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Matrix and discrepancy view of generalized
random and quasirandom graphs
Abstract: We will discuss how graph based matrices are capable to find classification of the graph 5
vertices with small within- and between-cluster discrepancies. The structural eigenvalues together with
the corresponding spectral subspaces of the normalized modularity matrix are used to find a block-
structure in the graph. The notions are extended to rectangular arrays of nonnegative entries and
to directed graphs. We also investigate relations between spectral properties, multiway discrepancies,
and degree distribution of generalized random graphs. These properties are regarded as generalized 10
quasirandom properties, and we conjecture and partly prove that they are also equivalent for certain
deterministic graph sequences, irrespective of stochastic models.
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1 Introduction
One may think of random graphs as very disordered. However, we will show, that generalized random
graphs have almost sure properties which are related to their spectra, discrepancies, vertex-degrees, and
exhibit regular patterns at the expectation. The generalized random graph model, sometimes called 20
stochastic block-model, was first introduced in [24], and discussed later in [4, 15, 22, 27, 30, 33]. This
model is the generalization of the classical Erdős–Rényi random graph, the first random graph of the
history introduced in [23] and also discussed in [13], which corresponds to the one-cluster case.

The graph Gn(P,Pk) on n vertices is a generalized random graph with k× k symmetric probability
matrix P = (puv) and proper k-partition Pk = (C1, . . . , Ck) of the vertices (|Cu| = nu) if vertices of 25
Cu and Cv are connected independently, with probability puv, 1 ≤ u < v ≤ k; further, any pair of
the vertices within Cu is connected with probability puu (u = 1, . . . , k). Therefore, the subgraph of
Gn(P,Pk) confined to the vertex set Cu is an Erdős–Rényi type random graph Gnu(puu), while the
bipartite subgraphs connecting vertices of Cu and Cv (u 6= v) are random bipartite graphs of edge
probability puv. Sometimes we refer to Pk as clustering, where C1, . . . , Ck are the clusters. 30

In Chapter 3 of [8] we proved that for a given positive integer k ≤ n, there are almost surely
k outstanding, so-called structural eigenvalues in the adjacency, and k − 1 outstanding ones in the
normalized modularity spectrum of the generalized random graph Gn(P,Pk) as n → ∞ under some
balancing conditions on the cluster sizes. Under the same conditions, the k-variances of the vertex
representatives, constructed by the eigen-subspaces corresponding to the structural eigenvalues, is o(1). 35
The k-way discrepancy of Gn(P,Pk) also tends to 0, and the subgraphs and bipartite subgraphs defined
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on the vertex classes are asymptotically regular and biregular, respectively. These properties can be
regarded as so-called generalized quasirandom properties, provided their equivalence can be proved for
any graph sequence. More precisely, we focus on an expanding family of graphs such that, for them,
any of the above properties implies the others, regardless of stochastic models. In the k = 1 case these
are called quasirandom or pseudorandom graph sequences and were first discussed by Thomason [36],5
later, by Chung, Graham and Wilson [19, 20], also by Lovász [29]. In the k > 1 case, the deterministic
counterparts of the generalized random graphs were first defined in [28] as graph sequences converging
to a vertex- and edge-weighted graph (vertex-weights correspond to the relative sizes of the partition-
members, whereas edge-weights to the probability matrix) in the sense of the homomorphism densities.
Due to convergence facts on spectra [17], the generalized quasirandom graphs are spectrally equivalent10
to the generalized random graphs.

In the spirit of the Szemerédi regularity lemma [35], given a large graph, we look for a k-partition of
its vertices, such that the induced subgraphs and bipartite subgraphs be nearly quasirandom, in terms
of the discrepancy. For this purpose, we define the k-way discrepancy that can be related to spectra.
Based on the multiway discrepancy and spectra together with spectral subspaces, we will formulate15
quasirandom properties and conjecture their equivalences, irrespective of stochastic models. Real-life
expanding graph sequences asymptotically capturing one of these properties are random-like, confined
to the subgraphs and bipartite subgraphs of them. The equivalences also suggest that spectral methods
are capable to find k-partitions of the vertices with small within- and between-cluster discrepancies;
further, help us to find the optimal k based on gaps within the spectrum. The novel idea is that large,20
real-life graphs are instances of expanding graph sequences, and if there is a cluster structure behind
them, then we are able to recover it by spectral techniques.

The scope of the paper is twofold: partly we want to establish the equivalence of generalized quasir-
andom properties based on former results of others [19, 20] and Chapter 3 of [8], and partly to make up
for the missing chains in the implications. In Proposition 2, we also give a short proof for the Expander25
Mixing Lemma for irregular graphs, and in Theorem 1, we estimate the k-th largest singular value of the
normalized matrix with the k-way discrepancy. We will also extend the notion of multiway discrepancy
to rectangular arrays, of which undirected or directed, unweighted or weighted graphs are special cases.
The results are supported by computer simulations and processing migration data on the directed graph
of which the spectral relaxation technique is illustrated.30

The organization of the paper is as follows. In Section 2, we introduce the notion of graph-based ma-
trices, together with their spectra, spectral subspaces, and corresponding spectral clustering techniques.
In Section 3, we discuss the generalized random and quasirandom graphs, together with properties re-
lated to spectra, discrepancies and vertex degrees. In Conjecture 1 we state the equivalence of these
properties, which are partly known, partly proved in this paper; in fact, only the relation to the vertex-35
degrees is missing. Particularly, in Section 4, we prove a relation between the k-th largest singular value
of the normalized matrix and the k-way discrepancy of this matrix, which is the key to prove an im-
portant implication between the quasirandom properties. In Section 5, we summarize the ideas of the
paper.

