lth component of yi by yi(l). Then, on the one hand, since ‖yi −
tiiui‖2 � ai/n, we have that

∑
l:c(l) /=i

y2
i (l) +

∑
l:c(l)=i

(
yi(l) − tii√

ni

)2

� ai

n
,

consequently,
 ∑

l:c(l)=j

yi(l)




2

� nj

∑
l:c(l)=j

y2
i (l) � nj

ai

n
, j /= i.

On the other hand, with the help of (13) we have that

tij = yT
i uj =

∑
l:c(l)=j yi(l)√

nj

, j = 1, . . . , k.

Hence

|tij | = | ∑l:c(l)=j yi(l)|√
nj

�
√

njai/
√

n√
nj

=
√

ai√
n

, j /= i,

that is |tij | = O(1/
√

n).
Eventually,

‖yi − ui‖2 = ‖yi‖2 + ‖ui‖2 − 2yT
i ui = 2(1 − tii ) = O(1/n)

that finishes the proof. �

Proposition 2. Let the random matrix W be the same as in Theorem 1. Let y1, . . . , yk

and u1, . . . , uk be sets of orthonormal eigenvectors corresponding to the k largest
eigenvalues (in descending order) of W and B, respectively. Then a set v1, . . . , vk

of orthonormal vectors within F can be found such that

k∑
i=1

‖yi − vi‖2 � 2k
ε2

(� − ε)2

holds with probability tending to 1.

Proof. Let us denote the n × k matrices with column vectors y1, . . . ,

yk and u1, . . . , uk by U and Y, respectively. The desired vectors v1, . . . , vk are also
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put in an n × k matrix V, and hence, we are looking for V in the form V = UR with
an appropriate k × k orthogonal matrix R. More precisely, we shall find R such that,
with it

k∑
i=1

‖yi − vi‖2 = tr(Y − UR)T(Y − UR) � 2
k∑

i=1

d2(yi , F ) (14)

holds. By the additive and cyclic property of the trace operator,

tr(Y − UR)T(Y − UR) = tr YTY + tr RTUTUR − 2tr YTUR
= tr YTY + tr(UTU)(RRT) − 2tr YTUR
= 2(k − tr YTUR) (15)

is obtained, where we used that YTY = UTU = RRT = Ik . The last quantity in (15)
is minimum if tr YTUR is maximum as a function of R. But we can apply a lem-
ma (see [2]), according to which tr(YTU)R is maximum if (YTU)R is symmetric,
and the maximum is

∑k
i=1 si , with si’s being the singular values of YTU. So, the

minimum that can be attained in (15) is equal to

2
k∑

i=1

(1 − si). (16)

Eventually, the sum of the above distances in (14) can also be written in terms of
the singular values s1, . . . , sk . As UUT is the matrix of orthogonal projection onto
F ,

k∑
i=1

d2(yi , F ) = tr(Y − UUTY)T(Y − UUTY)

= tr YTY − tr YTUUTY

= k −
k∑

i=1

s2
i =

k∑
i=1

(1 − s2
i ). (17)

Comparing (16) and (17), it remains to show that
∑k

i=1(1 − si) �
∑k

i=1(1 − s2
i ).

But si’s are the singular values of the matrix UTY, therefore denoting by smax(·) the
maximum singular value of the matrix in the argument, we have

si � smax(UTY) � smax(U) · smax(Y) = 1,

as all singular values of the matrices U and Y are equal to 1. Hence, si � s2
i implies

the desired relation (14). �

This proposition will be applied in the Case (ii). If the largest eigenvalue of B has
multiplicity k, then F is the eigenspace belonging to it. So, v1, . . . , vk form a set of
orthonormal eigenvectors belonging to this multiple eigenvalue, and the statement
of Theorem 2 applies immediately to the paired distances between the eigenvectors
of the perturbed matrix and the original one. We shall summarize our conclusions.
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Corollary 2. If β1 = · · · = βk is a multiple eigenvalue then with the vectors v1, . . . ,

vk of Proposition 2 the relations ‖yi − vi‖2 = O(1/n) hold, i = 1, . . . , k. Further,
for the coefficients of the decomposition

yi = ziivi +
∑
j /=i

zij vj + ri

it holds true that 1 − zii = O(1/n) and |zij | = O(1/
√

n), j /= i, i = 1, . . . , k.

