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a b s t r a c t

In this short note we strengthen a former result of Bolla (2011), where in a multipartition
(clustering) of a graph’s vertices we estimated the pairwise discrepancies of the clusters
with the normalized adjacency spectra. There we used the definition of Alon et al. (2010)
for the volume-regularity of the cluster pairs. Since then, in Bolla (2016) we defined the so-
called k-way discrepancy of a k-clustering and estimated the kth largest (in absolute value)
normalized adjacency eigenvalue with an increasing function of it. In the present paper,
we estimate the new discrepancy measure with this eigenvalue. Putting these together,
we are able to establish a relation between the large spectral gap (as for the (k − 1)th and
kth non-trivial normalized adjacency eigenvalues) and the sudden decrease between the
k−1 and k-way discrepancies. Itmakes rise to a newparadigmof spectral clustering, which
minimizes the multiway discrepancy.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Our purpose is to relate discrepancy and spectra in amultiway classification of a graph’s vertices. To do so, we develop an
estimate for the multiway discrepancy by spectral tools. To simplify notation, we use unweighted graphs, though the result
can as well be extended to edge-weighted ones.

Let G = (V ,A) be an undirected, unweighted graph on the n-element vertex-set V with the n × n adjacency matrix
A = (aij). We will use the normalized adjacency matrix AD = D−1/2AD−1/2 of G, where D = diag(d1, . . . , dn) is the diagonal
degree-matrix and dv is the degree of vertex v. Assume that G is connected, i.e., A is irreducible. Then the eigenvalues of AD,
enumerated in decreasing absolute values are 1 = µ0 ≥ |µ1| ≥ |µ2| ≥ · · · ≥ |µn−1|, and µ0 is a single eigenvalue. (Note
that µ1 = −1 can be if G is bipartite.)

Let 1 < k < n be a fixed integer. We look for the proper k-partition (clustering) V1, . . . , Vk of the vertices such that the
within- and between-cluster discrepancies are minimized. Let a(X, Y ) =

∑
u∈X

∑
v∈Yaij be the edge-cut between X, Y ⊂ V ,

and Vol(X) =
∑

v∈Xdv be the volume of the vertex-subset X . Further, let ρ(X, Y ) :=
a(X,Y )

Vol(X)Vol(Y ) be the volume–density
between X and Y . The multiway discrepancy [6] of G = (V ,A) in the clustering V1, . . . , Vk of its vertices is

md(G; V1, . . . , Vk) = max
1≤i≤j≤k

max
X⊂Vi, Y⊂Vj

|a(X, Y ) − ρ(Vi, Vj)Vol(X)Vol(Y )|
√
Vol(X)Vol(Y )

.

The minimum k-way discrepancy of G is mdk(G) = min(V1,...,Vk)∈Pkmd(G; V1, . . ., Vk), where Pk denotes the set of proper
k-partitions of V . This generalizes the notion of the volume-regular cluster pairs of [2] in the following way. If α =

md(G; V1, . . . , Vk), then α is the smallest positive constant such that for every Vi, Vj pair and for every X ⊂ Vi, Y ⊂ Vj,

|a(X, Y ) − ρ(Vi, Vj)Vol(X)Vol(Y )| ≤ α
√
Vol(X)Vol(Y )
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holds. In [2], the α volume-regularity of the cluster pairs requires only

|a(X, Y ) − ρ(Vi, Vj)Vol(X)Vol(Y )| ≤ α
√
Vol(Vi)Vol(Vj), (1)

a condition on which the estimate of [4] is based.
In Section 2, we give a strengthened discrepancy estimate by means of spectral tools. We use the following measure for

the ‘goodness’ of a k-clustering. Assume that |µk−1| > |µk|, and denote by u1, . . . ,uk−1 the unit-norm, pairwise orthogonal
eigenvectors, corresponding to the leading (non-trivial) eigenvalues µ1, . . . , µk−1 of AD. Let r1, . . . , rn ∈ Rk−1 be the row
vectors of then×(k−1)matrix of columnvectorsD−1/2u1, . . . ,D−1/2uk−1; they are called (k−1)-dimensional representatives
of the vertices. The weighted k-variance of these representatives is defined as