2 Notation and graph based matrices40

The notion of the modularity matrix was first introduced for simple graphs (see Newman [31] for an
overview) to capture the so-called community structure in social networks. In [7] we extended this notion
to weighted graphs as follows. Let G = (V,W) be an edge-weighted graph on the n-element vertex-set
V with the n× n symmetric weight-matrix W; the entries satisfy wij = wji ≥ 0, wii = 0 and they are
similarities between the vertex-pairs. The modularity matrix of G is defined as M = W − ddT , where
the entries of d are the generalized vertex-degrees di =

∑n
j=1 wij (i = 1, . . . , n). Here W is normalized in

such a way that
∑n

i=1
∑n

j=1 wij = 1, an assumption that does not hurt the generality, since the following
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normalized modularity matrix, to be mostly used, is not affected by the scaling of the entries of W:

MD = D−1/2MD−1/2,

where D = diag(d1, . . . , dn) is the diagonal degree-matrix. We will demonstrate that the modularity
matrix is capable to measure the discrepancy of the underlying graph, a notion which becomes important
if we want to find homogeneous patterns in the graph. First we introduce some further notions.

An edge-weighted graph is called connected if its vertices cannot be divided into two disjoint subsets
with all zero weights between them. This is equivalent to the weight matrix W being irreducible, in 5
which case, the generalized vertex-degrees are all positive. The modularity matrix M always has a zero
eigenvalue with eigenvector 1n = (1, . . . , 1)T , since its rows sum to zero. Because of tr(M) < 0, M must
have at least one negative eigenvalue, and it is usually indefinite. In [11] we proved that the modularity
matrix of a simple graph is negative semidefinite if and only if it is a complete multipartite graph. The
same applies to the normalized modularity matrix, since it has the same inertia. In [8] we proved that 10
the eigenvalues of MD are in the [−1, 1] interval, and 1 cannot be an eigenvalue if G is connected.
MD is closely related to the normalized Laplacian matrix. The normalized Laplacian of G = (V,W) is
defined as LD = I−D−1/2WD−1/2, and the following relation can be established between the spectra
of LD and MD when G is connected. Let 0 = λ0 < λ1 ≤ · · · ≤ λn−1 ≤ 2 denote the eigenvalues of LD.
The zero is a single eigenvalue with corresponding unit-norm eigenvector

√
d := (

√
d1, . . . ,

√
dn)T . The 15

eigenvalues of MD are the numbers 1 − λi with the same eigenvectors (i = 1, . . . , n − 1); further, the
zero with corresponding unit-norm eigenvector

√
d.

Let 1 < k < n be a fixed integer. Usual spectral clustering techniques use the k bottom eigenvalues
λ0, . . . , λk−1 of LD together with the corresponding eigenvectors to find k ‘loosely connected’ clusters
of the vertices; about this so-called spectral relaxation of the minimum k-way normalized cut problem 20
see, e.g., Chapter 2 of [8]. More generally, in the modularity based spectral clustering, we look for the
proper k-partition C1, . . . , Ck of the vertices such that the within- and between cluster discrepancies are
minimized.

To motivate the introduction of the exact discrepancy measure observe that the ij entry of M is wij−
didj , which is the difference between the actual connection of the vertices i, j and the connection that is
expected under independent attachment of them with probabilities di and dj , respectively. Consequently,
the difference between the actual and the expected connectedness of the subsets X,Y ⊂ V is∑

i∈X

∑
j∈Y

(wij − didj) = w(X,Y )−Vol(X)Vol(Y ),

where w(X,Y ) =
∑

i∈X
∑

j∈Y wij is the weighted cut between X and Y , and Vol(X) =
∑

i∈X di is the
volume of the vertex-subset X. Further, let ρ(X,Y ) := w(X,Y )

Vol(X)Vol(Y ) be the density between X and Y . 25

Definition 1. The multiway discrepancy of the edge-weighted graph G = (V,W) in the clustering
C1, . . . , Ck of its vertices is

disc(G;C1, . . . , Ck) = max
1≤u≤v≤k

max
X⊂Cu, Y⊂Cv

disc(X,Y ;Cu, Cv), (1)

where
disc(X,Y ;Cu, Cv) = |w(X,Y )− ρ(Cu, Cv)Vol(X)Vol(Y )|√

Vol(X)Vol(Y )

= |ρ(X,Y )− ρ(Cu, Cv)|
√

Vol(X)Vol(Y ).
(2)

The minimum k-way discrepancy of G is

disck(G) = min
(C1,...,Ck)

disc(G;C1, . . . , Ck).

Note that disc(G;C1, . . . , Ck) is the smallest α such that for every Cu, Cv pair and for every X ⊂ Cu,
Y ⊂ Cv, 30

|w(X,Y )− ρ(Cu, Cv)Vol(X)Vol(Y )| ≤ α
√

Vol(X)Vol(Y ) (3)
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holds. Hence, in the k-partition of the vertices, giving the minimum k-way discrepancy of G, every
Cu, Cv pair is so-called α-volume regular (see [2]), and this is the smallest possible discrepancy that can
be attained with proper k-partitions of the vertices of G. It resembles the notion of ε-regular pairs in
the Szemerédi regularity lemma [35], albeit with given number of vertex-clusters, which are usually not
equitable; further, with volumes, instead of cardinalities.5

In Section 4, we will justify for the following spectral approximation of the minimum k-way dis-
crepancy problem. Let the eigenvalues of MD, enumerated in decreasing absolute values, be 1 > |µ1| ≥
|µ2| ≥ · · · ≥ |µn| = 0. Assume that |µk−1| > |µk|, and denote by u1, . . . ,uk−1 the corresponding unit-
norm, pairwise orthogonal eigenvectors. Let r1, . . . , rn ∈ Rk−1 be the row vectors of the n × (k − 1)
matrix of column vectors D−1/2u1, . . . ,D−1/2uk−1; they are called (k − 1)-dimensional representatives10
of the vertices.