Proof. By Proposition 2 the relation
∑k

i=1 ‖yi − vi‖2 = O(1/n) follows, and it is
also true for the individual terms. The decomposition yi = ziivi + ∑

j /=i zij vj + ri

holds true with the same ri as in Corollary 1, because the vi’s span the same subspace
as the ui’s, hence ‖ri‖2 = O(1/n). As

‖yi − vi‖2 = 2(1 − zii) = O(1/n),

1 − zii = O(1/n) follows.
By the Pythagorean theorem we have

1 = z2
ii +

∑
j /=i

z2
ij + ‖ri‖2,

that implies z2
ij � 1 − z2

ii − ‖ri‖2 = O(1/n), consequently |zij | = O(1/
√

n). This
finishes the proof. �

4. Fine characterization of the spectrum

Theorem 4. With the conditions of Theorem 1, in the Cases (i) and (ii) (cf. (∗))

the asymptotic distribution of the eigenvalue λi of W for any 0 < δ < 1/2 can
be approximated in order 1/n1/2−δ by a distribution that differs at most in O(1)

from a normal distribution with mean (ni − 1)µi + νi + σ 2

µi
and variance 2σ 2 (i =

1, . . . , k), with probability tending to 1.

Further, given the tij ’s (i = 1, . . . , k; j = 1, . . . , k) defined in (13), the distri-
bution of the k largest eigenvalues of W for any 0 < δ < 1/2 can be approximated
in order 1/n1/2−δ by a k-variate normal distribution with covariance matrix 2σ 2Ik

and mean vector m with ith component

mi =
k∑

j=1

t2
ij [(nj − 1)µj + νj + σ 2/µj ] (i = 1, . . . , k)

with probability tending to 1.

We need some lemmas.
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Lemma 1. Let X1, . . . , Xk ∼ N(0, σ 2) be i.i.d. random variables and the random
variables Z1, . . . , Zk be uniformly bounded by n−τ . The real number τ > 0 and the
positive integer k are fixed. Then

P

(∣∣∣∣∣
k∑

i=1

ZiXi

∣∣∣∣∣ >
1

nτ−δ

)
�

√
2

π

σ
√

k

nδ
e
− n2δ

2kσ2 for 0 < δ < τ.

Proof. With the notation Z = (Z1, . . . , Zk), the conditional distribution of
∑k

i=1

ZiXi conditioned on Z = z is N(0, σ 2 ∑k
i=1 z2

i ) due to the independence of Xi’s.

Then for the absolute value of the standardized
∑k

i=1 ZiXi the upper bound

P

(∣∣∣∣∣
k∑

i=1

ZiXi

∣∣∣∣∣ >
1

nτ−δ

∣∣∣∣ Z = z

)
= P


 | ∑k

i=1 ziXi |
σ

√∑k
i=1 z2

i

>
1

nτ−δσ

√∑k
i=1 z2

i




� P


 | ∑k

i=1 ziXi |
σ

√∑k
i=1 z2

i

>
nδ

σ
√

k




�
√

2

π

σ
√

k

nδ
e
− n2δ

2kσ2 =: pn for 0 < δ < τ

is obtained, where we used a result of [8] for estimating the following probability: if
ξ is a standard normal variable then we have

P(|ξ | > u) = 2(1 − �(u)) � 2
1√
2π

1

u
e−u2/2 =

√
2

π

1

u
e−u2/2, (18)

where � is the standard normal (Gauss) distribution function. By this, for the uncon-
ditional probability

P

(∣∣∣∣∣
k∑

i=1

ZiXi

∣∣∣∣∣ >
1

nτ−δ

)
=

∫
Rk

P

(∣∣∣∣∣
k∑

i=1

ZiXi

∣∣∣∣∣ >
1

nτ−δ

∣∣∣∣ Z = z

)
h(z)dz

� pn

∫
Rk

h(z)dz = pn

holds, whatever the distribution of Z was. (We suppose that the distribution of Z
is absolute continuous with respect to the Lebesgue measure, with density function
h(z).) �

Corollary 3. Since limn→∞ pn = 0, it follows that for any τ > 0 the random vari-
able

∑k
i=1 ZiXi tends to zero in probability (i.e., with probability tending to 1) as

n → ∞.