S̃2k = min
(V1,...,Vk)∈Pk

k∑
i=1

∑
v∈Vi

dv∥rv − ci∥2,

where ci =
1

Vol(Vi)

∑
v∈Ui

dvrv is the weighted center of the cluster Vi. Actually, S̃2k is the minimal distance between the
subspace spanned by the vectors 1,D−1/2u1, . . . ,D−1/2uk−1 and that spanned by step-vectors over the k-partitions in Pk,
see [5]. It is theweighted k-means algorithm that provides this minimum. This is the generalization of the k-means algorithm,
for which there are polynomial time approximating schemes (PTAS), see [12]. The so-called spectral relaxation (base of the
spectral clustering) means that we can approximately find discrepancy minimizing clustering via applying the weighted
k-means algorithm to the (k − 1)-dimensional vertex representatives.

In Theorem 1, for a general term of a graph sequence having ‘no dominant vertices’, we estimate mdk(G) with |µk|, S̃k,
and exact constants by strengthening the estimate of Theorem 2.1 of [4] in that there instead of exact constants only big-O,
and instead of mdk(G) the weaker discrepancy measure (1) for the volume-regularity of cluster pairs was used.

Conversely, in [6] we estimated |µk| with mdk(G) as

|µk| ≤ 9mdk(G)(k + 2 − 9k lnmdk(G)). (2)

Putting these back and forth statements together, in Section 3 we establish an important relation between the gaps in the
spectral and in the discrepancy view for expanding graph sequences, see Corollary 2. Hence, we justify for the discrepancy
minimizing spectral clustering, and contribute to the characterization of the generalized quasirandom graphs (see [11]) by
spectra and spectral subspaces.

Sowe are able to prove back and forth relations between k-clusterings of the vertices and the inner spectral gap (at the kth
eigenvalue) of the normalized adjacency spectrum,with the same k, thus also indicating the choice of the optimal k. Relations
between the overall discrepancy of a graph and the spectral gap at the edge of the spectrum have long been investigated
together with quasirandomness, e.g., Thomason [13], Chung–Graham–Wilson [10], Bollobás–Nikiforov [8], Bilu–Linial [3],
Butler [9]. However, their results apply to the k = 1 case. Similar results for bipartite graphs, e.g., Alon [1] and Thomason [14],
correspond to the k = 2 case, but their findings do not extend trivially to a general k. For simulation results and applications
see [7].

2. The strengthened discrepancy estimate

Theorem1. Let Gn be the general term of a connected simple graph sequence, Gn has n vertices. (We do not denote the dependence
of the vertex-set V and adjacency matrix A of Gn on n.) Assume that there are constants 0 < c < C < 1 such that except o(n)
vertices, the degrees satisfy cn ≤ dv ≤ Cn, v = 1, . . . , n. Let the eigenvalues of the normalized adjacencymatrix of Gn, enumerated
in decreasing absolute values, be

1 = µ0 ≥ |µ1| ≥ · · · ≥ |µk−1| > ε ≥ |µk| ≥ · · · ≥ |µn−1| = 0.

The partition (V1, . . . , Vk) of V is defined so that it minimizes the weighted k-variance s2 = S̃2k of the optimal (k−1)-dimensional
vertex representatives of Gn. Assume that this k-partition (V1, . . . , Vk) satisfies the balancing condition:

|Vi|
n → ri for i = 1, . . . , k

as n → ∞ with some positive reals r1, . . . , rk. Then

mdk(Gn) ≤ md(Gn; V1, . . . , Vk) ≤ 2
(
C
c

+ o(1)
)
(
√
2ks + ε).