The weighted k-variance of these representatives is defined as

S̃2
k = min

(C1,...,Ck)

k∑
u=1

∑
j∈Cu

dj‖rj − cu‖2, (4)

where cu = 1
Vol(Cu)

∑
j∈Cu

djrj is the weighted center of the cluster Cu. It is the weighted k-means
algorithm that gives this minimum, and the point is that the optimum S̃k is just the minimum distance
between the eigensubspace corresponding to µ0, . . . µk−1 and the one of the suitably transformed step-15
vectors over the k-partitions of V . In Chapter 2 of [8] we also discussed that, in view of subspace
perturbation theorems, the larger the gap between |µk−1| and |µk|, the smaller S̃k is. In the k-partition,
which gives the minimum weighted k-variance of G, the k-way discrepancy of G is also ‘fairly small’. The
exact relations are established in Section 4, and the message is, that here the eigenvectors corresponding
to the largest absolute value eigenvalues have to be used, unlike usual spectral clustering techniques.20

In Section 3, we will also need the plain k-variance of the representatives r1, . . . , rn ∈ Rk that are
row-vectors of the matrix, the columns of which are the unit-norm, pairwise orthogonal eigenvectors
corresponding to the k largest absolute value eigenvalues of W. This k-variance is

S2
k = min

(C1,...,Ck)

k∑
u=1

∑
j∈Cu

‖rj − cu‖2, (5)

where cu = 1
|Cu|

∑
j∈Cu

rj is the center of the cluster Cu. It is the usual k-means algorithm that finds this
minimum. In fact, under some conditions, there are variants of this algorithm which find a clustering25
‘close’ to the optimal one in polynomial time. We will not discuss these algorithmic aspects, see, e.g., [26]
for details.

3 Generalized random and quasirandom graphs
Generalized random and quasirandom graphs are specimens, where the ‘large’ spectral gap an and the
‘small’ k-variance show up together with ‘small’ k-way discrepancy.30

Definition 2. Let n be a natural number and k ≤ n be a positive integer. The graph Gn(P,Pk) is a
generalized random graph with probability matrix P and proper k-partition Pk = (C1, . . . , Ck) of the
vertices if it satisfies the following. The vertex set is V , |V | = n; the k × k symmetric matrix P is
such that its entries satisfy 0 ≤ puv ≤ 1 (1 ≤ u ≤ v ≤ k). Then vertices of Cu and Cv are connected
independently, with probability puv, 1 ≤ u < v ≤ k; further, any pair of the vertices of Cu is connected35
with probability puu (u = 1, . . . , k).

With different notation, this definition can be found, e.g., in [4, 22, 27, 30, 33]. Sometimes it is called
stochastic block-model that was first mentioned in [24], and discussed much later in [15] as a special
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case of an inhomogeneous random graph. Note that this model is the generalization of the classical
Erdős–Rényi random graph, the first random graph of the history introduced in [23] and also discussed
in [13], which corresponds to the k = 1 case. In this case, the probability matrix boils down to the
number 0 < p < 1, whereas edges come into existence independently, with the same probability p; it is
denoted by Gn(p). 5

Note that that Definition 2 makes sense if the probability matrix P contains at least one non-zero
entry. In many cases, one or more entries of P are zeros. In particular, when puu = 0 (u = 1, . . . k)
and puv = p ∈ (0, 1), then the graph Gn(P,Pk) has a so-called soft-core multipartite structure, defined
in [11]. In the special case when p = 1, it is the complete k-partite graph Kn1,...,nk over the independent
vertex classes of Pk, where ni = |Ci| (i = 1, . . . , k). 10

If k = n and pij := didj/
∑n

m=1 dm (i, j = 1, . . . n), then the model gives the random graph with
expected degree sequence d1, . . . , dn, first discussed in [21] on the condition that maxi d2

i ≤
∑n

i=1 di.
This is a good model for capturing power law graphs in that the random power law graph, introduced
in [3], is a special case of it.

However, the generalized random graph model can better be exploited in applications where k is 15
much less than n. Now, we keep k and P fixed, while n → ∞ under some balancing conditions on the
cluster sizes. In [5, 6, 8] we proved the following properties of a generalized random graph.

Proposition 1. Let Gn(P,Pk) be a generalized random graph on n vertices with vertex-classes Pk =
(C1, . . . , Ck) of sizes n1, . . . nk and k×k symmetric probability matrix P. Let k be a fixed positive integer
and n → ∞ in such a way that nu

n ≥ c (u = 1, . . . , k) with some constant 0 < c ≤ 1
k (called balancing 20

condition). Then the following hold almost surely for the adjacency matrix An and the normalized
modularity matrix MD,n of Gn(P,Pk).
1. An has k so-called structural eigenvalues that are Θ(n), while the remaining eigenvalues are O(

√
n)

in absolute value. Further, the k-variance S2
k,n of the k-dimensional vertex representatives, based on

the eigenvectors corresponding to the structural eigenvalues of An (see (5)), is O( 1
n ). 25

2. There exists a positive constant 0 < δ < 1 independent of n (it only depends on k) such that MD,n

has exactly k−1 structural eigenvalues of absolute value greater than δ, while all the other eigenvalues
are less than n−τ in absolute value, for every 0 < τ < 1

2 . Further, the weighted k-variance S̃2
k,n of

the (k− 1)-dimensional vertex representatives, based on the transformed eigenvectors corresponding
to the structural eigenvalues of MD,n (see (4)), is O(n−τ ). 30

3. There is a constant 0 < θ < 1 (independent of n) such that disc1(Gn(P,Pk)) > θ, . . . , disck−1(Gn(P,Pk)) >
θ, and the k-way discrepancy disck(Gn(P,Pk);C1, . . . , Ck) is O(n−τ ).

4. For every 1 ≤ u ≤ v ≤ k and i ∈ Cu: ∑
j∈Cv

aij = puvnv + o(n).

For every 1 ≤ u ≤ v ≤ k and i, j ∈ Cu:∑
t∈Cv

aitajt = p2
uvnv + o(n).

For the proofs of Properties 1-2 see Theorems 3.1.6, 3.1.8 and Propositions 3.1.10, 3.1.12 of [8]. The 2-3
relation between discrepancy and spectra will be discussed in Section 4, whereas the proof of Property
4 is as follows. We will use the following version of the Chernoff’s inequality. 35

Lemma 1 (Chernoff inequality for large deviations). Let X1, . . . , Xn be independent random variables,
|Xi| ≤ K, X :=

∑n
i=1 Xi. Then for every a > 0:

P (|X − E(X)| > a) ≤ e−
a2

2(Var(X)+Ka/3) .