Proof. Let α > 0 be an arbitrary “small” positive constant and δ be such that α =
1/nτ−δ . With this, the relation
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P

(∣∣∣∣∣
k∑

i=1

ZiXi

∣∣∣∣∣ > α

)
�

√
2

π

σ
√

k

αnτ
e
− α2n2τ

2kσ2

holds, and the right-hand side tends to zero with n → ∞. �

Remark 1. Though we do not use the fact, we note that the statement of Corollary
3 can be sharpened. As limn→∞ pn = 0 in exponential order,

∑∞
n=1 pn < ∞, hence

by the Borel–Cantelli lemma
∑k

i=1 ZiXi almost surely converges to zero.

Lemma 2. Let X1, . . . , Xn ∼ N(0, σ 2) be i.i.d. random variables and the random

vector Z = (Z1, . . . , Zn) be such that ‖Z‖ =
√∑n

j=1 Z2
j � n−τ with probability

tending to 1, τ > 0. Then

P




∣∣∣∣∣∣
n∑

j=1

ZjXj

∣∣∣∣∣∣ >
1

nτ−δ


 �

√
2

π

σ

nδ
e− n2δ

2σ2 for 0 < δ < τ.

Proof. The proof is similar to that of Lemma 1. With the same notations
∑n

j=1 ZjXj

conditioned on Z = z is an N(0, σ 2 ∑n
j=1 z2

j ) variable. For the absolute value of the
standardized

∑n
j=1 ZjXj inequality (18) gives that

P




∣∣∣∣∣∣
n∑

j=1

ZjXj

∣∣∣∣∣∣>
1

nτ−δ

∣∣∣∣ Z = z


 = P


 | ∑n

j=1 zjXj |
σ
√∑n

j=1 z2
j

>
1

nτ−δσ
√∑n

j=1 z2
j




� P


 | ∑n

j=1 zjXj |
σ
√∑n

j=1 z2
j

>
nδ

σ




�
√

2

π

σ

nδ
e− n2δ

2σ2 =: qn for 0 < δ < τ.

For the unconditional probability

P




∣∣∣∣∣∣
n∑

j=1

ZjXj

∣∣∣∣∣∣ >
1

nτ−δ


 =

∫
Rk

P




∣∣∣∣∣∣
n∑

j=1

ZjXj

∣∣∣∣∣∣ >
1

nτ−δ

∣∣∣∣ Z = z


 h(z)dz

� qn

∫
Rk

h(z) dz = qn

holds, whatever the distribution of Z was. �

Corollary 4. Since limn→∞ qn = 0, with the argument of Corollary 3, it also fol-
lows that for any τ > 0 the random variable

∑n
j=1 ZjXj tends to zero in probability

as n → ∞. �
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Remark 2. We note that the statement of Corollary 4 can be sharpened. As limn→∞
qn = 0 in exponential order,

∑∞
n=1 qn < ∞, hence by the Borel–Cantelli lemma∑n

j=1 ZjXj almost surely converges to zero.

Lemma 3. Let the distribution of ξn be approximated in order 1/
√

n by an N(0, σ 2)

distribution and ζn be a nonnegative random variable with 1 − ζn = O(1/n). Then
ζnξn asymptotically also follows an N(0, σ 2) distribution, in the same order.

Proof. Let ξn = Xn + ηn/
√

n, where Xn ∼ N(0, σ 2), |ηn| < a with some constant
a, and zn = 1 − ζn. Then

ζnξn = (1 − zn)ξn = ξn − zn(Xn + ηn/
√

n) = ξn − znXn − znηn/
√

n.

Here the first term is asymptotically normally distributed (in order 1/
√

n), the second
one differs from zero in order 1/n1−δ , 0 < δ < 1 by Lemma 1, while the last one is
O(n−3/2), with probability tending to 1. This finishes the proof. �

Now, we are ready to present the

Proof of Theorem 4. Observe, that the diagonal blocks of W satisfy the conditions
of Theorem FK1. More precisely, let us decompose the perturbation P into the per-
turbation on the diagonal blocks and that on the non-diagonal part: P = P1 + P2.
The k largest eigenvalues of W1 = B + P1 are––due to [5]––as follows: the largest
eigenvalue of the ith block can be approximated in order 1/

√
ni (or equivalently, in

order 1/
√

n) by a normal distribution of expectation (ni − 1)µi + νi + σ 2/µi and
variance 2σ 2, i = 1, . . . , k, and they are independent of each other (because they
depend on independent entries), consequently, they approximately have a k-variate
normal distribution with independent components. After putting the random pertur-
bation P2 on W1, with computer simulation we still experienced the same shape of
covariance ellipsoids (they were spheres, with a practically unchanged variance and
mildly shifted mean).