Proof. At the beginning, we follow the proof of [4], the idea of which is summarized briefly. Denote by u0,u1, . . . ,uk−1
the unit-norm, pairwise orthogonal eigenvectors of AD corresponding to the k largest (in absolute value) eigenvalues
µ0, µ1, . . . , µk−1 of AD. The (k − 1)-dimensional representatives of the vertices of Gn are row vectors of the matrix with
column vectors xi = D−1/2ui (i = 1, . . . , k − 1). The representatives can as well be regarded as k-dimensional ones, as
by inserting the vector x0 = D−1/2u0 will not change the weighted k-variance s2 = S̃2k , because it is the vector of all 1
coordinates. Suppose that the minimumweighted k-variance is attained at the k-partition (V1, . . . , Vk) of the vertices. By an
easy analysis of variance argument (see [5]) it follows that s2 =

∑k−1
i=0 dist

2(ui, F ), where F = Span{D1/2z1, . . . ,D1/2zk} with
the so-called normalized partition vectors z1, . . . , zk of coordinates zji =

1√
Vol(Vi)

if j ∈ Vi and 0, otherwise (i = 1, . . . , k).
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Note that the vectors D1/2z1, . . . ,D1/2zk form an orthonormal system. By [5], we can find another orthonormal system
v0, . . . , vk−1 ∈ F such that s2 ≤

∑k−1
i=0 ∥ui − vi∥2

≤ 2s2 (note that v0 = u0). Then we approximate the matrix
AD =

∑n−1
i=0 µiuiuT

i by the rank k matrix
∑k−1

i=0 µivivTi with the following accuracy (in spectral norm):
n−1∑
i=0

µiuiuT
i −

k−1∑
i=0

µivivTi

 ≤
√
2ks + ε, (3)

see [4]. Based on these considerations and relation between the cut norm and the spectral norm, we rewrite our estimates
in terms of stepwise constant vectors in the following way. The vectors yi := D−1/2vi are stepwise constants on the partition
(V1, . . . , Vk), i = 0, . . . , k − 1. The matrix

∑k−1
i=0 µiyiyTi is therefore a symmetric block-matrix on k × k blocks belonging

to the above k-partition of the vertices. Let âij denote its entries in the (i, j) block (i, j = 1, . . . , k). Using (3), the rank k
approximation of the matrix A is performed with the following accuracy of the perturbation E = (ηuv):

∥E∥ =

A − D(
k−1∑
i=0

µiyiyTi )D

 =

D1/2(D−1/2AD−1/2
−

k−1∑
i=0

µivivTi )D
1/2

 .

Therefore, the entries of A – for u ∈ Vi, v ∈ Vj – can be decomposed as auv = dudv âij + ηuv .
From here, we develop the strengthened estimate. The cut-norm of the n × n symmetric error matrix E , restricted to

X × Y (otherwise it contains all zero entries) and denoted by EXY , is estimated as follows:

∥EXY∥□ ≤

√
|X ||Y |∥EXY∥ ≤

√
|X ||Y |∥D1/2

X ∥(
√
2ks + ε)∥D1/2

Y ∥

≤

√
|X ||Y |

√
C
c
Vol(X)

|X |

√
C
c
Vol(Y )

|Y |
(
√
2ks + ε)

=
C
c

√
Vol(X)

√
Vol(Y )(

√
2ks + ε).

Here the diagonal matrix DX contains the diagonal part of D restricted to X , otherwise zeros. But by the degree conditions,

∥DX∥ = max
v∈X

dv ≤
C
c

min
v∈X\V0

dv ≤

(
C
c

+ o(1)
)

Vol(X)
|X |

,

where V0 is the exceptional class of size o(n) (where the degree conditions do not hold) and the constants c and C do not
depend on n. We also used that Vol(X) =

∑
v∈X\V0

di + o(n). Likewise,

∥EViVj∥□ ≤
C
c

√
Vol(Vi)

√
Vol(Vj)(

√
2ks + ε)

and, from the balancing condition, |Vi| = rin + o(n).
Consequently, for i, j = 1, . . . , k and X ⊆ Vi, Y ⊆ Vj:⏐⏐a(X, Y ) − ρ(Vi, Vj)Vol(X)Vol(Y )

⏐⏐
=

⏐⏐⏐⏐⏐⏐
∑
v∈X

∑
u∈Y

(dvduâij + ηuv) −
Vol(X)Vol(Y )
Vol(Vi)Vol(Vj)