Proof of Property 4. Consider the generalized random graph sequence Gn(P,Pk), the subgraphs and
the bipartite subgraphs of which have the following expected degrees. We will drop the index n, and use
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the notation A = (aij) for the entries of its adjacency matrix. As for the Cu, Cv pair (1 ≤ u ≤ v ≤ k),
for any i ∈ Cu, the average degree of i with regard to Cv is

E(
∑
j∈Cv

aij) = nvpuv,

each vertex in Cu has the same expected number of neighbors in Cv.
Observe that for i ∈ Cu, the sum

∑
j∈Cv

aij has binomial distribution with the above expectation
and variance nvpuv(1 − puv). Therefore, by Lemma 1, the between-cluster average degrees are highly
concentrated on their expectations as n→∞ under the balancing conditions nu

n ≥ c (u = 1, . . . , k) for
the cluster sizes. Indeed, for any 0 < ε < 1:

P(| 1
nv

∑
j∈Cv

aij − puv| > ε) = P(|
∑
j∈Cv

aij − nvpuv| > nvε) ≤ e−
n2

v ε2

2(nv puv (1−puv )+ε/3)

that tends to 0 even with the choice ε = n−τ , 0 < τ < 1
2 . Therefore, it holds almost surely that

|
∑
j∈Cv

aij − nvpuv| ≤ nvn−τ = nv
n
n1−τ = o(n).

This finishes the proof.
As for every 1 ≤ u ≤ v ≤ k, the number of common neighbors in Cv of any i, j ∈ Cu (i 6= j) pair has

binomial distribution with expectation nvp2
uv and variance nvp2

uv(1 − p2
uv), with the same calculations

as above we obtain that
|
∑
t∈Cv

aitajt − p2
uvnv| = o(n)

almost surely. This finishes the proof.
Consequently, the subgraphs confined to the vertex-classes exhibit regular, while the induced bipar-

tite subgraphs of a generalized random graph exhibit biregular structure asymptotically.5
Now we will discuss similar properties of the generalized quasirandom graphs, which are the deter-

ministic counterparts of the generalized random graphs and are spectrally equivalent to them.
Let us start with the k = 1 case. Quasirandom or pseudorandom graph sequences were first discussed

by Thomason [36]. Later, Chung, Graham and Wilson [19] used the term quasirandom for simple graphs
that satisfy any of some equivalent properties, where these properties are closely related to the properties10
of expander graphs, including the ‘large’ spectral gap. For a sampler of these quasirandom properties see
also Lovász [29]. Chung and Graham [20] investigated quasirandom graphs with given degree sequences.
Among others, they proved that ‘small’ discrepancy is caused by a ‘large’ spectral gap, which is 1−‖MD‖.
This relation is summarized in the following proposition that is a straightforward generalization of the
Expander Mixing Lemma for irregular graphs.15

Proposition 2.
disc(G) = disc1(G) ≤ ‖MD‖ = |µ1|,

where ‖MD‖ is the spectral norm of the normalized modularity matrix of G.

Though, with different notation, even a stronger version of this proposition is proved in [20], we give
another short proof here.
Proof. Via separation theorems for singular values, the largest singular value |µ1| of MD is the maximum
of the bilinear form vTMDu over the unit sphere. LetX,Y ⊂ V be arbitrary, and denote by 1X ,1Y ∈ Rn

the indicator vectors of them. Then

‖MD‖ = max
‖u‖=‖v‖=1

|vTMDu| ≥

∣∣∣∣∣
(

D1/21X
‖D1/21X‖

)T
MD

(
D1/21Y
‖D1/21Y ‖

)∣∣∣∣∣
= |1TXM1Y |
‖D1/21X‖ · ‖D1/21Y ‖

= |w(X,Y )−Vol(X)Vol(Y )|√
Vol(X)

√
Vol(Y )

.
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Taking the maxima on the right-hand side over subsets X,Y ⊂ V , the desired relation follows. Note
that the estimate is also valid if we take maxima over disjoint X,Y pairs only.

In [20], the authors also proved that in the case of dense enough graphs (the minimum degree is
cn for some constant c and number of vertices n) the converse implication is also true. In view of the
Expander Mixing Lemma, a ’large’ spectral gap is an indication that the weighted cut between any two 5
subsets of the graph is near to what is expected in a random graph, the vertices of which are connected
independently, with probability proportional to their generalized degrees. The notion of discrepancy
together with the Expander Mixing Lemma was first used for simple (sometimes regular) graphs, see
e.g., [1, 25], and extended to Hermitian matrices in [14]. Historically, Thomason [36, 37] was the first
to prove equivalences between quasirandom properties, though, with a bit different notions: he used the 10
term jumbled graph and not discrepancy.

The multiclass extension of quasirandomness (k > 1) is discussed throughly in Lovász and Sós [28],
where the generalized quasirandom graphs are defined. Here the clusters or cluster-pairs of small discrep-
ancy behave like expanders or bipartite expanders. In fact, these are the deterministic counterparts of
the generalized random graphs. Much earlier, in [34] the authors established valuable relations between 15
quasirandomness and the partitions of the seminal Szemerédi regularity lemma [35]. For the definition,
the notion of the convergence of edge- and vertex-weighted graph sequences is needed. Without going
into details, we will use the notion of graph convergence as discussed in [16].

The sequence (Gn) of ede- and possibly vertex-weighted graphs is said to be convergent if the
sequence t(F,Gn) of homomorphism densities converges for any simple graph F as n → ∞. They also 20
define the limit object that is a symmetric, bounded, measurable function W : [0, 1]× [0, 1]→ R, called
graphon. The stepfunction graphon WG is assigned to the weighted graph G in the following way: the
sides of the unit square are divided into intervals I1, . . . , In of lengths of the relative vertex-weights, and
over the rectangle Ii × Ij the stepfunction takes on the value that is the edge-weight between vertices
i and j. The convergence of (Gn) is also equivalent that the stepfunction graphon WG converges to 25
the limiting graphon in the so-called cut-metric. Roughly speaking, the members of a convergent graph
sequence become more and more similar in small details. In terms of the graph convergence, in Section
4 of [8] we proved the following.

Proposition 3. Consider the generalized random graph sequence Gn(P,Pk) with Pk = (C1, . . . , Ck),
|Cu| = nu (u = 1, . . . , k). Let n→∞ in such a way that nu

n → ru with some r1, . . . , rk > 0,
∑k

u=1 ru = 1. 30
Then Gn(P,Pk) → WH as n → ∞, where H is a vertex- and edge-weighted graph on k vertices with
vertex-weights r1, . . . , rk, the edge-weights are the entries of P, and WH is the step-function graphon
corresponding to H.