For a precise proof, first we notice that

uT
i Wui = uT

i W1ui (i = 1, . . . , k),

hence by Theorem FK1, these numbers approximate the eigenvalues of W1 in order
1/

√
ni and they are nearly normally distributed with mean (ni − 1)µi + νi + σ 2/µi

and variance 2σ 2, with probability tending to 1. We shall show that in the Cases
(i) and (ii) the same numbers give also a good approximation for the eigenvalues
λ1, . . . , λk of W.

Now, let us investigate λi . By the symmetry of W and also using (13) we have
that

λi = yT
i Wyi =


tiiui +

k∑
j=1
j /=i

tij uj + ri




T

W


tiiui +

k∑
j=1
j /=i

tij uj + ri


 ,
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hence

λi = t2
iiu

T
i Wui + rT

i Wri +
k∑

j=1
j /=i

k∑
l=1
l /=i

tij tiluT
j Wul

+2tii

k∑
j=1
j /=i

tij uT
i Wuj + 2tiiuT

i Wri + 2
k∑

j=1
j /=i

tij rT
i Wuj . (19)

We shall estimate the above terms one by one in the Case (i).
For the second term in (19)

rT
i Wri � ‖ri‖‖Wri‖ � ‖ri‖(‖Bri‖ + ‖P‖‖ri‖) �

√
ai√
n

2ε

√
ai√
n

= O

(
1√
n

)

holds with constant ai , as ‖P‖ = ε ∼ 2σ
√

n, ‖ri‖ = O(1/
√

n), and we apply the
Courant–Fischer–Weyl minimax principle for ‖Bri‖ � ε‖ri‖ using that ri is orthog-
onal to F spanned by the eigenvectors belonging to the k largest eigenvalues of the
matrix B.

For the third term in (19)

k∑
j=1
j /=i

k∑
l=1
l /=i

tij tiluT
j Wul = 2

k∑
j,l=1
j<l
j /=i
l /=i

tij tiluT
j Pul +

k∑
j=1
j /=i

t2
ij uT

j Wuj

= 2
k∑

j,l=1
j<l
j /=i
l /=i

tij til


 1√

njnl

∑
c(x)=j

∑
c(y)=l

pxy




+
k∑

j=1
j /=i

t2
ij uT

j Wuj , (20)

as uT
j Wul = uT

j Pul holds for j /= l because of uT
j Bul = βluT

j ul = 0. Here the ran-

dom variables in brackets follow an N(0, σ 2) distribution due to the central limit
theorem as ni, nj → ∞, moreover, they are independent of each other for indices
j < l. (That is, we utilized that the entries pxy’s above the main diagonal of P are in-
dependent.) Since the random variables |tij | and |til | are O(1/

√
n), Lemma 1 applies

with τ = 1 to the first term, consequently, it is of order 1/n1−δ with any “small” δ >

0. For the second term we use the argument of [5] that the distribution of uT
j Wuj is

approximated (in order 1/
√

nj ) by an N((nj − 1)µj + νj + σ 2/µj , 2σ 2) variable
that can be written as

ξj + (nj − 1)µj + νj + σ 2/µj ,



M. Bolla / Linear Algebra and its Applications 377 (2004) 219–240 235

where ξj has an N(0, 2σ 2) distribution. Then the last sum in (20) can be written as

k∑
j=1
j /=i

t2
ij ξj +

k∑
j=1
j /=i

t2
ij

[
(nj − 1)µj + νj + σ 2/µj

]
.