∑
v∈Vi

∑
u∈Vj

(dudv âij + ηuv)

⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐
∑
v∈X

∑
u∈Y

ηuv −
Vol(X)Vol(Y )
Vol(Vi)Vol(Vj)

∑
v∈Vi

∑
u∈Vj

ηuv

⏐⏐⏐⏐⏐⏐
≤

(
C
c

+ o(1)
)√

Vol(X)
√
Vol(Y )(

√
2ks + ε)

+
Vol(X)Vol(Y )
Vol(Vi)Vol(Vj)

(
C
c

+ o(1)
)√

Vol(Vi)
√
Vol(Vj)(

√
2ks + ε)

=

(
C
c

+ o(1)
)√

Vol(X)
√
Vol(Y )(

√
2ks + ε)

+

√
Vol(X)

√
Vol(Y )

√
Vol(Vi)

√
Vol(Vj)

√
Vol(X)

√
Vol(Y )

(
C
c

+ o(1)
)
(
√
2ks + ε)

≤ 2
(
C
c

+ o(1)
)
(
√
2ks + ε)

√
Vol(X)

√
Vol(Y )

that gives the required estimate. □
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3. Conclusion

Corollary 2. Let Gn be the general term of a sequence of simple graphs; Gn has n vertices and n× n normalized adjacency matrix
AD,n; further, satisfies the degree conditions of Theorem 1. Let k be a fixed positive integer, whereas n → ∞. Consider the following
two properties:

(a) There exists a constant 0 < δ < 1 (independent of n) such that AD,n has k − 1 structural eigenvalues (except the trivial
1) that are greater than δ (in absolute value), while the remaining eigenvalues are o(1). The weighted k-variance S̃2k,n of
the (k − 1)-dimensional vertex representatives, based on the transformed eigenvectors corresponding to the structural
eigenvalues of AD,n, is o(1). The k-partition (V1,n, . . . , Vk,n) minimizing this k-variance satisfies the following: there are
positive reals r1, . . . , rk such that

|Vi,n|

n
→ ri for i = 1, . . . , k as n → ∞. (4)

(b) There are vertex-classes V1,n, . . . , Vk,n obeying the balancing condition (4), and there is a constant 0 < θ < 1 (independent
of n) such that md1(Gn) > θ, . . . ,mdk−1(Gn) > θ , andmd(Gn; V1,n, . . . , Vk,n) = o(1).

Then property (a) implies property (b).

Proof. Assume that there is a constant 0 < δ < 1 such that AD,n has k − 1 eigenvalues (except the trivial 1) that are greater
than δ in absolute value, while the remaining eigenvalues are o(1); further, the squareroot of weighted k-variance S̃2k,n is also
o(1). Using that there are no dominant vertices, we apply Theorem 1. According to this, md(Gn; V1,n, . . . , Vk,n) = o(1), where
V1,n, . . . , Vk,n are the spectral clusters.

Now indirectly assume that there is no absolute constant 0 < θ < 1 such that md1(Gn) > θ, . . . ,mdk−1(Gn) > θ . Then
there is an 1 ≤ i ≤ k − 1 with mdi(Gn) ≤ ε, for any 0 < ε < 1. But Inequality (2) estimates |µn,i| with a (near zero) strictly
increasing function of mdi(Gn). In view of this, there should be an 0 < ε′ < 1 so that |µn,i| ≤ ε′, where ε′ can be any small
positive number (depending on ε). This contradicts to the |µn,i| > δ assumption. □

Themessage of the above statement is that a sudden gap in the spectrum and cluster variances is an indication of a sudden
gap in the multiway discrepancies. The (a) → (b) implication may be converted with some additional conditions when it is
included in the chain of implications between so-called generalized quasirandom properties. If the chain is closed through
other properties and with some additional conditions, then (b) → (a) also holds, and our graph sequence is generalized
quasirandom in the sense of [11]. Simulation results supporting this idea are shown in [7].
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