In [28] the following definition of a generalized quasirandom graph sequence was given.

Definition 3. Given a model graph graph H on k vertices with vertex-weights r1, . . . , rk and edge- 35
weights puv = pvu, 1 ≤ u ≤ v ≤ k (entries of P), (Gn) is H-quasirandom if Gn → WH as n → ∞ in
terms of the homomorphism densities.

The authors of [28] also proved that the vertex set V of a generalized quasirandom graph Gn can be
partitioned into classes C1, . . . , Ck in such a way that |Cu|

|V | → ru (u = 1, . . . , k) and the subgraph of Gn
induced by Cu is the general term of a quasirandom graph sequence with edge-density tending to puu 40
(u = 1, . . . , k), whereas the bipartite subgraph between Cu and Cv is the general term of a quasirandom
bipartite graph sequence with edge-density tending to puv (u 6= v) as n→∞.

Because of the limit relation in the definition of the generalized quasirandom graphs, and the spectral
equivalence of convergent graph sequences, the properties, discussed in Proposition 1, are as well valid
for the generalized quasirandom graphs. Actually, the authors in [17] proved that for any k, the k 45
largest absolute value normalized adjacency eigenvalues of a convergent graph sequence converge (to
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the corresponding eigenvalues of the limiting graphon). In [9] we proved the same for the normalized
modularity spectra of convergent graph sequences.

How to construct a generalized quasirandom graph with given k, P, and vertex-weights of the model
graph H? Consider the instance when there are k clusters C1, . . . , Ck of the vertices of sizes n1, . . . , nk
such that nu

n = ru (u = 1, . . . , k). Let us choose the independent irrational numbers αuv (1 ≤ u ≤ v ≤ k).
Then the subgraph on the vertex-set Cu is constructed as follows: i, j ∈ Cu, i < j are connected if and
only if

{(i− j)2αuu} < puu (u = 1, . . . , k),

where {.} denotes the fractional part of a real number. The bipartite subgraph between Cu and Cv is
constructed as follows: i ∈ Cu and j ∈ Cv are connected if and only if

{(i− j)2αuv} < puv (1 ≤ u < v ≤ k).

Analytical number theoretical considerations (see, e.g., [13, 32]) guarantee that, for any 1 ≤ u ≤ v ≤ k,
the sequence

yt := ({(t− i)2αuv}, {(t− j)2αuv})

is well-distributed symmetrically in [0, 1]2, uniformly in i, j ∈ Cu (i 6= j). Therefore, with the consider-
ations of [32],∣∣{t ∈ Cv : {(t− i)2αuv} < puv and {(t− j)2αuv} < puv}

∣∣ = p2
uvnv + o(nv) = p2

uvnv + o(n)

if n → ∞ and nu

n → ru (u = 1, . . . , k). For more examples of quasirandom graphs in the k = 1 case
see [12, 13, 36].

Therefore, a large random graph, constructed in this way, will be ‘nearly’ k-partite, k-regular, and its5
normalized modularity spectrum contains k−1 structural eigenvalues, whereas, all the other eigenvalues
are o(1), akin to the weighted k-variance of the optimal (k−1)-dimensional representatives. In this case,
the k-way discrepancy in the optimal spectral clustering is o(1). As for the complete k-partite graph
Kn1,...,nk (pure case), its normalized modularity spectrum contains k−1 structural negative eigenvalues
and n− k + 1 zeros. Also, the above k-variance is zero; further, disck(Kn1,...,nk ) = 0 and sk = 0.10

For an illustration of generalized random and quasirandom graphs see Figures 1, 2, 3.

P =


0.7 0.1 0.15 0.2 0.25
0.1 0.75 0.3 0.35 0.4
0.15 0.3 0.8 0.45 0.5
0.2 0.35 0.45 0.85 0.55
0.25 0.4 0.5 0.55 0.9


The properties of Proposition 1 can be regarded as generalized quasirandom properties provided

their implications can be proved for any graph sequence. To make the idea more precise, we formulate
the following conjecture.

Conjecture 1. Consider the sequence of graphs Gn with vertex-set Vn, adjacency matrix An, and15
normalized modularity matrix MD,n. Let k be a fixed positive integer and |Vn| = n → ∞. Then the
following properties are equivalent:
PI. (a) An has k structural eigenvalues that are Θ(n) in absolute value, while the remaining eigenvalues

are o(n).
(b) The k-variance S2

k,n of the k-dimensional vertex representatives, based on the eigenvectors cor-20
responding to the structural eigenvalues of An, is o(1). The k-partition Pk = (C1, . . . , Ck) min-
imizing this k-variance is such that nu

n ≥ c (u = 1, . . . , k) holds with some constant c, where
nu = |Cu|.

PII.(a) There exists a constant 0 < δ < 1 (independent of n, it only depends on k) such that MD,n

has k − 1 structural eigenvalues that are greater than δ in absolute value, while the remaining25
eigenvalues are o(1).
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Fig. 1. Generalized random graph
generated with k = 5, cluster
sizes 60, 80, 100, 120, 140 and prob-
ability matrix P below. The first
non-trivial eigenvalues of AD are
0.304, 0.214, 0.17, 0.153,

− 0.097, −0.094, −0.093,

− 0.092, −0.091, . . . ,
with a gap after the 4th one.

Fig. 2. Generalized quasirandom graph
constructed with k = 5, cluster
sizes 60, 80, 100, 120, 140 and prob-
ability matrix P below. The first
non-trivial eigenvalues of AD are
0.318, 0.207, 0.154, 0.115,

− 0.100, −0.099, −0.091,

− 0.090, 0.084, . . . ,
exhibiting decreasing eigenvalues up to
the 4th one.

Fig. 3. The former generalized quasir-
andom graph obtained by appropriate
permutation of the vertices within the
blocks.