To the first term above Lemma 1 applies with τ = 1, while the second term above is
of O(1), since t2

ij = O(1/n) for j /= i.
Similarly, for the half of the fourth term in (19)

tii

k∑
j=1
j /=i

tij uT
i Wuj = tii

k∑
j=1
j /=i

tij uT
i Puj =

k∑
j=1
j /=i

tij


 1√

ninj

∑
c(x)=i

∑
c(y)=j

pxy




−(1 − tii )

k∑
j=1
j /=i

tij


 1√

ninj

∑
c(x)=i

∑
c(y)=j

pxy


 (21)

holds. Here, in brackets we have N(0, σ 2) variables and for the sums Lemma 1
applies with τ = 1/2 because of |tij | = O(1/

√
n). The multiplication by 1 − tii =

O(1/n) makes the order of the second big term 1/n3/2−δ , so the difference is of
order 1/n1/2−δ .

For the half of the fifth term in (19) we have that

tiiuT
i Wri = tiiuT

i Pri =
n∑

j=1

rij


 1√

ni

∑
c(x)=i

pxj




−(1 − tii )

n∑
j=1

rij


 1√

ni

∑
c(x)=i

pxj


 , (22)

where rij denotes the j th coordinate of the vector ri . Here we used the fact that
uT

i Wri = rT
i Bui + uT

i Pri = βirT
i ui + uT

i Pri = uT
i Pri , as ui is an eigenvector of B

and ri is orthogonal to it. The random variables in brackets are denoted by Xj ’s
and they are N(0, σ 2) variables (by the central limit theorem). For js with c(j) /=
i (out of block i) they are independent (they have no common terms in the sums∑

c(x)=i pxj ), but for indices j /= l in the case of c(j) = c(l) = i (within the ith
diagonal block) there is exactly one common term (plj = pjl) in the corresponding
sums. Lemma 2 is not immediately applicable here, as the terms in brackets are not
fully independent. However, with a slight modification, we can use the lemma. The
idea is that we substitute the dependent terms with a fewer number of independent
ones, that are not identically distributed, still their variances can be estimated as
follows.

With the notation of Lemma 2, let Zj be rij and X1, . . . , Xn be the random vari-
ables in brackets. Then ‖Z‖ � n−1/2 holds and Xi’s are either independent or each
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pair in the ith block has a common term in their defining sums. So their common
distribution is multivariate normal and their covariances are

Cov(Xj , Xl) =
{

Cov
(

1√
ni

plj ,
1√
ni

pjl

)
= 1

ni
σ 2, if c(j) = c(l) = i, j /= l,

0, otherwise.

Hence, for fixed Z = z:

Var


 n∑

j=1

zjXj


 = Var


 ∑

c(j)=i

zjXj


 + Var


 ∑

c(j) /=i

zjXj




=
∑

c(j)=i

z2
j σ

2 +
∑
j /=l

c(j)=c(l)=i

zj zl Cov(Xj , Xl) +
∑

c(j) /=i

z2
j σ

2

= σ 2
n∑

j=1

z2
j + σ 2

ni

∑
j /=l

c(j)=c(l)=i

zj zl

= σ 2
n∑

j=1

z2
j + σ 2

ni


 ∑

c(j)=c(l)=i

zj zl −
∑

c(j)=i

z2
j




� σ 2
n∑

j=1

z2
j + σ 2

ni


ni

∑
c(j)=i

z2
j −

∑
c(j)=i

z2
j




= σ 2
n∑

j=1

z2
j + σ 2

(
1 − 1

ni

) ∑
c(j)=i

z2
j

� 2σ 2
n∑

j=1

z2
j .

Therefore the standard deviation of
∑n

j=1 zjXj can be estimated from above by√
2σ

√∑n
j=1 z2

j . Consequently, in the proof of Lemma 2 everything works with
√

2σ

instead of σ , and the calculation results in

P




∣∣∣∣∣∣
n∑

j=1

ZjXj

∣∣∣∣∣∣ >
1

nτ−δ


 �

√
2

π

√
2σ

nδ
e− n2δ

4σ2 ,

that is the random variable
∑n

j=1 ZjXj tends to zero in probability in order 1/n1/2−δ

as n → ∞.
Similar arguments apply to the half of the sixth term in (19)

k∑
j=1
j /=i

tij rT
i Wuj =

k∑
j=1
j /=i

tij rT
i Puj =

k∑
j=1
j /=i

tij

n∑
l=1

ril


 1√

nj

∑
c(x)=j

plx


 . (23)
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As, by the central limit theorem, the terms in brackets have N(0, σ 2) distribu-
tion and the inner sums, with the above modification of Lemma 2, are also of order
1/n1/2−δ . Multiplying by tij = O(1/n1/2) will further decrease the order to 1/n1−δ .

It remains to estimate the leading (first) term

t2
iiu

T
i Wui = t2

iiξi + t2
ii[(ni − 1)µi + νi + σ 2/µi], (24)

where ξi in order 1/
√

ni has an N(0, 2σ 2) distribution, hence by Lemma 3, t2
iiξi also

has an asymptotically N(0, 2σ 2) distribution in the same order, since 1 − t2
ii � ai/n

(ai is a constant, cf. the proof of Corollary 1). As

t2
ii[(ni − 1)µi + νi + σ 2/µi] = [(ni − 1)µi + νi + σ 2/µi]

−(1 − t2
ii )[(ni − 1)µi + νi + σ 2/µi],

the constant in the first term on the right-hand side is added to the expected value,
and the last term is less than [(ni − 1)µi + νi + σ 2/µi]ai/n, i.e., it is of order O(1).
It follows that the random variable t2

iiu
T
i Wui differs in at most a constant term from a

random variable that asymptotically follows an N((ni − 1)µi + νi + σ 2/µi, 2σ 2)

distribution, i = 1, . . . , k.
Summarizing, the sum of the six terms in (19)––except the above part of the

first term and k − 1 subterms in the third one (for j = 1, . . . , k; j /= i) that pro-
duce a term of order O(1)––differs in order 1/n1/2−δ from an N((ni − 1)µi + νi +
σ 2/µi, 2σ 2) variable, that was to be proved. Further, the conditional distribution of
λi conditioned on tij ’s is asymptotically N(mi, σ

2), where mi = (ni − 1)µi + νi +
σ 2/µi + Ci with the constant shift Ci that results in adding together the above O(1)

terms:

Ci = −(1 − t2
ii )[(ni − 1)µi + νi + σ 2/µi]

+
k∑

j=1
j /=i

t2
ij [(nj − 1)µj + νj + σ 2/µj ]. (25)

That is, mi satisfies the statement of the theorem. As the constant shift of the
means does not change the covariances, conditioned on tij ’s the eigenvalues λi’s are
in order 1/n1/2−δ uncorrelated with variance 2σ 2, this finishes the discussion of the
Case (i).

In the Case (ii), if β1 = · · · = βk = m is a multiple eigenvalue, then according
to [5], the random variables uT

i Wui (i = 1, . . . , k) are asymptotically N(m, 2σ 2)

distributed with the same mean and variance, and they are independent of each other.
First we show that the random variables vT

i Wvi’s have the same distribution as
uT

i Wui’s, where the set v1, . . . , vk of orthonormal vectors is obtained from that of
u1, . . . , uk by the orthogonal rotation R (cf. Proposition 2). The entries of the latter
k × k orthogonal matrix R are denoted by rij .
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vT
i Wvi =


 k∑

j=1

rjiuT
j


 W1


 k∑

j=1

rjiuj


 +


 k∑

j=1

rjiuT
j


 P2


 k∑

j=1

rjiuj




=
k∑

j=1

r2
jiu

T
j W1uj + 2

k−1∑
j=1

k∑
l=j+1

rjirli


 1√

ninj

∑
c(x)=j

∑
c(y)=l

pxy


 ,

where W1 = B + P1 and the entries of P2 in the non-diagonal blocks are identical to
those of P (think of the decomposition P = P1 + P2 at the beginning of the proof).
As the rij ’s are constants, and they are entries of an orthogonal matrix, furthermore
the terms uT

j W1uj and those in the brackets are normally distributed (due to the

central limit theorem), vT
i Wvi’s will also be normally distributed with the same mean

and variance. That is,

E(vT
i Wvi ) =

k∑
j=1

r2
jim + 0 = m

and

Var(vT
i Wvi ) =

k∑
j=1

r4
ji2σ 2 + 4σ 2


k−1∑

j=1

k∑
l=j+1

r2
jir

2
li




= 2σ 2
k∑

j=1

r4
ji + 2σ 2


 k∑

j=1

k∑
l=1

r2
jir

2
li −

k∑
j=1

r4
ji




= 2σ 2
k∑

j=1

r2
ji

k∑
l=1

r2
li = 2σ 2

hold true due to the orthogonality of R. To show the independence of vT
i Wvi’s, in

view of the normality, it is enough to show that their pairwise covariances are zeros.
That is, for 1 � i < m � k we have that