(b) The weighted k-variance S̃2
k,n of the (k − 1)-dimensional vertex representatives, based on the

transformed eigenvectors corresponding to the structural eigenvalues of MD,n, is o(1). The k-
partition Pk = (C1, . . . , Ck) minimizing the above weighted k-variance is such that nu

n ≥ c

(u = 1, . . . , k) holds with some constant c, where nu = |Cu|.
PIII.There are vertex-classes Pk = (C1, . . . , Ck) of sizes n1, . . . nk, satisfying nu

n ≥ c (u = 1, . . . , k) 5
and a constant 0 < θ < 1 (independent of n) such that disc1(Gn), . . . , disck−1(Gn) > θ, and
disck(Gn;C1, . . . , Ck) = o(1).

PIV.There are vertex-classes Pk = (C1, . . . , Ck) of sizes n1, . . . nk, satisfying nu

n ≥ c (u = 1, . . . , k) and
a k × k symmetric probability matrix P = (puv), such that every vertex of Cu has asymptotically
nvpuv neighbors in Cv for any 1 ≤ u ≤ v ≤ k pair. Further, for the codegrees (number of common
neighbors) the following holds: every two different vertices i, j ∈ Cu have asymptotically p2

uvnv

common neighbors in Cv for any 1 ≤ u ≤ v ≤ k pair. More exactly, for every 1 ≤ u ≤ v ≤ k and
i, j ∈ Cu: ∑

t∈Cv

ait = puvnv + o(n);

and for every 1 ≤ u ≤ v ≤ k and i, j ∈ Cu:∑
t∈Cv

aitajt = p2
uvnv + o(n).

The PI-PII implications follow from the statements of Chapter 3 [8]. Particularly, statement (a) implies
(b) by subspace perturbation theorems both in PI and PII. The PII→PIII implication is proved in [9], 10
and discussed in Section 4. As for thePIII→PII implication, we will prove Theorem 1 in Section 4. Based
on the results of [19, 37] we guess that PIII implies PIV, and vice versa. With some transformation,
theorems of [36, 37] about (p, α)-jumbled graphs may be applicable for the subgraphs and bipartite
subgraphs, where p is some puv and α is related to the k-way discrepancy.
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4 Discrepancy versus spectra
Here we extend the notion of discrepancy to rectangular matrices of nonnegative entries, like microarrays
or contingency tables. Edge-weighted and directed graphs are special cases.

Let A = (aij) be an m × n matrix with aij ≥ 0. We assume that AAT (when m ≤ n) or ATA
(when m > n) is irreducible. Consequently, the row-sums drow,i =

∑n
j=1 aij and column-sums dcol,j =5 ∑m

i=1 aij of A are strictly positive, and the diagonal matrices Drow = diag(drow,1, . . . , drow,m) and Dcol =
diag(dcol,1, . . . , dcol,n) are invertible. Without loss of generality, we mostly assume that

∑n
i=1
∑m

j=1 aij =
1, since the normalized table

AD = D−1/2
row AD−1/2

col , (6)

is not affected by the scaling of the entries of A. It is well known (see e.g., [10]) that the singular values of
AD are in the [0,1] interval. Enumerated in non-increasing order, the positive ones are the real numbers

1 = s0 > s1 ≥ · · · ≥ sr−1 > 0,

where r = rank(A). Under the above conditions, 1 is a single singular value, and it is denoted by s0,
since it belongs to the trivial singular vector pair. In [10] we estimated the multiway discrepancy, to be10
introduced, of A by means of these singular values and the corresponding spectral subspaces.

Definition 4. The multiway discrepancy of the rectangular array A of nonnegative entries in the proper
k-partition R1, . . . , Rk of its rows and C1, . . . , Ck of its columns is

disc(A;R1, . . . , Rk, C1, . . . , Ck) = max
1≤u,v≤k

max
X⊂Ru, Y⊂Cv

disc(X,Y ;Ru, Cv), (7)

where
disc(X,Y ;Ru, Cv) = |a(X,Y )− ρ(Ru, Cv)Vol(X)Vol(Y )|√

Vol(X)Vol(Y )

= |ρ(X,Y )− ρ(Ru, Cv)|
√

Vol(X)Vol(Y ).
(8)

Here a(X,Y ) =
∑

i∈X
∑

j∈Y aij is the cut between X ⊂ Ra and Y ⊂ Cb, Vol(X) =
∑

i∈X drow,i is
the volume of the row-subset X, Vol(Y ) =

∑
j∈Y dcol,j is the volume of the column-subset Y , whereas

ρ(X,Y ) = a(X,Y )
Vol(X)Vol(Y ) denotes the density between X and Y . The minimum k-way discrepancy of A is

disck(A) = min
R1,...,Rk

C1,...,Ck

disc(A;R1, . . . , Rk, C1, . . . , Ck).

In [10], we proved that given the m × n rectangular array A, the following spectral biclustering15
results in row-column cluster pairs of small discrepancy. The clusters R1, . . . , Rk of the rows and
C1, . . . , Ck of the columns are obtained by applying the weighted k-means algorithm for the (k − 1)-
dimensional row- and column representatives, defined as the row vectors of the matrices of column
vectors (D−1/2

row v1, . . . ,D−1/2
row vk−1) and (D−1/2

col u1, . . . ,D−1/2
col uk−1), respectively, where vi,ui is the unit

norm singular vector pair corresponding to si (i = 1, . . . , k − 1). Recall that these partitions mini-20
mize the weighted k-variances S̃2

k,row and S̃2
k,col of these row- and column-representatives introduced

in (4). Then, under some balancing conditions for the margins and for the cluster sizes, we proved that
disck(A) = O(

√
2k(S̃k,row + S̃k,col) + sk).

In the special case whenm = n and A is symmetric of zero diagonal, we have the edge-weight matrix
of an undirected graph. In [9], we proved the following for the k-way discrepancy of the edge-weighted25
graph G = (V,An), where the singular values of MD,n are the numbers si = |µi| (i = 1, . . . , n).

Proposition 4. Let G = (V,W) be a connected edge-weighted graph on n vertices, with generalized
degrees d1, . . . , dn and degree matrix D. Assume that Vol(V ) = 1, and there are no dominant vertices,
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i.e., di = Θ(1/n), i = 1, . . . , n, as n → ∞. Let the eigenvalues of MD,n, enumerated in decreasing
absolute values, be

1 ≥ |µ1,n| ≥ · · · ≥ |µk−1,n| > ε ≥ |µk,n| ≥ · · · ≥ |µn,n| = 0.

The partition (C1, . . . , Ck) of V is defined so that it minimizes the weighted k-variance S̃2
k of the optimum

vertex representatives obtained as row vectors of the n × (k − 1) matrix of column vectors D−1/2
n ui,n,

where ui,n is the unit-norm eigenvector corresponding to µi,n (i = 1, . . . , k − 1). Assume that there is a
constant 0 < K ≤ 1

k such that |Ci| ≥ Kn, i = 1, . . . , k. With the notation s =
√
S̃2
k, the (Ci, Cj) pairs

are O(
√

2ks+ ε)-volume regular (i 6= j) and for the clusters Ci (i = 1, . . . , k) the following holds: for all
X,Y ⊂ Vi,

|w(X,Y )− ρ(Ci)Vol(X)Vol(Y )| = O(
√

2ks+ ε)Vol(Ci),

where ρ(Ci) = w(Vi,Vi)
Vol2(Vi) is the relative intra-cluster density of Ci.

Then, by Proposition 4, PII implies PIII, under some balancing conditions for the margins and for the
cluster sizes. Conversely, we are able to estimate sk with the k-way discrepancy.

Theorem 1. With the above notation,

sk = O(
√

logm logn) disck(A)

for any positive integer k < rank(A).

For the proof we need the following lemmas. Lemma 3 of Bollobás and Nikiforov [14] states that to 5
every 0 < ε < 1 and vector x ∈ Cn, ‖x‖ = 1, there exists a vector y ∈ Cn such that its coordinates take
no more than

⌈ 8π
ε

⌉ ⌈ 4
ε log 2n

ε

⌉
distinct values and ‖x − y‖ ≤ ε. Lemma 3 of Butler [18] can be traced

back to this one. It states that to any vector x ∈ Cn, ‖x‖ = 1 and diagonal matrix D of positive real
diagonal entries, one can construct a step-vector y ∈ Cn such that ‖x−Dy‖ ≤ 1

3 , ‖Dy‖ ≤ 1, and y has
at most Θ(logn) distinct coordinates. We well also use the following lemma that we constructed just 10
for this purpose.

Lemma 2. Let A be an m × n matrix of real entries and let the rows and columns have positive real
weights dr,i’s and dc,j’s (independently of the entries of A), which are collected in the main diagonals
of the m ×m and n × n diagonal matrices Dr and Dc, respectively. Let R1, . . . , Rk and C1, . . . , C` be
proper partitions of the rows and columns; further, x ∈ Cm and y ∈ Cn be stepwise constant vectors
having equal coordinates over the index sets corresponding to the partition members of R1, . . . , Rk and
C1, . . . , Cl, respectively. The k × ` real matrix A′ = (a′uv) is defined by

a′ab := a(Ru, Cv)√
VOL(Ru)VOL(Cv)

, u = 1, . . . k; v = 1, . . . , `,

where a(Ru, Cv) is the usual cut of A between Ru and Cv, whereas VOL(Ru) =
∑

i∈Ru
dr,i and

VOL(Cv) =
∑

j∈Cv
dc,j. Then

|〈x,Ay〉| ≤ ‖A′‖ · ‖D1/2
r x‖ · ‖D1/2

c y‖,

where ‖A′‖ denotes the spectral norm, that is the largest singular value of the real matrix A′, and the
squared norm of a complex vector is the sum of the squares of the absolute values of its coordinates.

Note that here the row- and column-weights have nothing to do with the entries of A, and the volumes
are usually not the ones defined in Section 2; this is why they are denoted by VOL instead of Vol. 15

Proof of Lemma 2. For the distinct coordinates of x and y we introduce

xi := x′a√
VOL(Ra)

if i ∈ Ra and yj := y′b√
VOL(Cb)

if j ∈ Cb
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with x′a and y′b that are coordinates of x′ ∈ Ck and y′ ∈ Cl. Obviously, ‖D1/2
r x‖ = ‖x′‖ and ‖D1/2

c y‖ =
‖y′‖. Then, using¯for the complex conjugation,

|〈x,Ay〉| =

∣∣∣∣∣
m∑
i=1

n∑
j=1

xiȳjcij

∣∣∣∣∣ =

∣∣∣∣∣
k∑
a=1

l∑
b=1

x′a√
VOL(Ra)

ȳ′b√
VOL(Cb)

c(Ra, Cb)

∣∣∣∣∣
=

∣∣∣∣∣
k∑
a=1

l∑
b=1

x′aȳ
′
bc
′
ab

∣∣∣∣∣ = |〈x′,A′y′〉| ≤ smax(A′) · ‖x′‖ · ‖y′‖

= ‖A′‖ · ‖D1/2
r x‖ · ‖D1/2

c y‖

by the well-known extremal property of the largest singular value, which finishes the proof.

Proof of Theorem 1. Assume that α = disck(A) is attained with the proper k-partition R1, . . . , Rk of
the rows and C1, . . . , Ck of the columns of A; i.e., for every Ra, Cb pair and X ⊂ Ra, Y ⊂ Cb we have

|c(X,Y )− ρ(Ra, Cb)Vol(X)Vol(Y )| ≤ α
√

Vol(X)Vol(Y ). (9)

Introducing the m× n matrix
F = A−DrowRDcol, (10)

where R = (ρ(Ru, Cv)) is the m × n block-matrix of k × k blocks with entries equal to ρ(Ru, Cv) over
the block Ru × Cv, Equation (10) yields

D−1/2
row FD−1/2

col = D−1/2
row AD−1/2

col −D1/2
rowRD1/2

col = AD −D1/2
rowRD1/2

col .

Since the rank of the matrix D1/2
rowRD1/2

col is at most k, by Theorem 3 of Thompson [38], describing the
effect of rank k perturbations for the singular values, we obtain the following upper estimate for sk, that
is the (k + 1)th largest (including the trivial 1) singular value of AD:

sk ≤ smax(D−1/2
row FD−1/2

col ) = ‖D−1/2
row FD−1/2

col ‖,

where ‖.‖ denotes the spectral norm.5
Let v ∈ Rm be the left and u ∈ Rn be the right unit-norm singular vector corresponding to the

maximal singular value of D−1/2
row FD−1/2

col , i.e.,

|〈v, (D−1/2
row FD−1/2

col )u〉| = ‖D−1/2
row FD−1/2

col ‖.