Cov(vT
i Wvi , vT

mWvm) =
k∑

j=1

r2
jir

2
jmVar(uT

j W1uj )

+ 2
k−1∑
j=1

k∑
l=j+1

rjirlirjmrlmVar(uT
j P2ul )

= 2σ 2
k∑

j=1

r2
jir

2
jm

+ 4σ 2 1

2


 k∑

j=1

rjirjm

k∑
l=1

rlirlm −
k∑

j=1

r2
jir

2
jm


 = 0.
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As ‖yi − vi‖2 = O(1/n), the same calculation with vi’s instead of ui’s can be
performed (cf. Corollary 2) that finishes the proof. �

5. Conclusions and further remarks

The following corollary comes out easily from the proof of Theorem 4.

Corollary 5. Given the eigenvectors, for the eigenvalue λi of W the relation

P

(
|λi − ηi | > Ci + 1

n1/2−δ

)
= O

(
1

n

)
holds, where ηi follows an N((ni − 1)µi + νi + σ 2/µi, 2σ 2) distribution, and Ci

is as defined in (25), i = 1, . . . , k.

Proof. Let γi be a random variable that asymptotically follows an N((ni − 1)µi +
νi + σ 2/µi, 2σ 2) distribution, in order 1/n1/2−δ , and differs from λi in the constant
Ci . With it, the argument

P

(
|λi − ηi | > Ci + 1

n1/2−δ

)
� P

(
|λi − γi | + |γi − ηi | > Ci + 1

n1/2−δ

)

� P

(
Ci + |γi − ηi | > Ci + 1

n1/2−δ

)

= P

(
|γi − ηi | >

1

n1/2−δ

)
= O

(
1

n

)
,

is valid, where the last equation follows from the proof of the Theorem FK1. �

Corollary 5 shows that with probability tending to 1, the eigenvalue λi is with-
in a constant distance from a normally distributed random variable that takes on
values with high probability in a bounded region. For example, to the 95% level a
confidence interval around βi with radius Ci + 1.96

√
2σ + O(1/

√
n) can be formed.

Even in the generic case, the O(1) terms can be bounded with a constant C (C > Ci),
and with this C, the statement of Corollary 5 remains valid. In fact, C = 2kσ comes
out with a more refined computation that is, indeed, very “small” compared to the
size of the problem.

We could further improve even the rough estimate for the eigenvalues, if we gave
a better upper bound for the largest absolute value eigenvalue of the between-blocks
perturbation P2. Our conjecture is that it is of order 2σ

√
n(k − 1)/k. That is, fol-

lowing the proof of Theorem 2 in [5] the number of desired walks can be reduced
to roughly [n(k − 1)/k]k , as only walks affecting consequent vertices of different
colors count toward the non-zero expectation, so instead of 2σ

√
n we would have

2σ
√

n(k − 1)/k as upper bound.
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We performed this spectral decomposition of weight matrices assigned to the edg-
es of some special graphs describing telecommunication, biological, and sociolog-
ical networks. In some cases we experienced the same order of magnitude of the
eigenvalues as described in Theorems 1 and 2, and the representatives were well
classifiable into k clusters with k-variance of order of Theorem 3. In such situations k

latent clusters can be assumed and even obtained with the help of computer programs
available for matrices of size up to 1000. Here the integer k is chosen by inspection
from the spectral gap. We remark that such a block-structure is not obvious for the
first sight, partly because of the large size of the problem, and partly because of
possible permutations of the rows or/and columns of W.

Physicists [4] found deviations from the semi-circle law if the model is either
sparse uncorrelated (the expectation p of the independent and Bernoulli-distributed
wij ’s tends to zero in such a way that np tends to a constant) or correlated (wij ’s are
formed randomly but not with equal probabilities as the “real-world” graph evolves).
The spectral density shows a high peak around zero in these cases. It is not the case
in our model. We have k dominant eigenvalues, with high probability they are in a
bounded region far away from the others that obediently follow the semi-circle law.
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