In view of Butler [18], there are stepwise constant vectors x ∈ Cm and y ∈ Cn such that ‖v−D1/2
rowx‖ ≤ 1

3 ,
‖u−D1/2

col y‖ ≤ 1
3 , ‖D

1/2
rowx‖ ≤ 1, and ‖D1/2

col y‖ ≤ 1; further,

‖D−1/2
row FD−1/2

col ‖ ≤
9
2

∣∣∣〈(D1/2
rowx), (D−1/2

row FD−1/2
col )(D1/2

col y)〉
∣∣∣ = 9

2 |〈x,Fy〉|.

Then using the above discussed argument and Butler’s results, with the matrix F defined in (10) and
the constructed step-vectors x ∈ Cm, y ∈ Cn, we have

sk ≤ ‖D−1/2
row FD−1/2

col ‖ ≤
9
2 |〈x,Fy〉|.

With the preliminary argument, x takes on at most r1 = Θ(logm), and y takes on at most r2 = Θ(logn)
distinct values, which define the proper partitions P1, . . . , Pr1 of the rows and Q1, . . . , Qr2 of the columns.
Let us consider the subdivision of them with respect to R1, . . . , Rk and C1, . . . , Ck. In this way, we obtain
the proper partition P ′1, . . . , P ′`1 of the rows and Q′1, . . . , Q′`2 of the columns with at most `1 = kr1 and
`2 = kr2 parts.10

Now, we apply Lemma 2 to the matrix F and to the step-vectors x and y, which are also stepwise
constant with respect to the above partitions. The row-weights and column-weights are the drow,i’s and
dcol,j ’s, respectively. In view of the lemma, the entries of the `1 × `2 matrix F′ are

f ′uv := f(P ′u, Q′v)√
Vol(P ′u)Vol(Q′v)
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and
|〈x,Fy〉| ≤ ‖F′‖ · ‖D1/2

rowx‖ · ‖D1/2
col y‖ ≤ ‖F′‖.

But by a well-known linear algebra fact we get that

‖F′‖ = smax(F′) ≤
√
`1`2 max

u∈[`1]
max
v∈[`2]

|f ′uv| ≤ ` · disc(A;R1, . . . , Rk, C1, . . . , Ck),

where ` =
√
`1`2 and we used Formula (7) for the discrepancy. Consequently,

sk ≤
9
2`disck(A)

follows.
Note that, by Theorem 1, for the undirected, edge-weighted graph Gn, the relation |µk| =

O(logn)disck(Gn) holds; therefore, if in addition disck(Gn) = O(n−τ ) with some 0 < τ < 1
2 , as in

the case of generalized random and quasirandom graphs, then PIII implies PII.
The discrepancy of a directed graph G = (V,W) is a special case of that of a rectangular array 5

in that its edge-weight matrix W = (wij) is quadratic, but asymmetric: wij ≥ 0 is the weight of the
i → j edge (i 6= j) and wii = 0 (i = 1, . . . , n). We used the spectral clustering algorithm to migration
data between 34 countries. The row- and column-clusters are the out- and in-clusters, corresponding to
countries exhibiting similar emigration and immigration patterns; wij represents the number of persons
in thousands who moved from country i to country j during the year 2011. 10

Based on the singular values

s0 = 1, s1 = 0.79067, s2 = 0.769678, s3 = 0.61489, s4 = 0.584317, s5 = 0.56072, . . . , s33 = 0.000523946

of the normalized (asymmetric) 34 × 34 edge-weight matrix WD, there was indeed a gap after s2, so
we found three clusters for both the rows and the columns. The row-clusters (emigration trait clusters)
were the following:
1. Australia, Austria, Canada, Chile, Czech Republic, Estonia, Greece, Hungary, Israel, Japan, Korea,

Luxembourg, Mexico, New Zealand, Poland, Slovak Republic, Slovenia, Turkey, United States. 15
2. Belgium, France, Germany, Ireland, Italy, Netherlands, Portugal, Spain, Switzerland, United King-

dom.
3. Denmark, Finland, Iceland, Norway, Sweden.
The column-clusters (immigration trait clusters) were:
1. Australia, Austria, Belgium, France, Greece, Israel, Italy, Luxembourg, Poland, Portugal, Spain, 20

Switzerland, United Kingdom.
2. Canada, Chile, Czech Republic, Germany, Hungary, Iceland, Ireland, Japan, Korea, Mexico, Nether-

lands, New Zealand, Slovak Republic, Slovenia, Turkey, United States.
3. Denmark, Estonia, Finland, Norway, Sweden.
Figure 4 shows the results, where we can spot some dense and sparse edge-densities within the subgraphs 25
and bipartite subgraphs. For example, there is a high edge-density between out-cluster 2 and in-cluster
1, which indicates frequent migration between the countries of the European Union. Also, high edge-
density is shown between out-cluster 3 and in-cluster 3, i.e., between the countries of Northern Europe,
in 2011. However, their separation is not so spectacular, since with n = 34 the asymptotic properties
are not clearly effectuated. 30

5 Conclusion
We characterized spectra and discrepancies of generalized random and quasirandom graphs. Properties,
like ‘large’ spectral gap, ‘small’ within-cluster variances of the vertex representatives, and ‘small’ within-
and between-cluster discrepancies were formulated with graph based matrices, for a given number of
clusters. However, our theory helps the practitioners to find the optimal number of clusters. 35
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Fig. 4. Asymmetric adjacency matrix of the migration graph, where darker spots mean larger numbers while lighter spots
mean smaller ones. Rows and columns are ordered according to the out- and in-cluster memberships, respectively; further,
the clusters and separated by red lines.

As a generalization of quasirandomness, that applies to the one-cluster situation, we also considered
generalized quasirandom properties, and proved some implications between them, irrespective of stochas-
tic models. Real-life expanding graph sequences asymptotically capturing one of these properties are
random-like, confined to the subgraphs and bipartite subgraphs of them. The equivalences also suggest
that spectral methods are capable to find partitions of the vertices with ‘small’ multiway discrepancy.5
We extended these notions to rectangular arrays of nonnegative entries, of which directed graphs are
special cases.
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